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Abstract: Supervised methods rely on correctly curated and annotated datasets. However, data annotation can be a cum-
bersome step needing costly hand labeling. In this paper, we tackle multi-label classification problems where
only a single positive label is available in images of the dataset. This weakly supervised setting aims at simpli-
fying datasets assembly by collecting only positive image exemples for each label without further annotation
refinement. Our contributions are twofold. First, we introduce a light patch architecture based on the attention
mechanism. Next, leveraging on patch embedding self-similarities, we provide a novel strategy for estimat-
ing negative examples and deal with positive and unlabeled learning problems. Experiments demonstrate that
our architecture can be trained from scratch, whereas pre-training on similar databases is required for related
methods from the literature.

1 INTRODUCTION

Data annotation, or labelling, is at the core of super-
vised learning approaches. In image classification,
state-of-the-art methods rely on an ever-increasing
amount of data, which makes the annotation collec-
tion a major issue. Training datasets are made of
image-label associations obtained from an expensive
manual annotation, an automatic collection, or filter-
ing and mapping of existing image descriptions. As-
sembling a dataset is difficult, especially when: ex-
perts must annotate unlabelled data; rare events have
to be recognized; or a dataset is created from different
sources with inconsistent label taxonomies.

The accurate characterization of most images re-
quires multi-label classification. Image content is in-
deed rich in information, as it includes multiple struc-
tured components. Associating a single label to an
image is a too restricted setting. It is preferable to an-
notate an image with several and non-exclusive labels
(e.g. presence/absence of wood, metal, fabric, etc.).

For supervised learning purpose, positive and neg-
ative examples for each label are needed in the train-
ing dataset. The image-labels associations need to be
exhaustive. Any missing or incorrect annotation for
the label l on a given image X leads to a wrong ex-
ample for this label. Such errors may have an im-
pact on the complete labelling of the image X , and

on the characterization of the label l on the remain-
ing images of the dataset. Naturally, obtaining er-
ror free multi-label annotations makes the dataset cre-
ation more complex. To alleviate the task of dataset
creation, weakly supervised learning methods only
rely on partial data annotations. Such methods com-
bine approaches ranging from fully supervised to un-
supervised learning, e.g. few shot learning where only
a small set of examples is available for each label.

A special case of weak supervision for classifica-
tion is positive and unlabeled (PU) learning (Bekker
and Davis, 2020). In PU learning, only partial positive
labeling is available. In the multi-label PU setting, the
training data contain only a single label for each im-
age, whereas several labels can be present in each im-
age Hence, only a subset of images of the training data
set are annotated for each label. For the remaining im-
ages, we have no information, which means that we
do not know if a label is present or not in the image.
In the multi-label positive and unlabeled learning con-
text, obtaining annotations is greatly simplified. PU
learning is indeed adapted to automatic data collec-
tion and dataset merging. Positive examples for each
label can be collected independently of what they rep-
resent for other labels. More generally, as it does not
require negative examples and annotation complete-
ness, PU is well suited to handle heterogeneous label-
ings coming from different datasets.
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In PU learning, one difficulty is to deal with the
absence of negative examples. The situation is even
worse in the multi-label context, where each image is
actually both positive for certain labels and negative
for other ones.

1.1 Problem Setting and Methodology

We face the multi-label PU learning which is a multi-
label classification problem where each image may
contain zero, one or several objects from one or sev-
eral different categories. Moreover, in our use cases,
only one positive label per image is used during train-
ing, and no negative labels are available.

In this work, we propose to address the absence of
negative examples in training datasets with a patch-
based approach. Following (Trockman and Kolter,
2022), we argue that the patch level can be better
suited than the image level to achieve multi-label
characterization in the case of PU learning. More pre-
cisely, we use the fact that when an image is a posi-
tive example regarding a given label, then some of its
patches can be considered positives for this label, and
other ones negatives. When training examples only
contain positive labeling at the image level, the patch-
label association is nevertheless unknown.

1.2 Contributions and Outline

Our main contribution, presented in section 3 is a
light patch-based architecture adapted to multi-label
PU learning. By considering an image as a set of
patches, we build multi-label image representations
with a patch attention mechanism. Assuming that a
small image patch mostly contains a single class label,
our architecture allows the estimation of negative ex-
amples by leveraging on patch-based image represen-
tation self-similarities. This is a main novelty, as the
negative examples estimated by existing approaches
for PU learning (Cole et al., 2021; Verelst et al., 2022)
are based on the prediction score at the image level
without relying on the local data content.

