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Abstract: We deal here with the routing and scheduling of electric vehicles in charge of performing internal logistic 
tasks inside some protected area. Some vehicles are provided in energy by a local photo-voltaic facility with 
limited production/storage capacities and time dependent production rates. In order to avoid importing energy 
from outside (notion of self consumption) one must synchronize energy consumption and production while 
minimizing both production and routing costs. Because of the complexity of resulting bi-level optimization 
model, we handle it while shortcutting the production scheduling level with the help of surrogate estimators, 
whose values are computed through a pricing mechanism and machine learning devices.  According to this 
purpose we design, implement and test several algorithms and get an evaluation of the potentiality of such 
surrogate component based approaches. This work was carried on in partnership with national power company 
EDF, in the context of the PGMO program. 

1 INTRODUCTION 

The notion of multi-level decisional (Caprara, 2014; 
Chen, 2013; Colson, 2005; Dempe, 2015) model is 
mainly related to situations when decision is shared 
between several players, independent from each other 
or tied together by some hierarchical or collaborative 
link. Then, solving such a model aims at providing a 
best scenario in case all the players accept to submit 
themselves to a common authority (centralized 
paradigm), or, if it is not the case (collaborative 
paradigm), at helping them into the search for a 
compromise (Kleinert, 2021).  Standard approaches 
involve decomposition schemes, which may be 
hierarchical (Benders decomposition, Stackelberg 
equilibrium,…) or transversal (Lagrangean 
relaxation). Still in both case some major difficulties 
remain: They are related to the sensitivity issue, which 
means the way one may retrieve information from the 
different levels in order to make them interact, and to 
the collaborative issue, which may impose the players 
to deal with incomplete information. It comes that a 
trend, boosted by the rise of machine learning 
technology (Krystow, 2018; Wojtuziak, 2012), is to 
bypass some levels of the global model and replace 
them by surrogate estimators, likely to approximate 
the constraints and costs induced by the decisions 
taken at those levels. 

 

It is this point of view which we adopt here while 
dealing with the joint management of local 
photovoltaic energy production by a PV-facility 
(Luthander, 2015; Smart Together, 2016) and its 
consumption by a fleet of electric vehicles in charge 
of logistic tasks inside a restricted area. This problem 
arose in the context of the activities of IMOBS3 
(Innovative Mobility) Labex in Clermont-Ferrand, 
which conducts research on both autonomous electric 
vehicles and solar energy, and of the national PGMO 
program promoted by power company EDF. The fact 
is that both market deregulation and emergent 
technologies currently induce the rise of local 
renewable energy producers (factories, farms and 
even individual householders) who simultaneously 
remain consumers (Balbiyad, 2019; Deb, 2018; 
Grimes, 2008) and so make self-consumption become 
an issue. A key operational feature of self-
consumption management happens to be the need for 
synchronization between strongly time-dependent 
energy production and its consumption. 

So we consider here, on one side, a production 
manager who runs a PV (Photo-Voltaic)-Plant, which 
not only distributes energy between end-users 
(electric vehicles) but also buys and sells energy on 
the market. On the other side, we consider a fleet 
manager who schedules and routes electric vehicles in 
such a way that they efficiently achieve a set of 
internal logistic tasks. Both interact through 
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recharging transactions: In order to avoid that the 
vehicles waste time while waiting for their battery to 
be recharged, the PV-Plant relies on a set of identical 
batteries, so that the vehicles only need to move 
toward the PV-Plant and switch batteries in order to 
be recharged. This plug out/in operation is 
instantaneous. But limited storage and recharge 
capacities impose both players to carefully 
synchronize the strongly time-dependent energy 
production and its consumption. This synchronization 
requirement makes resulting bi-level decision 
problem complex, even if we restrict ourselves to the 
centralized paradigm. Though many searchers have 
recently showed interest into the decisional problems 
which may be related to the management of renewable 
energy, they most often focused either on production 
control and scheduling (Adulyasak, 2012 ; Irani, 2003, 
Erdelic, 2019) or on the issues related to power 
consumption (Albrecht, 2013; Koc, 2019), without 
dealing with this synchronization issue (Bendali, 
2021; Trotta, 2022). Our goal here is to address it by 
shortcutting the part of the process related to 
production management and handling the vehicle 
routing master level while using a surrogate 
formulation of the cost and constraints related to 
production. We try two approaches: the first one is 
based upon a parametric pricing mechanism; the 
second involves a convolutional neural network. We 
suppose, for the sake of simplicity, that our system 
behaves in a deterministic way.   

