
Deep Learning Semi-Supervised Strategy for Gamma/Hadron
Classification of Imaging Atmospheric Cherenkov Telescope Events∗

Diego Riquelme1 a, Mauricio Araya1, Sebastian Borquez1, Boris Panes2 and Edson Carquin1
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Abstract: The new Cherenkov Telescope Array (CTA) will record astrophysical gamma-ray events with an energy cov-
erage range, angular resolution, and flux sensitivity never achieved before. The Earth’s atmosphere produces
Cherenkov’s light when a shower of particles is induced by a high-energy particle of astrophysical origin (gam-
mas, hadrons, electrons, etc.). The energy and direction of these gamma air shower events can be reconstructed
stereoscopically using imaging atmospheric Cherenkov detectors. Since most of CTA’s scientific goals focus
on identifying and studying Gamma-Ray sources, it is imperative to distinguish this specific type of event
from the hadronic cosmic ray background with the highest possible efficiency. Following this objective, we
designed a competitive deep-learning-based approach for gamma/background classification. First, we train
the model with simulated images in a standard supervised fashion. Then, we explore a novel self-supervised
approach that allows the use of new unlabeled images towards a method for refining the classifier using real
images captured by the telescopes. Our results show that one can use unlabeled observed data to increase
the accuracy and general performance of current simulation-based classifiers, which suggests that continuous
improvement of the learning model could be possible under real data conditions.

1 INTRODUCTION

The Cherenkov Telescope Array (The CTA Consor-
tium, 2019) 1 (CTA) is a ground-based assemblage
of tens of Imaging Atmospheric Cherenkov Tele-
scopes (IACT). These telescopes were designed to
study high and very high energy (>20 GeV up to
300 TeV) gamma rays. Since gamma rays are pro-
duced in violent, highly active regions of the uni-
verse, such as supernovae remnants, pulsar wind neb-
ulae, and supermassive black holes in distant galaxies,
their study could provide important information about
these sources. Gamma rays interact with the Earth’s
atmosphere, generating a cascade of secondary parti-
cles called an extensive air shower. The highly rela-
tivistic process stimulates the emission of Cherenkov
light in the atmosphere, which is reflected by the tele-
scope’s mirrors into a high-speed camera sensor, ef-
fectively imaging the shower of particles.

But Cherenkov light is not exclusive to gamma-
ray showers. Cherenkov light events observed by
the telescopes are dominated by extensive air show-

a https://orcid.org/0000-0003-0363-7720
∗For the CTA Consortium
1https://www.cta-observatory.org/

ers produced by cosmic rays, whereas gamma-ray de-
tections are only a fraction. CTA will provide a fac-
tor of 5 to 10 improvement in sensitivity compared to
current IACT telescopes, which requires an efficient
rejection of cosmic rays in a highly imbalanced clas-
sification scenario. Since the particle level processes
underlying the generation of both types of extended
showers are not identical, the morphology of both ex-
tensive air showers is also different. Existing IACTs
can reject the background noise by reducing the im-
age into geometrical parameters that are handed to
classical classifiers, such as Random Forest (RF) (Al-
bert, 2007) or Boosted Decision Trees (BDT) (Krause
et al., 2017; Becherini et al., 2011; Ohm et al., 2009).

Following the current trends in digital image pro-
cessing, deep-learning techniques have also been ex-
plored in high-energy physics. In particular, convolu-
tional neural networks (CNN) use the information of
raw images, which potentially provides an advantage
to image parameterization as it allows for process-
ing whole event images at high speed. This line of
work has been studied, and promising results are al-
ready available (Grespan et al., 2021; Mangano et al.,
2018; Miener et al., 2021b; Nieto et al., 2019; Nieto
et al., 2017; Shilon et al., 2019; Jacquemont et al.,
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2019; Juryšek et al., 2021). Most of these advances
use Monte Carlo simulations of the showers to train
and assess supervised models. Simulations are useful
since they can be generated in any desired proportion,
number of events, and different configurations. But
once real data becomes available, an adaptive strategy
is needed to train the models further.

