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Abstract: The widespread use of black-box AI models has raised the need for algorithms and methods that explain the 
decisions made by these models. In recent years, the AI research community is increasingly interested in 
models’ explainability since black-box models take over more and more complicated and challenging tasks. 
In the direction of understanding the inference process of deep learning models, many methods that provide 
human comprehensible evidence for the decisions of AI models have been developed, with the vast majority 
relying their operation on having access to the internal architecture and parameters of these models (e.g., the 
weights of neural networks). We propose a model-agnostic method for generating saliency maps that has 
access only to the output of the model and does not require additional information such as gradients. We use 
Differential Evolution (DE) to identify which image pixels are the most influential in a model’s decision-
making process and produce class activation maps (CAMs) whose quality is comparable to the quality of 
CAMs created with model-specific algorithms. DE-CAM achieves good performance without requiring 
access to the internal details of the model’s architecture at the cost of more computational complexity. 

1 INTRODUCTION 

In recent years, Artificial Intelligence (AI) has been 
undertaking or facilitating many technological 
applications in almost every field of modern society: 
healthcare, industrial automation and manufacturing, 
logistics and retail, policy-making and marketing. AI 
technologies have such a huge impact on the 
economy and our societies that AI has been called the 
“new electricity” (Catherine Jewell, 2019). AI is 
expected to transform every industry and create huge 
economic value in the following years. Regardless of 
AI’s impressive performance in decision-making and 
problem-solving, which some years ago seemed very 
difficult for machines to achieve, the AI models 
designed for probabilistic inference have highly 
complex architectures while their internal mechanics 
are hidden behind an overwhelming number of 
calculations. Such models are often built with deep 
learning (DL) methodologies or ensembles based on 
methods like bagging or boosting. Because of the 
difficulty to understand the logic behind the decisions 
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made during inference, these models are often 
referred to as “black-box models” (Guidotti et al., 
2019; Innerarity, 2021), characterized as non-
transparent entities that can only be probed to provide 
output for specific input. 

The lack of models’ explainability is a compound 
and significant problem in AI as it is not just related 
to the absence of supporting evidence for their 
decisions: model explainability can reveal biases 
caused by flawed training data and can identify 
possible ethical issues regarding the model’s 
inference. Model biases constitute a major problem in 
AI and may render a system useless or societally 
disapproved because of ethical and practical 
concerns. For example, an algorithm used in United 
States hospitals to predict which patients would likely 
need extra medical care, heavily favored white 
patients over black patients (Obermeyer and 
Mullainathan, 2019) and it was withdrawn until the 
problem was fixed. Another example is an algorithm 
used by Amazon for facilitating personnel hiring and 
it was greatly favouring men over women (Maude 
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Lavanchy, 2018; The Guardian, 2018). Such 
discriminative functionality could be identified and 
resolved before the algorithms reached the production 
phase if model explainability was studied during the 
development process. Model explainability is also 
extremely significant for models that facilitate or 
fully undertake a medical diagnosis. Any AI decision 
that influences the life of a patient and her family 
should be supported by evidence and convincingly 
explained to the doctors that will adopt the machine’s 
decision or ask/perform further tests. Besides the 
ethical biases revealed by algorithms that explain the 
models’ decisions, such algorithms can also reveal 
biases in the training data that prevent the model from 
learning suitable features. For example, Freitas 
(Freitas, 2013) builds his argument upon the amount 
of bias that data may introduce to a model, based on 
a neural network application failure story that is not 
necessarily real: a neural network was trained to 
discriminate between friendly and enemy tanks. 
While its performance was very good on the test set, 
it had a very bad performance when tested in the field. 
Later, it was discovered that most enemy tank images 
were taken on cloudy days while most friendly tank 
images were taken on sunny days. The model learned 
to discriminate between sunny and cloudy days 
instead of focusing on the tank types. A similar 
situation is described by Ribeiro et al (Ribeiro, Singh 
and Guestrin, 2016), where a classifier discriminating 
between wolves and husky dogs relied solely on the 
snowy background to identify a wolf. 