The paper is organized as follows. We first 
(Section 2) introduce the PV_Prod_VRP problem. 
We set it according to the MILP (Mixed Integer 
Linear Programming) framework and discuss 
different formulations. Next (Section 3), we present 
the 3-step algorithmic framework for the handling of 
PV_Prod_VRP through the use of surrogate 
estimators. In Section 3.1 we provide the details of a 
Branch and Cut algorithm which performs (Step 1) 
the computation a collection of elementary trips; In 
Section 3.2 we specify the surrogate estimators of the 
production cost which we use in order to schedule the 
elementary trips (Step 2): the first one relies on a 
parametric pricing mechanism while the second one 
involves a convolutional neural network. Section 4 is 
devoted to numerical experiments.    

2 THE PV_PROD_VRP PROBLEM 

We consider a fleet of K small identical electric 
vehicles initially located at a depot Depot =  0 and 
which are required to perform VRP: Vehicle Routing 
Problem tours, that means to visit a set of stations J = 

{1,…, M} within a time horizon [0, TMax]. Moving 
from station j to station k requires j,k time units and 
an amount Ej,k of energy. Recharge transactions take 
place at Depot. In order to avoid that the vehicles wait 
every time they recharge, the fleet relies on a set B of 
identical batteries, with capacity C and charge speed 
CS, and vehicles may switch their battery every time 
they come back to Depot. This plug out/in operation is 
considered as almost instantaneous. It comes that 
while the vehicles are running with active batteries, 
idle batteries are recharged at Depot before being used 
again by the vehicles. For any battery b in B, Vb 
denotes its initial load. We call elementary trip any 
VRP sub-tour that a vehicle may perform without 
recharging: such an elementary trip is a sequence 
{Depot = j0, j1,…, js, js+1 = Depot} such that the sum  
 j Ej,Succ(j) does not exceed capacity C. 

In order to implement a self-consumption policy, 
Depot is provided with a PV-Plant, that means with a 
photovoltaic facility which assigns the batteries to the 
vehicles and produces its own energy that it distributes 
between the currently idle batteries or that it sells to 
the market. In case this self-produced energy is not 
enough, the PV-Plant can also buy energy to the 
market. The time space [0, TMax] being divided into 
small periods i = 1,…, N, all with same length p, we 
denote by CR the recharge capacity, i.e the energy 
which may be loaded into a battery during 1 period. 
We also denote by Ri the expected production of the 
PV-Plant at period i, by Ai the energy unit purchase 
price at period i, and by Bi the energy unit sale price. 
Clearly we have, for any i, Ai  ≥ Bi.  Figure 1 describes 
the way the PV-Plant and the vehicle fleet interact. 

 

Figure 1: The Global Self-Consumption System. 

Resulting PV_Prod_VRP problem comes as follows:  

PV_Prod_VRP Problem: {Simultaneously schedule 
the vehicle fleet and the activity of the PV-Plant, in 
such a way that: 

 Every station is visited once; 
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 Every time a vehicle k comes back to Depot, 
the PV-Plant assigns it a battery loaded to 
make possible its next elementary trip; 

 The global energy load of the batteries at the 
end of period N must be at least the same as at 
the beginning of the process.  

 Some global cost is minimized, which 
combines standard VRP cost with the 
difference between the energy purchase cost 
and the profit derived from energy sales}. 