In section 4, experiments demonstrate that our
patch-based framework is adapted to multi-label clas-
sification problems with single positive annotations,
while providing an explicit spatial localization of la-
bels. When training models from scratch, our archi-
tecture generalizes faster and better than Resnet-5,
while being significantly lighter (reduction ×100 of
the number of parameters).

2 RELATED WORKS

In this section, we first review multi-label classifica-
tion models using set of patches. Next, we discuss ex-
isting strategies to obtain a global image representa-
tion from the information contained in a set of patches
and their embeddings. Finally, we present state-of-
the-art methods for positive and unlabeled learning.

2.1 Patch Embeddings for Multi-Label
Image Classification

Multi-label classification of images can be split into
multiple single label classification tasks (Read et al.,
2009), where each classifier is in charge of predict-
ing a specific label. Recent works demonstrate the
interest of tackling the joint multi-label problem (Wei
et al., 2014). In image data, there is indeed a cor-
relation between localization and labels. As a con-
sequence, detection methods not only intend to in-
fer the image labels, but they also aim at estimat-
ing their localization through bounding boxes (Ren
et al., 2015; Redmon et al., 2016) or segmentation
masks (He et al., 2017).

Considering an image as a set of patches is an
appropriate model for multi-label classification. In
practical applications, unless a hierarchical label tax-
onomy is considered (hairs, head, body), labels are
indeed related to a subpart of the image only (e.g.
wood, brick, metal...). With a patch-based approach,
each patch specializes and contributes to the classifi-
cation with respect to a single label. Patch-based ap-
proaches have been introduced for texture synthesis
problems (Efros and Leung, 1999). Their interest has
been demonstrated for image level tasks such as de-
noising (Buades et al., 2005), super-resolution (Free-
man et al., 2002), segmentation, labeling (Coupé
et al., 2011), classification (Varma and Zisserman,
2008), etc. In particular, the representation of an im-
age from its extracted patches has been thoroughly
studied, and we refer the reader to (Liu et al., 2019)
for a review of methods from the bag-of-word frame-
work to recent deep models.

The Transformer architecture (Vaswani et al.,
2017), originally proposed for natural language pro-
cessing, has soon been transposed to image tasks. In
order to adapt Transformer architecture to images, the
ViT method (Dosovitskiy et al., 2020) considers an
image as a set of patches or as a sequence (if patch
position is encoded) of patches. The ViT achieves
impressive results without convolution layers. Many
extensions of the image Transformer focus on the
construction of a relevant set of elements to feed to
the network. As an example, CrossViT (Chen et al.,
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2021) relies on patches of different size, which brings
multi-scale information. In other works, a convolu-
tion neural network (CNN) can be used as a stem
(Xiao et al., 2021) or as a feature pyramid (Zhang
et al., 2020) to feed a Transformer network.

Relying on sets of patch embeddings proved to
be a powerful methodology for image classification
with modern learning methods. The ConvMixer
model (Trockman and Kolter, 2022) shows for in-
stance that Transformers’ performances are mostly
due to the representation of images as a set of patches,
rather than to the architecture itself. When facing
image classification problems, one has to come back
from patch level to image level at some point.

2.2 From Set of Patch Embeddings to
Image Representation

We now present methods providing a relevant image
representation from the embeddings of image patches.
Image representation must handle multi-label classi-
fication and deal with the presence of multiple in-
stances of these labels in the images. To that end, the
information contained in the set of embedded patches
has to be aggregated. In the literature, the aggrega-
tion of elements in a set is mainly done using pooling
operator such as average, max, min or sum of the ele-
ment representations (Zaheer et al., 2017). The pool-
ing of feature maps related to receptive fields of dif-
ferent sizes is for instance usually done with global
average (Lin et al., 2013).