In this work, we present a proof of concept for
allowing semi-supervised training once real data be-
come available in CTA, in quantities that will enable
proper training and testing. This is relevant because
real observations are naturally unlabeled in the con-
text of IACTs, as there is no other independent nor
systematic way to confirm the type of the detected
particle. Moreover, several deep learning classifica-
tion approaches proposed so far could benefit from
our strategy of further training with unlabeled real
data. So our contribution is complementary to pre-
vious efforts in the field. Also, we propose analyzing
the latent space of the deep learning model to under-
stand the properties of the input data parameters in
a lower dimensional representation. This may give us
insights into the connection to parametric descriptions
of the input data (such as Hillas parameters) and may
impact the speed of effective models for rapid classi-
fication tasks.

This paper is organized as follows. First, a general
idea of the current research on gamma/hadron classi-
fication is given. Then, we discuss the data features
and introduce the real data problem. Subsequently,
we describe our CNN architecture and its features.
Later, the experiments are described. Ensuing, the re-
sults are shown. Finally, we briefly explore the Latent
Space and propose some interesting lines of work.

2 DEEP LEARNING FOR
GAMMA/HADRON
CLASSIFICATION

2.1 Related Work

As mentioned, previous existing Cherenkov telescope
arrays have developed techniques based on machine
learning: VERITAS and H.E.S.S use Boosted De-
cision Trees (BDT) while MAGIC uses Random
Forests (RF) (Becherini et al., 2011; Ohm et al., 2009;
Krause et al., 2017; Albert, 2007), both based on
Hillas parameterization (Hillas, 1985). These tech-
niques have reasonable performance, but new ap-
proaches based on artificial neural networks, such
as CNN, promise a leap forward by directly using
the charge and arrival time of pixels of the images

captured by the telescope. In fact, some authors
have already studied the effectiveness of deep learn-
ing approaches tested on real data. Pipelines that
include a framework for deep learning techniques
are being designed and used for stereoscopic recon-
struction (Miener et al., 2021b). While most studies
were conducted with simulated data, there are some
of them that compares with real data (Shilon et al.,
2019; Miener et al., 2021a; Vuillaume et al., 2021)
or trained/tested with a combination of both (Albert,
2007; Lu, 2013).

Recently, some preliminary efforts have been
made in the domain adaptation field in the context of
gamma/hadron separation (Drew, 2021). They con-
front the problem with real data available from differ-
ent observatories.

2.2 Convolutional Neural Networks
with CTA Data

For this work we used simulated data (Bernlohr, 2008;
Heck et al., 1998) for the CTA south site(The CTA
Consortium, 2019). In particular, we used the Prod5
simulation dataset to enable reproducible research;
further information can be found on CTA’s website.
The dataset was subdivided into training and test-
ing. Training classes are balanced, while testing has
twice the number of protons than gamma events. This
was done to emulate class imbalance in real scenar-
ios, even though real class imbalance is much larger.
For instance, the event acquisition frequency in VER-
ITAS is mainly dominated by protons (350 Hz), while
gamma occurrence is 1 Hz (Krause et al., 2017). For
the classification task, protons and diffuse gamma
sources are commonly used. Ideally, every other par-
ticle could be used for training, but since protons are
the dominant source, is common to use them as the
negative class in the classification task.

In (Grespan et al., 2021), a CNN was trained
for reconstruction, obtaining state-of-the-art perfor-
mance. Similarly, in (Shilon et al., 2019), the au-
thors validate deep learning techniques for classifica-
tion. Also, the authors explore the impact of feeding
real data to a model trained with simulated data. They
concluded that there is a significant performance loss,
which motivates a more detailed study on using real
data when available.

CTA models used for event reconstruction are ex-
pected to be enhanced thanks to information from real
data. Still, since we cannot be truly sure about the ac-
tual source of the shower, we can’t rely on the exis-
tence of labelled real data. This is why we propose a
self-supervised step for training a CNN model. Since
it can only be trained with simulated data, a semi-
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supervised method could enable a model to use real
data further when they become available to improve
the latent space representation of the events.

We used two quality cuts to limit the number of
events and filter poor-quality images. These qual-
ity cuts are based on the Hillas intensity parameter,
which comprises the total charge in photo-electrons
(phe) captured by the sensors of the telescope (Gres-
pan et al., 2021). The two cuts are (1) events with
a Hillas intensity parameter higher than 1000 phe (re-
constructed photo electron) and (2) events higher than
300 phe. This allows us to learn a model with filtered
high-intensity images and then expose the model to
lower-intensity images unseen in the initial training
for a self-supervised refinement of the networks.