In order to formalize, let us first suppose that the 
vehicles have been scheduled, which means that a 
collection 0 of elementary trips  has been 
computed and each  scheduled inside a set of 
consecutive periods I(). We denote by 0 = {(, 
I()),   0} the resulting set of scheduled trips  = 
{(, I()). For any trip , we denote by E() its energy 
consumption, by T() its duration, by S() its set of 
stations, by EMean() the quotient  E()/Card(I()), 
and we extend those notations to scheduled trips . 
Then, PV_Prod sub-problem is about the way the PV-
Plant loads the batteries and assigns them to 
scheduled trips :    

ILP PV_Prod() MILP (Mixed Integer Linear 
Program ) Model:  

{Compute  
 {0, 1}-vector U = (U,b,  , b  B):  U,b 

= 1 iff b = b() is the battery assigned to ;  

 {0, 1}-vector   = (b,i, b  B, i = 1,…, N):  

b,i  = 1 iff b is idle at period i;  

 XA = (XA
i, i = 1,…, N), XB = (XB

i, i = 1,…, N), 

XD = (XD
b,i,  b  B, i = 1,…, N), which 

respectively denote the energy bought, sold 
and distributed to battery b, by the PV-Plant; 

 W = (Wb,i,  b  B, i = 0,…, N): Wb,i is the 
energy inside battery b at the end of period i.  

Objective Function: Minimize  

 i Ai.XA
i - i Bi.XB

i . 
Constraints:   

 For any b, i, Wb,i  ≤ C  

and XD
b,i  ≤ CR.b, I;      (R1)  

 For any b, Wb,0 = Vb ;     (R2) 

  b Wb,N  ≥  b Vb;       (R3) 

 For any i,  

Ri + XA
i = XB

i +  b XD
b,i ;     (R4) 

 For any b  B, i:  

(1 - b, i) =  s.t i  I() U,b ≤ 1;     (P1) 

 For any  ,  b U,b = 1;     (P2) 

 For any b  B, i: Wb,i  = Wb,i-1  +  XD
b,i    

-  s.t i  I() EMean().U,b.      (P3)} 

Explanation: (R1) means that we charge a 
battery b only if it is idle. (R3) imposes the batteries 
to be globally loaded with at least as much energy at 
the end of the whole process as at the beginning. (R4) 
tells the way energy is distributed between sale, 
purchase and battery loading. (P1) means that b is 
active at period i only if has been assigned to a unique 
scheduled trip , active at period i. (P2) says that any 
scheduled trip  is assigned a unique battery b. (P3) 
describes the evolution of a battery b from a period i 
- 1 to next period i. 

We may now formalize our global  PV_Prod_VRP 
problem. The VRP decision makes our K vehicles visit 
at least once any station j in {1,…, M) and means a 
collection 0 of scheduled trips  = (, I()) such that:  
 For any i, Card({  0 s.t i  I()} ≤ K. (S1) 
 For any j, Card({  0 s.t j S()} ≥ 1.  (S2) 

If we consider as standard VRP cost of 0 the 
global riding time  T() (Driver Cost) then, a time 
versus money coefficient  being given,  our 
PV_Prod_VRP problem comes as follows:  

PV_Prod_VRP Problem: {Compute a collection 0 
of scheduled trips, such that (S1, S2) hold and which 
minimizes the sum .(   0 T()) + 
Val_PV_Prod(0), where Val_PV_Prod(0) is the 
optimal PV_Prod() value}. 

Denoting by  the set of all possible scheduled 
trips allows us to propose the following MILP 
formulation of PV_Prod_VRP: 

PV_Prod_VRP MILP Formulation:  
{Compute: 
 {0, 1}-vector Z = (Z,    }: Z = 1 means 

that we select  scheduled trip  ;  
 XA, XB, XD, W, U  and   as in above PV_Prod 

MILP model; 
Objective Function:  
Minimize  i Ai.XA

i -  i Bi.XB
i  + . T().Z; 

Constraints:   
 (R1,…, R4, P1, …, P3) of PV_Prod; 
 For any i = 1,…, N,  s.t i  I() Z ≤ K; (S1) 
 For any j = 1,…, M,  s.t j  S() Z ≥ 1. (S2) 
 For any  ,  b  U,b = Z ;        (S3) 

Explanation: (S3) means that any selected scheduled 
trip must be assigned a battery.   