The raise in popularity of the attention mechanism
has led to new pooling methods (Ilse et al., 2018)
realizing weighted sums of element representations.
Transformers (Vaswani et al., 2017), relying on multi-
head attention, can also operate as element pooling.
The transformer uses cross-attention with weights
given by a similarity score between the element rep-
resentations and ”queries”. In the case of patches,
these ”queries” can be seen as codebooks (Zhao et al.,
2022). Queries can be designed beforehand, or they
can be parameters learned by the model. A main lim-
itation of the transformer is its quadratic complexity
with respect to the dimension of input data. In order to
reduce the computational burden of transformers, the
perceiver (Jaegle et al., 2021) architecture computes
intermediate latent representations of reduced dimen-
sion before realizing cross-attentions with the queries.
Hence, a task dependent element pooling can be con-
sidered for each query. The queries can therefore be
defined as label embeddings (Lanchantin et al., 2021),
with an independent pooling for each label.

In computer vision, multiple instance learning
consists in both detecting the presence of a label at

the image level and localizing accurately the corre-
sponding instances (Carbonneau et al., 2018). The at-
tention mechanism provides a joint solution to these
problems (Ilse et al., 2018), as element pooling nat-
urally deals with multiple instances of a label in an
image. The detection of a label is indeed given by
the pooling of the patch embeddings with the cor-
responding query. The similarity weight between a
patch and a query indicates the degree of participa-
tion of the patch in the label decision. If a patch has
an important weight in the pooling of a label predicted
as positive, then this patch should contain relevant in-
formation relative to this label. As a consequence, the
similarity weights can help to localize distinct subar-
eas of the image corresponding to a single label.

In a supervised setting, patch attention mechanism
is adapted to both multi-label and multiple instance
cases. However, its application to weakly supervised
problems with positive only annotations at the image
level requires the development of new methods.

2.3 Positive and Unlabeled Learning for
Multi-Label Classification

Positive and unlabeled (PU) classification is a weakly
supervised classification problem where only posi-
tive examples are available. As studied in the re-
view (Bekker and Davis, 2020), many methods have
addressed this problem in the single-label setting.

However, only few methods dedicated to PU
learning for multi-label classification problems exist.
As detailed in (Cole et al., 2021), most works con-
sider the many (and not single) positive (Kanehira
and Harada, 2016) case, the single positive or nega-
tive one (Huang and Yan, 2018) or the existence of
negatives for each label (Ishida et al., 2017).

In this paper, we focus on the complex multi-
label application case where only a single positive
label is known for each element of the training set.
In (Mac Aodha et al., 2019), all but the known pos-
itive examples are considered as negatives and in-
cluded as groundtruth negative examples in the loss
function optimized during training. This corresponds
to a uniform penalization of the positive predictions,
that can be enhanced with a dedicated spatial consis-
tency loss (Verelst et al., 2022). Cole et al. (Cole
et al., 2021) propose to enhance this kind of meth-
ods with the Regularized Online Label Estimation
(ROLE) strategy. The ROLE model first improves
the loss function with a term penalizing the distance
between the number of positive label predictions for
an image and a hyperparameter. This hyperparame-
ter corresponds to the mean number of positive labels
per image that is nevertheless unknown in general.
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Then, an online label estimation strategy is consid-
ered for unobserved labels. It consists in learning new
parameters that should correspond to the groundtruth
value of unknown labels, that can be either positive or
negative. These estimations are realized in a separate
branch of the model and are compared with the actual
predictions of the model in a dedicated loss.

The ROLE model (Cole et al., 2021) makes an
interesting proposition with the online estimation of
negative examples. Nevertheless, it does not lever-
age on data content to provide negative examples and
tackle the multi-label aspect of the problem. The on-
line strategy mainly stabilizes the learning through
memorization of former label predictions. In prac-
tice, it reinforces the tendencies (positive or negative
predictions) provided by the current model, by mak-
ing the predicted weight values closer and closer to
0 or 1. We argue that the patch-based approach is a
suitable strategy to estimate negative examples in the
context of multi-label PU learning.

3 METHODOLOGY

We start this section with a formal statement of the
multi-label classification problem addressed in this
paper. Given a set of labels l ∈ L, the objective is to
determine P(xn|l), the probability of presence of the
label l in an image xn. We denote as yn = {yn,l}l∈L
the ground truth labels that indicate if a class l ∈ L
is present (yn,l = 1) or not (yn,l = 0) in an image
xn. Hence, the multi-label problem can be formulated
as the estimation of a labeling score ŷn = {ŷn,l}l∈L,
where ŷn,l ∈ [0,1] indicates the presence (ŷn,l → 1) or
absence (ŷn,l → 0) of the label l in the image xn.