Even though there are recent advances on how
to perform stereoscopic reconstruction with hetero-
geneous telescopes, (Brill et al., 2019; Miener et al.,
2021b; Shilon et al., 2019), our proposal focuses on
single-telescope images from LST telescopes. How-
ever, since our proof of concept uses the available data
rather than a novel architecture, this technique could
also be used over heterogeneous stereoscopic classifi-
cation techniques.

Specifically, we used a small and straightforward
CNN model. Activations were ReLu, and hyperpa-
rameters were tuned with a grid search methodol-
ogy. We also use Cyclical Learning Rate (CLR),
which leads to faster convergence, and better metrics
(Smith, 2017). All models were trained on Wilkes
3 HPC, with A100 GPU, using the Tensorflow pack-
age (Developers, 2022). We mounted the model over
GERUMO 2 pipeline, and thus, all the hyperparam-
eters and training information are available in the
repository. Layer shapes and dimensions of the CNN
architecture employed are shown in Table 1. As for
preprocessing, we only normalized the images.

Table 1: Summary of CNN Architecture.

Layer Shape
Input (55,47,3)

ConvLayer (53,45,64)
ConvBock (26,22,128)
ConvBlock (13,11,256)
ConvBlock (6,5,512)
ConvLayer (6,5,512)

Flatten (15360)
Dense 128
Dense 128
Dense 64
Output 2

2https://github.com/sborquez/gerumo

Table 2: ConvBlock Layer.

ConvBlock Kernel Filters

ConvLayer
128
256
512

5x5
3x3
3x3

Dropout 0.25

ConvLayer
256
512

1024

5x5
3x3
3x3

BatchNormalization
MaxPool 2x2

2.3 Pseudo-Labeling Strategy

Pseudo-labeling is a semi-supervised strategy that al-
lows supervised training with labelled and unlabelled
data. It produces a hybrid loss between the supervised
and self-supervised labels, balanced by a mixing co-
efficient (Lee, 2013). Throughout the training, the
balancing coefficient (weighting) changes in favour
of the unbalanced data, which usually is available in
more significant quantities.

The self-supervised loss uses predicted classes for
unlabeled data as if they were true labels. This is
done by assigning labels with the predictions from the
model, by equation 1:

y′i =

{
1 if i = argmax fi(x),
0 otherwise

(1)

i ∈ gamma,other
where y′i is the pseudo label generated for the unla-
beled data x, and fi(x) is the model’s output for the
i′th label. This means that given unlabeled data x, the
algorithm will use the prediction of labels as if they
were the true labels.

Initially, the model does not predict the classes ac-
curately, which is why the balancing coefficient starts
in favour of supervised learning. Once the model’s
representation of the classes becomes more precise
in the network’s latent space, the predictions become
more accurate. Therefore the balancing coefficient
starts moving toward the self-supervised data until
ending with nothing but an unlabeled loss.

Pseudo labelling makes two assumptions on the
latent space (Chapelle et al., 2009): Continuity As-
sumption which states that points that are close to
each other are more likely to share a label, and Clus-
ter Assumption which asserts that data tends to form
discrete clusters, and points that belong to the same
cluster, are likely to share a label.

Pseudo-labeling is a sound strategy for tackling
the CTA gamma/hadron classification problem, but
it requires a novel approach in our context. Since
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labelled data is only available through simulations,
once the observatory begins operations, the mayority
of available data is going to be real unlabeled data.
With this in mind, we propose the following idea as a
proof of concept to be used by CTA.

First, we train a supervised model with high-
intensity simulated data. Then, we initiate the self-
supervised training with an uncertainty threshold as
shown in Equation 2, where α is the uncertainty
threshold. Ideally, we would use real images here, but
since no real data is available, we use lower-intensity
images as proof of concept. The uncertainty threshold
is to avoid very complex examples that, even though
they contain very relevant information for the network
to learn, could mislead the training path of the net-
work. But once the network gets modified through
learning, those examples could meet the threshold cut
in another round.

sel f supervised data =

{
x ∈ dataset if fi(x)> α,

x /∈ dataset otherwise
(2)

i ∈ gamma,other

3 EXPERIMENTS

To test our proof of concept, we first need to validate
that we can train and further improve the model with
labels created by the same model and tune the α pa-
rameter. This is done before taking the second step,
by emulating the context of new images. Next, a de-
scription of the performed experiments, metrics and
datasets is given.