An Example: Let us consider a customer set X = {A, 
B, C, D, E} and 2 vehicles v1 and v2, which follow 
routes 1 and 2 as in figure 3 below: Numbers above 
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every arc respectively represent the time and the 
energy required in order to traverse the arc. 

 

Figure 2: Routes 1 and 2. 

We also suppose that: we are provided with 2 
identical batteries b1 and b2, both with capacity C = 
12 and with initial loads respectively equal to 7 and 
6; the time space is divided into 10 periods, all with 
duration equal to 2; recharge capacity CR is equal to 
3 and production data come as in table 1 below: 

Table 1: PV Prices and Production Coefficients. 

i 1 2 3 4 5 6 7 8 9 10 
Ai 2 3 7 7 3 2 6 7 4 2 
Bi 1 2 4 4 1 1 3 3 2 1 
Ri 4 4 3 5 2 6 4 4 4 5 

Then we derive a feasible solution from 1 and 2   
 1 starts at time 4 with battery b2, comes back to 

Depot at time 9, waits in Depot until time 14  
and starts until time 18 with battery b1; 

 2 starts at time 2 with battery b1, comes back to 
Depot at time 6, waits in Depot until time 12 and 
starts again with battery b2 until time 16. 

 Vectors XA, XB and XD are given by table 2 below: 

Table 2: Solution Values. 

i 1 2 3 4 5 6 7 8 9 10 
XA

i 1 0 0 0 1 0 0 0 0 1 
XB

i 0 1 3 2 0 0 1 4 2 0 
XD

b1,i 2 * * 3 3 3 3 * * 3 
XB

b2,i 3 3 * * * 3 * * 2 3 

Time versus money coefficient  is equal to 2. 
Related cost is:  2*17 (Vehicle Time Cost) + 5 
(Energy Purchase) -  43 (Energy Sale) = - 4. We earn 
38 money units, under a riding time of 17.   

A Short Discussion: Variants of the PV_Prod 
Model. In practice, production configurations may be 
more complex. Let us mention here two variants: 

First variant: Batteries remain identical, but may be 
used in order to store energy and next sell it.  

According to this hypothesis, a battery b may 
receive energy at period i and sell it at period i’ > i.  
The Recharge model must be updated through the 
introduction of an additional vector YB = (YB

b,i, b  B, 
i = 1,…, N), which  means the amount of energy sold 
at any period i by battery b. 

Second variant: A fixed storage unit is added to the 
PV-Plant, which may be used either for sale or for 
battery feeding when energy is scarce or expensive.  

According to this hypothesis, such a Buffer 
battery BUFF, with storage capacity CBUFF, initial 
load VBUFF, recharge capacity CR_BUFF and discharge 
capacity CD-BUFF, induces the introduction of the 
following variables into the Recharge model:  

 XBUFF
i = energy sent from the PV-Plant to the 

Buffer battery at i; 
 XB_BUFF

i = energy sold by the Buffer battery at i; 
 YBUFF

b,i = energy sent by the Buffer battery to 
battery b at i; 

  WBUFF
i = energy inside the Buffer battery at the 

end of i.  

3 PV_PROD_VRP HANDLING: 
SURROGATE COMPONENTS 

PV_PROD_VRP is a complex model, with 3 discrete 
decision levels, respectively related to elementary 
trips, scheduled trips, and batteries. Its MILP 
formulation is hardly practicable and would badly fit 
true life contexts, where decisions related to 
respectively vehicles and the PV-Plant are likely to 
depend on distinct players. Instead, we propose 2 
approaches: 

First approach: Solving above PV_Prod_VRP 
MILP model, while restricting ourselves to a pre-
computed set  of scheduled trips.   

Second Approach: Solving the PV_Prod_VRP bi-
level model, while partially short-cutting the slave 
PV_Prod level through the introduction of surrogate 
constraints and criteria. 
It is this second approach which we follow here. 