Training multi-label classification in a fully-
supervised manner requires entirely annotated data,
for which the collection and annotation are costly. In
our case, this complete annotation is not available.
We have partial ground truth annotations on an image
dataset containing partial positive z+n and negative z−n
examples for the image xn. We consider that z+

n,l = 1
(resp. z-

n,l = 1) means that the label l is present (resp.
absent) in the annotated image xn. If z+

n,l = z-
n,l = 0

then we have no information on the label l. Finally,
the two annotated sets are assumed compatible, so
that the case z+

n,l = z-
n,l = 1 is impossible.

In the Positive and Unlabeled (PU) context con-
sidered in this paper, nothing is known about the neg-
atives (z-

n,l = 0 for all n and l) and the positive la-
bels are only partially observed. In our applications,
we nevertheless consider that one single positive label
z+

n,l = 1 is available per image xn.
To solve the multi-label PU problem, we propose

a weakly supervised method that relies on the use of
image patches. It is built on top of a key hypothesis: a
small enough image patch is mostly characteristic of
only one single label.

In section 3.1, we describe our patch-based ar-
chitecture for multi-label classification. Section 3.2
presents the loss proposed to train the model. In sec-
tion 3.3, we build on our patch-based architecture to
provide negative examples and deal with PU learning.

Why a New Patch Architecture for PU Learning?.
In section 3.1, we propose a new patch architecture
adapted to multi-label learning problems, where only
(partial) positive labels are available in the training
set. Classical models such as ViT (Dosovitskiy et al.,
2020) rely on one global image representation for
the classification task. The embedding obtained for
a given image and a given label thus contains infor-
mation coming from all areas of the image, including
areas that are relevant for other labels. Hence it is dif-
ficult to characterize negative examples for a single
label (i.e. images that are negative detections for one
label) using these global image embeddings.

In this work, as in ConvMixer (Trockman and
Kolter, 2022), we rather represent an image with a
subset of its patches. Contrary to ConvMixer that con-
siders a global image representation, we build differ-
ent image representations, one per class label. More-
over, all embeddings lives in the same latent space,
that are composed of embedded features extracted
from different subsets of patches. Thanks to this com-
mon latent space, subsets of patches can be easily ob-
tained by only selecting image patches that are rele-
vant for each label. As we later demonstrate in sec-
tion 3.2, such a model leads to a new and simple
scheme for estimating negative examples at the patch
level. As a by-product, it also allows for the localiza-
tion of detected labels within images

3.1 Patch-Based Architecture

We now provide a detailed description of our patch-
based architecture. As illustrated in Figure 1, the ar-
chitecture is composed of five blocks based on the
bag-of-word framework. A subset of patch is first se-
lected. The patches are then embedded in a general
representation space, in which also live label code-
books. A pooling of the patch embedding for each la-
bel is then performed using an attention mechanism.
It is followed by the final multi-label classification.

3.1.1 Patch Extraction

(Block 1 of figure 1): An image is first converted
into a set of patches extracted at different resolutions.
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Figure 1: Proposed multi-resolution patch deep neural network architecture.

Each image I ∈ RH×W×C of height H, width W and
with C channels is downsampled spatially R times
with a constant uniform ratio d, using bilinear inter-
polation. For each resulting image, patches P are ex-
tracted using a sliding window looping through the
image both horizontally (W) and vertically (H) with
a uniform window size h×w and stride. At each res-
olution, we denote a patch p ∈ Rh×w×C. The patch
size being the same across all resolutions, the set of
patches contain fine to coarse information with de-
creasing resolution. In this work, we consider the
same size for the stride and the sliding windows, so
that patches form a perfect grid of the image. When
the image size is too large, patches can be randomly
subsampled at each resolution level to limit the com-
putational burden.

3.1.2 Patch Representation

(Block 2 of figure 1): Each patch is fed into a CNN
architecture. The weights of this model are shared
across all patches. With this backbone model, all
m patches are projected into the same latent space
of dimension F , Epatch = {epatchi | epatchi ∈ RF , i =
1 · · ·m}, resulting in a vector of embedded features
epatchi ∈ Epatch that play the role of patch descriptors.
The CNN architecture consists of multiple efficient-
Net blocks (Tan and Le, 2019).