3.1 Validation Experiment

The first experiment assesses our variation of the
pseudo-labelling technique, which will be referred to
as the Validation Experiment. It begins by training
a supervised model with a small dataset. The per-
formance reached by this model should be enough to
generate distinguishable clusters in the latent space.
Then, the same model is trained in a self-supervised
fashion by generating the labels with its prediction
and applying the uncertainty threshold on a single
epoch. The details of the training events are shown
in Table 3.

For the Validation Experiment, both supervised
and self-supervised datasets have a quality cut on
Hillas intensity over 1000 phe. The training datasets
are balanced and evenly distributed for both particles.

This is done to train the CNN only using the morphol-
ogy of the image. The two models were tested over
the same testing dataset. The testing dataset also had
a quality cut of 1000 phe on Hillas intensity.

3.2 Application Experiment

The second experiment, namely the Application Ex-
periment, consists of training a model in a supervised
manner, just like in the first experiment, but with a
larger subset to improve training. Then, this model
is further trained in a self-supervised fashion with the
same strategy as in the previous experiment but with
different quality events. In this experiment, the self-
supervised step is done with 300 phe cuts on Hillas
intensity instead of 1000 phe. Also, the second used
dataset overlaps with the first to soften the training
gradients. Since the model was already trained with
events from the 1000 phe quality cut, the performance
improvement comes from the second quality cut (300
phe). The details of the training events are shown in
Table 3.

Both models were tested over the same testing
dataset, which also has the 300 phe quality cut on
Hillas intensity. All training and validation datasets
were balanced in particle class, i.e., proton and
gamma, but the testing dataset is unbalanced in a 2:1
proportion, respectively. This is to simulate a more re-
alistic proportion of the classes. A general overview
of the experiments and datasets is shown in Table 3.

4 RESULTS

In this section, we present the main results of both ex-
periments. The metrics considered for the analysis are
accuracy, recall, precision, and f1-score (Zeugmann
et al., 2011).

4.1 Validation Experiment

In the validation experiment, the model was trained
using an early stopping mechanism until a plateau was
reached in the loss. Since we used CLR, the network
converges faster than conventional methods.

For the Supervised step, we trained for 23 epochs,
but the minimum loss was reached on epoch 17. The
joint results for testing are shown in table 4.

While for the self-supervised method, all the train-
ing was done on a single epoch to avoid overfitting.
Since applying an uncertainty threshold to the net-
work could easily overfit the examples that the model
already classifies with low uncertainty.
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Table 3: Summary of data used for the experiments.

Experiments Training (strategy: #events) Validation Testing

Validation supervised: 74945a

self-supervised: 541911 a 7898a 234276a

Application
supervised: 541911 a

self-supervised: 1519741 b 108945 a 605424b

a greater than 1000 phe, b greater than 300 phe

The α parameter was found by grid search as
stated in Equation 2. The model’s learning capacity
seems sensitive to this parameter, but our best per-
formance was reached with α = 0.9, thus applied for
both experiments.

As shown in table 4, the self-supervised strategy
improved the model’s performance in all metrics. In
other words, for the same image quality (same Hillas
intensity cut), the model learned a better representa-
tion using the predicted labels as if they were true.
Consequently, we can conclude that the general semi-
supervised strategy is an excellent candidate to further
study with different image qualities.

4.2 Application Experiment

For the Application experiment, it can be seen that
performance also improved for all metrics except for
precision, which decreased by 1%. However, the in-
crease in recall and accuracy tell us that the improve-
ment in correctly identifying gamma comes at the
price of a slight rise in the type-I error.