3.1 Shortcutting the PV_Prod Level 

Our purpose here is to compute the scheduled trip set 
0 without explicitly involving the PV-Plant. But, 
while the schedule  -> I() must take into account 
prices Ai, Bi and production rates Ri, we can only say 
that a well-fitted collection 0 requires small amounts 
of both time and energy. So we should split the 
routing part of the problem (computing the 
elementary trips) from its scheduling part (scheduling 
those elementary trips). This leads us to the following 
parametric VRP_Surrogate process: 

ICORES 2023 - 12th International Conference on Operations Research and Enterprise Systems

130



VRP_Surrogate Parametric Algorithm: Initialize 
flexible scaling parameter ; Not Stop; Current best 
solution Best_Sol is undefined;  

While Not Stop do  
1st step: Compute an elementary trip collection 0 

which minimizes .  0 T() + .   0 
E(),   

2nd  step: Turn 0 into a scheduled trip collection 
0, i.e compute intervals I(),   0 in a way 
which meets some surrogate constraints 
(SURR) and which minimizes some surrogate 
cost ( -> I()); 

3rd step: Update  and Stop; Solve PV_Prod(0) 
and update Best_Sol; . 

3.2 Step 1: Branch and Cut 

Trying exact methods leads to set an ILP model. For 
any subset A  J = {1,…, M}, we set +(A) = {arcs (j, 
k) such that j  A and k  A} and Cl(A) = {arcs  (j, k) 
s.t at least j or k is in A}. We get the following 
Elementary_Trip ILP model, which involves a 
specific SNS: Strong No Sub-Tour Constraint:   

Elementary_Trip ILP model: 
{Compute a (0, 1)-valued vector Z = (Zj,k, j, k =  
0,…, M) in such a way that :  
 For any j,  k Zj,k =  k Zj,k  = 1;  (S2) 
 For any subset A of {1, …, M},  (SNS) 
      C.( (j, k )   +(A)  Zj,k) ≥   (j, k ) Cl( A) Ej,k .Zj,k 
 Minimize .( j,k Zj,k. Tj,k,) + .( j,k Zj,k. Ej,k,). 

The explanation of above (SNS) constraint comes 
with the statement below: 

Theorem 1: {0, 1} vector Z meets (S2, SNS) iff  arcs 
(j, k) such that Zj,k = 1 define a collection  of sub-
tours 1, …, S, with S =  k Z0,k = such that:  
 For every s = 1,…, S,  s starts from Depot = 0 

and ends into Depot, and requires an energy 
amount  no more than C; 

 Every station j is visited exactly once by 
collection    

Constraints SNS may be separated in polynomial 
time through a max flow (min cut) procedure. 

Sketch of the Proof: Constraints (SNS) imply that Z 
gives rise to a collection  of sub-tours 0, …, S, 
which globally involve exactly once any station j, and 
which all contain Depot = 0 (No Sub-Tour). If some 
tour s spends more energy than capacity C, then a 
subset A of {0, …, M+1} exists which makes Z violate 
(SNS). We deduce the first part of our statement.  As 
for the second part, we see that, some vector Z 
(integral or rational) being given, separating (SNS) 

means searching for B = {0, 1, …, M} – A, such that:  
 j,k  B  Zj,k.Ej,kC( (j, k )   +(B)    Zj,k ) <   

=  j,k  Zj,k.Ej,k (*) 
In order to do it, we construct a network GAux, 

whose node set is{0, 1, …, M+1)  and whose arc set 
UAux may be written UAux =  U  Copy(U) with: 
o U = {(j, k), j, k =  0,…, M, such that Zj,k ≠ 0: 

provided with a capacity wu =  Zj,k.(C  -  Ej,k)};  
o With any arc e = (j, k) in U, we associate an arc 

u = Copy(e) = (j, M+1) provided with a capacity 
wu = Zj,k.Ej,k. Then arc set Copy(U) is the set of 

all arcs Copy(e), e  U. 
But searching for B such that (*) means searching 

for B  { 0, 1, …, M}, such that:   
 u  UAux, s.t (origin(u)   B)  (destination(u)   B)  wu < .  
It is known that, in case B exists, it may be 

retrieved through the standard Min Cut algorithm. � 
Theorem 1 and related proof provide us with an 

efficient separation procedure which opens the way 
to the implementation of a Branch and Cut process.   