The extended use of AI algorithms in many fields 
raised the European Parliament’s concerns regarding 
privacy rights and the conservation of customers’ 
private information by companies. Specifically, in 
2018, a set of new clauses were introduced to the 
General Data Protection Regulation (GDPR) 
(European Parliament, 2018) to ensure the civilians’ 
right to meaningful explanations of the logic involved 
in automated decision-making. Meanwhile, the High-
Level Expert Group on AI published the ethics 
guidelines for trustworthy AI in 2019 (High-Level 
Expert Group on AI, 2019). Explaining the decisions 
of AI models is crucial for preventing unethical use, 
avoiding discriminative decision-making, and 
preventing models’ failure to perform as expected 
because of inappropriate training data. It is also 
crucial for making a sustainable and beneficial 
transition to an AI era where machines will take over 
critical decision-making that currently requires a lot 
of effort by human experts. 

In this paper, we focus solely on explaining the 
decisions of AI models that process images (computer 
vision DL models). The most popular explanation 

mean in computer vision is saliency maps (SMs). A 
saliency map is an image having a width and a height 
equal to the dimensions of the images used as input to 
the model. The brightness of each pixel in the SM 
represents how salient the pixel is: the brighter a pixel 
is, the more its contribution to the decision of the 
model. 

There is a plethora of algorithms that generate 
SMs to explain the AI models’ decisions. These 
algorithms are categorized as model-specific or 
model-agnostic, depending on whether they need 
information sourced from the model parameters or 
not. This information is either in the form of gradients 
flowing from the output towards a specific layer (that 
could be the input layer) or the activations of an 
intermediate model layer or both. The model-specific 
algorithms require such information to quantify the 
sensitivity of the model’s output to a specific pixel at 
the input. On the contrary, model-agnostic algorithms 
do not need any further information besides the scores 
at the output of the model for some specific input. 
Model-agnostic algorithms provide actual black-box 
explainability because they require no interaction 
with the model besides inference. 

This paper proposes a model-agnostic method for 
generating SMs that has access only to the output of 
the model and does not require additional information 
such as gradients. We use Differential Evolution (DE) 
to identify which image pixels are the most influential 
in a model’s decision-making process and we call this 
method DE-CAM. The rest of the paper describes the 
DE-CAM technique (Sections 3 and 4) after 
presenting related work in the field (Section 2). 

2 RELATED WORK 

As mentioned above, the algorithms that generate 
SMs to explain the AI models’ decisions are 
categorized as model-specific or model-agnostic.   

2.1 Model-specific Algorithms 

The most popular model-specific algorithms for 
generating SMs are GradCAM (Selvaraju et al., 
2020), GradCAM++ (Chattopadhyay et al., 2018), 
Integrated Gradient (Sundararajan, Taly and Yan, 
2017) and Full-Gradient (Srinivas and Fleuret, 2019). 
We provide a brief description of each algorithm 
below. 

GradCAM: uses gradient information from the 
last convolutional layer of the model to attribute 
saliency to each input pixel. As convolutional layers 
retain spatial information, the feature map of the last 
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convolutional layer provides a link between the high-
level semantics of the input image and their spatial 
information. GradCam computes the gradient of a 
particular class with respect to the activations of the 
last convolutional layer and then the low-resolution 
heatmap is calculated by summing the feature maps 
after being scaled by their respective gradient. The 
final saliency map (having the same dimensions as 
the input image) is obtained by upsampling the low-
resolution heatmap. GradCAM is a popular choice for 
computing SMs because it performs decently, 
requires no hyperparameter tuning, and is fast and 
simple to implement. 

GradCAM++: is an extension of GradCAM and 
uses a weighted combination of the positive partial 
derivatives of the last convolutional layer feature 
maps with respect to a specific class score. This 
approach improves GradCAM, especially in the case 
when multiple objects of the selected class are present 
in the image, a case that may cause problems for 
GradCAM because it tends to underestimate object 
representations that appear fewer times in the feature 
maps than others.  

Integrated Gradient: uses the integral of 
gradients with respect to inputs along the path from a 
given baseline (image consisting of pixels heaving 
either zero or max value) to input. Integrated Gradient 
relies on two fundamental axioms: sensitivity and 
implementation invariance (Sundararajan, Taly and 
Yan, 2017). A problem with this method is that the 
choice of the baseline (black or white image) may 
cause performance issues during explainability 
(Erion et al., 2019). 