Table 4: Summary of the results of both experiments.
Experiments Accuracy Recall Precision f1-score
Validation Experiment

Supervised 0.88 0.85 0.82 0.82
self-supervised 0.90 0.92 0.85 0.85

Control (1000 phe) 0.91 0.90 0.83 0.87
Application Experiment

Supervised 0.81 0.76 0.70 0.73
self-supervised 0.83 0.87 0.69 0.77

Control (300 phe) 0.85 0.89 0.73 0.80

For all experiments, Recall and Precision are fo-
cused on gammas. Also, a control experiment was
done by training the model in a supervised fashion
on all the training datasets (complete information sce-
nario). The idea is to have a broader vision of where
the semi-supervised strategy lies.

4.3 Considerations

Our experimental design used different-quality un-
labeled data, which might be very different from
real event data. Real data can diverge significantly
from simulated data (Shilon et al., 2019), consider-
ing that our cuts are different instances of the same

larger dataset and not an independent data source,
further experiments must be done on the difference
of real/simulated data (Jacquemont et al., 2021).
However, we assume that a trained classifier with
carefully-crafted simulated data will have a reason-
able performance on real data (Miener et al., 2021a;
Vuillaume et al., 2021). This assumption must be
verified with real data; therefore, we suggest a latent
space tool to further help with this purpose.

The difference between real/simulated data is a
matter of constant study. Some of the studied differ-
ences consider dead/bright pixels and camera mod-
ules, imperfect calibration, imperfect NSB/moonlight
modelling, atmospheric modelling, ageing of the tele-
scopes, and the difficulty in reliable modelling of
hadronic interactions. Our strategy studies a possi-
ble approach to take advantage of using such com-
plex real images, but further research should be done
specifically on real/simulated data integration.

5 LATENT SPACE

We assume that a model that reaches a good perfor-
mance also learns a good representation of the phe-
nomenon, meaning that the images generate a non-
linear transformation which leads to separable classes
to predict in a latent space. Since CNN reduces the
dimension with depth, it brings an opportunity to ex-
plore this latent space representation of the network.

While convolutional layers extract certain features
that become more complex with depth, logic layers
combine these features to fulfil the task, in this case,
class prediction. We could extract the result of any in-
termediate layers to explore the latent space. Then, to
visualize, we can apply dimensional reduction tech-
niques, such as UMAP (McInnes et al., 2020), t-SNE
(Laurens Van der Maaten and Hinton, 2008) or PCA.
We applied PCA to show how the network distin-
guishes between classes and confirm our assumptions
on pseudo-labelling.

As shown in Figure 1, classes are separable and
misclassified cases are accumulated on the edges of
the clusters, as was expected. We also confirm that
the Cluster assumption and Continuity assumption for
the pseudo labelling hold.
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Figure 1: PCA applied to the first logic Layer (1st Dense
128).

Figure 2: Correlation between PCA and Hillas Parameters.

Additionally for PCA, we set a threshold of 70%
of the explained variance to get the number of compo-
nents for representation on the first logic layer to find
common ground between the CNN representation and
Hillas parameters. In Figure 2, we show the correla-
tion between the Hillas parameters and the PCA com-
ponents for the testing set from the Validation Exper-
iment.

As shown in Figure 2, the first PCA component P1
is inversely correlated with Hillas length and width.
This means that the features learned by the CNN cor-
relate with Hillas parameters that are known to be es-
sential to discriminate whether it is gamma or proton
(Albert, 2007; Krause et al., 2017).

Further investigations need to be done regarding
these latent spaces. It also could be used to diagnose
and study the structural differences between real and
simulated data (Shilon et al., 2019).

6 CONCLUSION

We proposed a proof of concept for self-supervised
training for CTA. We validated our modification of
the pseudo-labelling strategy and then retrained the
model with images with different quality cuts. The
model learned from fainter pseudo-labelled images
and improved the identification of gamma-ray show-
ers in a statistically relevant amount.

These results suggest that our proposal is a suit-
able candidate to stimulate this line of research and a
potential approach for the actual operation of IACTs.
The potential for classification performance on real
data could be enhanced by augmenting simulated
training data with real event images.

Our brief exploration of the latent space could
be used as common ground to connect Convolu-
tional Neural Networks and the Hillas parametriza-
tion. With a deeper exploration, we expect to under-
stand how the networks classify the data, contributing
to further improvements in simulation. For example,
training a CNN to classify real and simulated images
as in (Shilon et al., 2019) and then studying its latent
space could reveal a path to improve simulations fur-
ther.
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