3.3 Step 2: Surrogate Components 

In order to enhance PV_Prod(0) feasibility, we 
impose the following surrogate necessary (but not 
sufficient) constraints: 
 For any period i, Card({  0 such that i  

I()}) ≤ K.    (S1) 
 For any i0 = 1,…, N: CR.( i ≤ i0-1.n(, i))  +  

 b Vb  ≥   s.t Start()  ≤  i0.E(),  
where n(, i) is the number of scheduled trips  

idle at period i, and Start() is the starting period of 
, and which means that we must be able to feed the 
batteries in such a way that the trips becomes 
possible.      (SURR2) 

Then, in order to make possible the use of any 
surrogate estimator ( -> I()), we implement Step 
2 while relying on a non deterministic local search 
heuristic Scheduled_Trip(0,  ). So, what remains 
to be done is to discuss estimator .  

3.3.1 Defining (0) According to a Pricing 
Mechanism 

The idea here is that the cost of a schedule ( -> I()) 
is determined by the distribution of resulting values 
n(0, i), which means, for any period i, the number of 
batteries which are available for recharge at i. Let us 
denote by E = ( E()) the global charge which 
has to be loaded into the batteries and by I = ( 
T()/p) the  number of periods required in order to 
perform all trips of 0. The point is that if we suppose 
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that all batteries receive a same charge EMean = E/I at 
every period when they are idle, then we get the cost 
of the production process through the following 
formula: Cost = I.QStand

i, n(, i), where standard price 
QStand

i, n for the recharge of n idle batteries at period i 
is given by:  

QStand
i,n = Ai.(n.EMean – Ri) if  n.EMean  ≥ Ri 

and QStand
i,n = Bi.(n.EMean  – Ri) else.  

Clearly, the energy amount loaded into an idle 
battery b at period i may differ from EMean. Still, above 
reasoning suggests us to express the surrogate cost 
( -> I()) = () involved into the 
VRP_Surrogate algorithm as a sum  i Qi, n(, i), where 
Qi,n is the estimation of the cost induced by n batteries 
in recharge (idle) at period i. Besides, we notice that:  
 If n(0, i).EMean  ≥ Ri, then Qi,n should increase 

with Ai;  
 If n(0, i).EMean  ≤ Ri, then Qi,n should decrease  

as Bi increases. 
This leads us to set: 

 AMean = mean value Ai, i = 1,…, N; BMean = mean 
value B, i = 1,…, N;  

 Qi,n = QStand
i,n.(1 + .(Ai – AMean)) if  

n(0, i).EMean(0)  ≥ Ri,  
and else Qi,n = QStand

i,n.(1 + .(Bi – BMean)),  
,  being non negative flexible parameters.  

3.3.2 Computing (0) Through a Neural 
Network 

Instead of relying on energy price coefficients Qi,n, we 
use a neural network N_Energy in order to evaluate a 
scheduled trip collection 0. N_Energy is 
implemented with the help of the TensorFlow open 
software and trained with a large number (4000) of 
PV_Prod() instances. It is designed as a 
convolutional neural network. Such a network, whose 
main purpose is to be adaptable to inputs with flexible 
sizes, usually works in 2 (or more) steps: In the first 
step, a same standard perceptron CM called 
convolutional mask, is applied to fixed size neighbors 
of the components of the input vector IN = (INm, m  
M), and yields an output vector OUT =  (OUTm, m  
M); In the next step, a pooling mechanism is applied 
to Out, in order to compact it into the fixed size input 
of another perceptron N_Pool which computes the 
final output. In the present case this final output is a 
number  between 0 and 1, whose semantics are that 
it should be possible to express the optimal value 
VAL_PV_Prod(0) of PV_Prod(0)  as a sum  
Val_Min + .(Val_Max – Val_Min), where Val_Max 
and Val_Min are respectively a lower bound and an 

upper bound of VAL_PV_Prod(0). More precisely, 
the main components of N_Energy are (see fig. 3): 

Input layer: For any input 0, A, B, R, V of the 
PV_Prod problem, we homogenize it as a (N+1).7 
vector IN, with IN[i] = (A*i, B*i, R*i, *i, Qi, C*, 
CA*), with:  
 NA*i = Ai/AMean; B*i = Bi/AMean, where AMean = 

Mean value of the coefficients Ai, i = 1,…, N; 
 *i =  s.t i  I() EMean();  *0 = 0; 
 R*i = Ri/RMean; *i = i/RMean, where RMean = Mean 

value of coefficients Ri; R*0 = ( b Vb)/RMean; 
 Qi =  n(0, i)/Card(B); 
 C* = C/RMean; CR* = CR/RMean. 