FullGradient: aggregates layer-wise gradient 
maps multiplied by the bias terms. FullGradient 
provides attributions to both the input and the neurons 
of intermediate layers which allows the method to 
satisfy two key properties: completeness and weak 
dependence (Srinivas and Fleuret, 2019). 

(Kindermans et al., 2019) and (Adebayo et al., 
2018) argue that gradient-based methods are exposed 
to several problems that render them unreliable, with 
the saturating gradients problem being the most 
profound one. 

2.2 Model-agnostic Algorithms 

Model-agnostic algorithms do not suffer from the 
limitations of model-specific algorithms as 
mentioned above. The most popular model-agnostic 
algorithms for generating SMs are LIME (Ribeiro, 
Singh and Guestrin, 2016) and RISE (Petsiuk, Das 
and Saenko, 2018).  

LIME: achieves interpretability by training an 
interpretable surrogate model, such as a linear model. 
The training points of the surrogate model are 
comprised of model evaluations of sampled data 
points around a specified input example. Practically, 
LIME learns an interpretable model by focusing 
locally around the prediction. LIME often does not 
work out of the box, especially for small-resolution 
images, while its parameters need significant fine-
tuning (Bodria et al., 2021). 

RISE: operates solely on the input of the model 
to assign saliency to the input image pixels. It 
generates 𝑁 random masks with values sampled from 
a Gaussian distribution. These masks are multiplied 
with the image and the resulting images are fed to the 
model. Then, a saliency map is obtained by linearly 
combining the masks with the model predictions 
corresponding to each masked input. The key idea is 
that the masked inputs that contain significant pixels 
for the task get a higher output when used for model 
prediction. The quality of the results produced by this 
method is much lower than the quality of the results 
of gradient-based methods; often the saliency maps 
produced are not interpretable.   

For an extensive survey on various explanation 
methods, the readers are referred to (Bodria et al., 
2021). In this paper, we propose a model-agnostic 
method called Differential Evolution CAM (DE-
CAM) that produces results that are comparable to 
and in some cases better than the results of gradient-
based methods, without requiring any information 
regarding the internal structure of the model. DE-
CAM combines the advantages of model-agnostic 
and model-specific methods at the cost of 
computational time required to run. 

3 THE DE-CAM ALGORITHM 

Our proposed method aims at creating an SM for a 
certain image by identifying which pixels of the 
image contribute the most to the identification of a 
specific class. Instead of exploiting information 
sourced from the architecture of the model (layer 
activations, gradients, etc.), DE-CAM solves the 
optimization problem of finding which set of pixels 𝑝 
in image 𝑋 of height 𝐻 and width 𝑊 maximizes the 
output of the model for a certain class while satisfying 
|𝑝| ≪ |𝑊 ൈ 𝐻| . Let 𝑀  be a 2-dimensional binary 
mask of height 𝐻 and width 𝑊 and its element 𝑚, 
at coordinates ሺ𝑖, 𝑗ሻ  has a binary value, i.e., 𝑚, ∈
ሼ0,1ሽ. Mask 𝑀 is multiplied with the input image 𝑋 
to provide a modified image 𝑋′ such as 𝑋′ ൌ 𝑋 ⊙ 𝑀 
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that feeds the model producing a new output score for 
a specific class. Since mask 𝑀 is 2-dimensional, each 
element 𝑚, preserves or eliminates (i.e. by changing 
to a zero value) all channels of a pixel in image 𝑋, at 
the coordinates (i, j). DE-CAM solves the following 
optimization problem: 