Convolutional mask: CM works on any sub-vector 
IN*i = (IN[i], …, IN[i+4]), which means an input with 
35 input arcs. It contains 3 inner layers, respectively 
with sizes 8, 4 and 2, and ends into an output layer, 
with 1 input value OUTi. All 322 synaptic arcs are 
allowed, together with standard biased sigmoid 
activation functions whose derivative value in 0 is 
equal to ½. . 

The pooling mechanism: works by merging 
consecutive values OUTi into a single value, in such 
a way that we get an intermediate vector AUX, with 
13 entries, all with values between 0 and 1.  

Final Perceptron N_Pool: Once the pooling 
mechanism has been applied, we handle resulting 13 
dimensional vector AUX with a perceptron N_Pool, 
with input layer with size 13, intermediate layers with 
size 6 and 3, and a final layer with size 1.   

 

Figure 3: The Neural Network N_Energy. 

This network is complete in the sense that all 99 
synaptic arcs are allowed, together with standard 
biased sigmoid activation functions.  
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At the very end, we must learn 421 synaptic 
coefficients. Figure 6 above shows the global 
structure of N_Energy. 

4 NUMERICAL EXPERIMENTS 

Technical Context: We use a processor IntelCore 
i56700@3.20 GHz, with 16 Go RAM, together with 
a C++ compiler and libraries CPLEX12 (for ILP 
models) and TensorFlow/Keras. 

Instances: As for the PV side, we generate 2 integers 
Q and N = Q.N0, N = 10,…, 40, Q = 2, …, 5 and split 
the period set into Q intervals, corresponding to 
different qualities (mean values MRq of the 
production rate) of the weather and different level of 
prices (means values MAq and MBq) on the market. 
Related production rates Ri are randomly generated 
with uniform law inside interval [MRq/2, 3MRq/2]. By 
the same way prices Ai and Bi are randomly generated 
with uniform law inside respectively intervals 
[MAq/2, 3MAq/2] and [MAq/2, 3MAq/2]. Proceeding 
this way provides us with realistic instances,. 

As for the vehicle part, we generate M (between 
10 and 400) stations together as points with integral 
coordinates in a 2D square, and derive , E values 
according to the Euclidean and Manhattan distances. 
Then we fix a target number S of elementary trips 
together with their expected length (number of 
periods) L. We derive both the capacity C and the 
duration p of a period. We set B = .S.L/N, where  
is a control parameter, and, for any b = 1,…, B, we 
generate Vb between C/3 and C. In order to make the 
PV production match the demand from the vehicles, 
we update the Ri by doing in such a way that  i Ri = 
H.S.C, H being a control parameter with value 
between 0.5 and 2. Finally we generate the key 
parameter CR in such a way that batteries may 
globally receive at least .S.C energy units during the 
whole process,  being a control parameter with value 
between 1.5 and 4.   

Table 3: Characteristics of the Instances. 

Inst. N M S Q L    H

1 20 40 10 3 4 2 1 2 0.5
2 20 70 15 4 5 3 0.5 3 1
3 20 100 20 5 6 4 0.2 4 2
4 30 50 10 3 4 2 1 2 0.5
5 30 80 20 4 6 3 0.5 3 1
6 30 120 30 5 8 4 0.2 4 2
7 40 100 20 4 5 2 1 3 1
8 40 200 40 6 10 4 0.5 4 2
9 50 150 20 4 5 2 1 3 1
10 50 300 40 6 10 4 0.5 4 2

Outputs. For every instance: 

 We apply the CPLEX12 library (Table 4) to the 
general PV_Prod_VRP MILP model, with 30.S  
scheduled trips  (Card() = 30.S). Then we get (in 
less than 1 CPU h), a lower bound LB_G, an upper 
bound UB_G, CPU time T_G, and the value Relax 
of the rational relaxation at the root. 