𝑎𝑟𝑔𝑚𝑎𝑥
ெ

  𝑓ሺ𝑋 ⊙ 𝑀ሻ െ  𝛼
∑,ೕ

ுൈௐ
|∀∈ሾଵ,ுሿ,∀∈ሾଵ,ௐሿ      (1) 

where 𝛼 is the weight of the second term and 𝑓ሺ. ሻ 
represents the model function without the softmax 
layer (i.e., the logits’ values). The second term of the 
objective function serves the requirement of 
favouring masks that have a larger number of 
eliminated pixels: SMs should attribute significance 
only to the subset of the pixels that contribute the 
most to the output of a specific class. Since SMs need 
to be grayscaled (and not binary) images, the solution 
obtained by DE-CAM (optimal binary mask 𝑀) is not 
a valid SM. Thus, we apply a Monte Carlo approach 
for obtaining the SM from a large set of binary masks 
that are in the vicinity of the optimal solution: DE-
CAM computes hundreds of decent solutions to the 
problem and combines them to obtain the SM. 
Specifically, the final SM is the result of a process 
during which each candidate solution assigns a score 
to the pixels of the SM. Candidate solutions are 
defined as the individuals of the evolutionary 
algorithm at convergence time that have a fitness 
greater than the mean population fitness. 

DE-CAM uses Differential Evolution (DE) (Storn 
and Price, 1997; Krink, Filipic and Fogel, 2004; Han 
et al., 2021) to evolve a population of 𝑁 candidate 
solutions to the optimization problem. DE is a good 
fit for the specific optimization problem because it 
can deal with real-valued problems, constantly 
improving the general fitness of the population and 
pushing the solutions towards search areas that tend 
to provide high fitness values. This is important when 
applying the Monte Carlo step to many feasible 
solutions. We represent each individual (candidate 
mask) in the population as a set of 𝐾 ellipses. Each 
ellipse contains pixels with a value equal to 1 and thus 
represents which image pixels are preserved after 
masking the input image. Each ellipse is defined by 
its left-most point and its right-most point of its 
bounding box and its rotation such as 
ሾ𝑥, 𝑦, 𝑥ଵ, 𝑦ଵ, 𝑟ሿ. Ellipses defined with their top-left 
and their bottom-right points only (without a rotation 
angle) are aligned to the x-y axes, and they only differ 
in their position in space and their size. Using a 
rotational angle in the ellipses’ definition provides 
infinite shape orientations that add the flexibility to 
construct every possible combination of ellipses (and 

mask shapes). This allows the algorithm to sustain 
great mask diversity which is important for 
eliminating or preserving various configurations of 
image pixels. Figure 1 shows how a single ellipse is 
encoded to a “gene” by the evolutionary algorithm. 

 

Figure 1: The encoding scheme of the evolutionary 
algorithm: each ellipse of the 𝐾  ellipses contained in an 
individual is defined by the top-left/bottom-right 
coordinates of its containing bounding box and its rotational 
angle. This definition allows the creation of 𝐾 ellipses per 
individual that have different sizes and orientations and 
their combination produces diverse masks. In this example, 
the resulting mask spans the area of the two ellipses. 

Since each individual consists of 𝐾  ellipses’ 
definitions, it has a total size of 𝐾 ൈ 5  genes. The 
combination of the 𝐾  ellipses constitutes the mask 
that selects which pixels from the image are preserved 
and which are eliminated. The operation of the DE-
CAM is demonstrated in Figure 2 showing how DE-
CAM evolves a population of masks to solve the 
optimization problem defined in Equation (1).  

 

Figure 2: Candidate masks with 𝐾 ൌ 10 are manipulated 
by the evolutionary algorithm of the DE-CAM. Each mask 
contains 𝐾 ellipses of various sizes and orientations. In the 
right-most mask, only 9 ellipses are visible because one 
ellipse fully overlaps with another. The algorithm evolves a 
population of masks and aims at computing masks that 
identify the pixels of the image that contribute to the score 
of the output class the most, while maintaining the number 
of selected pixels as small as possible. 

DE-CAM restrains the size of the ellipses 
contained in the individuals during the evolutionary 
process: the minimum distance between the 
coordinates of the ellipses’ bounding boxes is set to 
ு

ଶ
 and the maximum distance is set to 

ு

ସ
 , assuming a 

square input image with 𝐻 ൌ 𝑊 . Enforcing a 
minimum distance prevents the use of very small 
ellipses that are not useful, while enforcing a 
maximum distance prevents the use of large ellipses 
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that can compromise the requirement of maintaining 
only a fraction of the image pixels that are invaluable 
to the model for achieving high output on the specific 
class. The DE-CAM algorithm’s pseudocode is 
shown in Algorithm 1. The values of the DE 
algorithm’s hyperparameters, i.e., the Crossover 
Probability (CR), the Differential Weight (F) and the 
number of ellipses in every individual (K) were 
determined experimentally by applying the DE-CAM 
with various hyperparameters on different DL 
models.  

Algorithm 1: DE-CAM. 

𝐶𝑅 ൌ 0.2 , 𝐹 ൌ 0.8, 𝐾 ൌ 10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ 200 ,  

Fitness = 𝑓ሺ𝑋 ⊙ 𝑀ሻ െ 𝛼
∑,ೕ

ுൈௐ
  

Initialize a population 𝑃  of 𝑁  solutions (individuals). 
Each solution contains 𝐾 masks. 

Repeat until 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is reached 
    Repeat for every individual 𝑥 in 𝑃 
        Randomly choose 3 different individuals 𝑎, 𝑏, 𝑐 

 Repeat for each gene (parameter) 𝑖 in 𝑥 
               With probability 𝐶𝑅 : 𝑥ᇱ

 ൌ  𝑎  𝐹ሺ𝑏 െ 𝑐ሻ  
else: 𝑥

ᇱ ൌ 𝑥 
     Clip the genes (parameters) of 𝑥′ to comply     

with min/max   size requirements 
          If 𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑥

ᇱሻ  𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑥
ᇱሻ replace 𝑥  

            with 𝑥
ᇱ in 𝑃 

SumMasks = Sum all 𝑥 in 𝑃 for which 
 𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑥ሻ  𝑃𝑜𝑝𝑀𝑒𝑎𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

SM = SumMasks/MAX(SumMasks)  #score assignment 

4 DE-CAM EVALUATION 

We tested the DE-CAM on ImageNet (Deng et al., 
2009) classification explaining the decisions of three 
popular models: VGG19 (Simonyan and Zisserman, 
2015), ResNet50 (He et al., 2016) and MobileNetv2 
(Sandler et al., 2018). A visual comparison of our 
results for the VGG19 model with GradCAM, 
FullGradient and Integrated Gradient is shown in 
Figure 3. An analogous comparison is shown for 
ResNet50 and the MobileNetv2 model in Figures 4 
and 5. Considering all approaches listed in related 
work (see Section 2), we decided to compare DE-
CAM with GradCAM, FullGradient and 
IntegratedGradient, because these are the most 
popular model-specific algorithms for explaining 
models’ decisions. GradCAM++ could be a good 
candidate for comparison as well, however, 

GradCAM++ specializes in multi-object images 
which was not the focus of this paper (see future 
work, Section 5). 

The results suggest that all methods tend to identify 
similar areas as being important for the classification, 
but the computed SMs occasionally exhibit some 
subtle differences. For example, DE-CAM used on 
the snail image with VGG19 (Figure 3, last row) 
attributes more saliency to the shell of the snail and 
less to its head and tentacles. DE-CAM also attributes 
importance to the face of the person playing the violin 
when used on the violin image with ResNet50 (Figure 
4, 3rd row) while other methods concentrate solely on 
the violin. Finally, DE-CAM perceives the uniform of 
the hockey player as the most important part of the 
image while other methods also focus on the athlete’s 
stick (Figure 5, 2nd row).  In Figure 6 it is evident that 
the SMs created for Mobilenetv2 by the other 
methods attribute saliency to larger image regions 
while DE-CAM’s SMs attribute importance to a 
smaller number of pixels.  

To evaluate the results, we employed the Insertion-
Deletion metrics (Petsiuk, Das and Saenko, 2018). 
These metrics measure how the confidence of the 
model changes when we delete or insert certain 
features. To get the deletion metric we start from the 
original image and iteratively mute pixels (i.e., we 
make their value equal to zero) in the order of 
importance score indicated by the SM. Analogously, 
to get the insertion metric, we start from a blurred 
image and start restoring the pixel values in the order 
of importance score as provided by the SM. An SM’s 
quality is reflected by exhibiting a small Area Under 
Curve (AUC) for the deletion process and a large 
AUC for the insertion process, which suggests that 
the SM conveys reliable information regarding the 
importance of the image pixels. Figure 6 shows 
examples of the Insertion-Deletion evaluation for 
several examples contained in Figures 3-5.  