 We solve (Table 5) the Elementary_Trip ILP, with 
 = AMean/2, while using the branch and cut 
algorithm of Section 3.2.2 We get lower and upper 
bounds LB_S1 and UB_S1, CPU time T_S1 and 
the number C_S1 of SNS cuts generated during 
the process. We also provide the upper bound 
UB_W obtained without the SNS constraints.   

 We apply (Table 6) the global VRP_Surrogate 
resolution scheme while relying on the pricing 
mechanism and while setting  = AMean/2 and Qi,n 

= QStand
i,n for any i, n. We denote by W_Price 

resulting PV_Prod_VRP value. We do the same 
(Table 6) with 8 combinations (, ,  and 
denote by W_Price_8 resulting value.  

 We apply (Table 6) the global VRP_Surrogate 
resolution scheme while relying on machine 
learning and denote by W_ML  related value. 

Those results may be summarized as follows: 

Table 4: Behavior of the PV_Prod_VRP MILP model.  

Inst. LB_G UB_G T_G Relax
1 735.3 735.3 628.4 344.5
2 951.3 951.3 265.3 312.0
3 709.2 999.2 159.7 413.5
4 322.1 508.2 3600 208.7
5 969.0 969.0 1819.3 611.7
6 1153.4 1486.3 3600 764.5
7 1972.7 3065.5 3600 1652.3
8 3386.9 4211.8 3600 3008.2
9 4923.0 9594.3 3600 4021.2
10 5956.6 8560.3 3600 5365.4

Comments: As expected, the global ILP model is in 
trouble, even on small instances. Still, further results 
(Table 7) will make appear that, at least for small M, 
upper bound UB_G looks close to optimality. 

Table 5: Behavior of the Elementary Trip Branch/Cut.  

Inst. LB_S1 UB_S1 T_S1 C_S1 UB_W
1 884.4 884.4 1622.5 28 884.4
2 1435.3 1488.3 1 h 67 1522.5
3 1005.9 1202.9 1 h 79 1325.0
4 774.6 774.6 1254.8 503 880.3
5 1516.2 1654.2 1 h 468 1816.2
6 1886.3 1986.3 1 h 1435 2187.0
7 3891.7 4491.7 1 h 2960 4702.8
8 5020.3 5520.3 1 h 4121 Fail
9 12023.6 14077.2 1 h 4689 Fail
10 14773.0 17773.9 1 h 2867 Fail
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Comments: Strong no_sub_tour constraints 
significantly increase our ability to manage the 
Elementary_Trip problem through branch and cut. 
Notice that, since the Elementary_Trip model tends 
to overestimate the energy purchase value, values 
UB_S1 are significantly larger than values UB_G 
obtained in Table 4.  

Table 6: Behavior of the Surrogate Components. 

Inst. UB_G W_Price W_Price8 W_ML
1 735.3 735.3 735.3 740.8
2 951.3 966.8 951.3 980.6
3 999.2 1010.3 995.0 1030.0
4 508.2 512.6.2 504.3 508.2
5 969.0 986.5 972.6 1040.2
6 1486.3 1487.0 1487.0 1512.5
7 3065.5 3025.7 3003.5 3197.3
8 4211.8 4225.8 4200.6 4354.6
9 9594.3 9397.7 9365.9 9456.1
10 8560.3 8508.9 8475.1 

Comments: Solving PV_Prod_VRP while relying on 
the parametric pricing mechanism often behaves 
better than the PV_Prod_VRP MILP. As for the the 
machine learning oriented approach, the gap between 
our best PV_Prod_VRP value and W_ML_ILP is in 
average around 4%, with a peak at 7%. 

5 CONCLUSIONS 

We dealt here with synchronization between 
consumption and production. We shortcut the 
production sub-problem and replaced it by a 
parametric surrogate sub-problem. But since in true 
life solar energy production forecasting involves a 
uncertainty, going further with machine learning 
could help us in managing related risk of failure. 
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