To get a single-value evaluation metric for 
comparing the performance of each method, we 
computed the mean difference between 
𝐴𝑈𝐶௦௧ and 𝐴𝑈𝐶ௗ௧  for the SMs of 1K 
images in the ImageNet test set, assuming that the 
magnitude of 𝐷𝑖𝑓𝑓𝐴𝑈𝐶 ൌ
 ∆ሺ𝐴𝑈𝐶௦௧, 𝐴𝑈𝐶ௗ௧ሻ reflects the quality of 
the computed SMs (we aim at very high 𝐴𝑈𝐶௦௧ 
and very small 𝐴𝑈𝐶ௗ௧ . We computed this 
evaluation metric for each model studied and the 
results are shown in Table 1. 

Based on the Insertion-Deletion metrics, DE-
CAM surpasses the GradCAM and FullGradient 
methods on the task of explaining the results of the 
VGG19 and Mobilenetv2 models.  However,  it has a 
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Table1: DiffAUC evaluation on ImageNet test set. 

 VGG19 ResNet50 MobileNet_v2 

GradCAM 66.5 71.8 61.2 

FullGrad 60.3 73.4 64.4 

DE-CAM 66.8 70.5 64.6 

 

Figure 3: SMs produced for the images shown in the left-
most column by various methods and DE-CAM with 
VGG19. The classes of the images from top to bottom are 
stupa, bee, sea snake and snail. 

 

Figure 4: SMs produced for the images shown in the left-
most column by various methods and DE-CAM for 
ResNet50. The classes of the images from top to bottom are 
vacuum, puck, violin and park bench. 

lower score than the other two methods when 
computing SMs for the ResNet50 model. These 
results are interesting because DE-CAM is a model-
agnostic method and does not use the gradients of the 
model or any information regarding its architecture 

and still its performance is comparable with the 
performance of model-specific models.  

 
Figure 5: SMs produced for the images shown in the left-
most column by various methods and DE-CAM for 
Mobilenet_v2. From top to bottom: Shetland sheepdog, 
volleyball, spoonbill and ambulance. 

 

 

 

Figure 6: Evaluation of SMs shown in Figures 3-5 with the 
Insertion-Deletion metrics. In each graph, the two curves 
show how the classification changes by inserting/deleting 
pixels. The x-axis shows the percentage of the pixels 
inserted or deleted in the image and the y-axis shows the 
classification score. 

DE-CAM uses a DE algorithm to search for 
candidate SMs which requires a lot of iterations and 
classifications/assessments from the AI model to 
compute the fitness function of each solution. For 
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example, DE-CAM’s computational complexity is 
orders of magnitude higher than the computational 
complexity of GradCAM. Being a model-agnostic 
method, DE-CAM must make a great number of 
attempts to discover the combinations of pixels that 
are impactful on the score of a specific class. 
However, the way the DE algorithm works allows for 
execution in a multi-processing manner which can 
reduce the execution time significantly. Furthermore, 
computing the fitness function of the individuals of 
the population can be done in large batches and in 
parallel on multiple Graphical Processing Units 
(GPUs). For the execution of DE-CAM, we used a 
multi-processing implementation and two RTX3060 
GPUs achieving execution times of 1 minute per run, 
which is comparable to the execution time of 
Integrated Gradient and a little higher than the 
execution time of AblationCAM (Desai and 
Ramaswamy, 2020). 

5 CONCLUSIONS 

This paper proposes the DE-CAM method, a model-
agnostic method for computing SMs for deep learning 
models based on a differential evolution algorithm. 
Through various experiments, we showed that DE-
CAM computes SMs of similar quality to model-
specific methods like GradCAM and FullGradient 
without using any information about the architecture 
and the inner mechanisms of the model whose 
inference is trying to explain. Although DE-CAM has 
a generally high computational complexity, the use of 
multi-processing, parallel and large-batch model 
inferences make it highly practicable for computing 
SMs in the model-agnostic regime. In future work, we 
plan to improve DE-CAM to be even more precise in 
selecting the salient image pixels and introduce 
mechanisms that enhance the ability of the algorithm 
to deal with images that contain multiple objects of 
the same class.   
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