3.1.3 Codebook Embedding

(Block 3 of figure 1): Each label is associated with
its own representative patch, elabell , that we call code-
book. We assume that each representation elabell con-
tains the embedded feature that a patch should con-
tain to be discriminated as positive in regard to the
corresponding label l. The set of all codebooks, de-
noted, Elabel = {elabell | elabell ∈RF , l ∈ L}, is obtained

through back-propagation.

3.1.4 Image Representations with Patch Pooling

(Block 4 of figure 1): An image representation is cre-
ated from the embedded patches. To that end, we
propose to consider attention pooling. The pooling
is done using cross-attention between the set Epatch
of embedded patches and the learned label codebooks
Elabel. This attention mechanism can be seen as a two
steps approach. The first step consists in evaluating
the relevance of all selected patches with respect to
each possible label. To do so, we consider the scalar
product between vectors to define a score matrix A
of weights αl,i between the representation epatchi of
patch i and the representation elabell of label l:

αl,i =
exp
(
elabell . epatchi

)
∑ j=1···n exp

(
elabell . epatch j

) . (1)

The second step then realizes a weighted sum of
the patch representations through the matrix product
AEpatch. Inspired from (Vaswani et al., 2017), we fi-
nally define the image representation as:

Eimage = f (AEpatch)+AEpatch, (2)

where f is a feed forward MLP. With this attention
framework, we get multiple image representations
Eimage = {eimagel | eimagel ∈ RF , l ∈ L}. Hence, one
image representation eimagel embeds features of a sub-
set of patches matching the global patch representa-
tion of a label l ∈ L.

3.1.5 Classifier

(Block 5 of figure 1): We propose to realize the sin-
gle multi-label classification with a shared classifier.
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Given an image representation eimagel , a classifier pro-
vides a prediction ŷl relative to the presence of labels
l ∈ L in the image. In practice, the predictions are
obtained with a softmax operator

ŷl =
exp
(
Wleimagel

)
∑k∈L exp

(
Wkeimagel

) , (3)

where Wl are weight matrices that are learned for each
label. The weights being shared with the softmax
operator, the classifier operates a partition of the la-
tent space. Our objective with this classifier model is
to get a label specialization of the embedding space.
In other words, this classification architecture is de-
signed to enforce each learned label codebook elabell
to be the centroid of the patch embeddings relative to
the label l.

3.1.6 Discussion on the Proposed Architecture

Overall we suggest that our architecture enforces intra
cluster consistency with the patch pooling and inter
cluster dissimilarity with the classifier. Indeed, while
the scalar product between patches representation rel-
ative to the same label is maximized by the attention
pooling (see relation (1)), the classifier block implic-
itly aims at minimizing the scalar product between la-
bel image representations eimagel .

There are several differences and novelties in our
patch embedding strategy with respect to the ViT
one (Dosovitskiy et al., 2020) and its extensions
(Chen et al., 2021; Xiao et al., 2021; Zhang et al.,
2020). As in (Chen et al., 2021), the initial patch ex-
traction is performed from multiple resolution result-
ing in coarse to fine patches. Next, all patches are pro-
cessed independently of their positions. Compared to
ViT, we do not need positional encoding. Finally, we
use a CNN to extract high level features used as patch
embeddings. A patch is therefore considered as an
image and not as a token as in ViT.

3.2 Training Loss

We now present the multi-label loss used in our
framework to achieve a prediction ŷ of the ground
truth y from positive and negative examples z+ and
z−. First, to introduce the different losses and avoid
possible confusions, we review the differences be-
tween multi-class and multi-label problems. We re-
call that we omit the image index n to simplify the
notations: ŷ = {ŷl}l∈L is the prediction of the proba-
bility of presence of labels l for any single image.

3.2.1 Supervised Multi-Class Learning

In multi-class problems, classes are mutually exclu-
sive: for each image, there exists a single label l such
that yl = 1 in the ground truth, while yk = 0 for all
k 6= l. As a consequence, the predictions ŷl are con-
strained to belong to the simplex (i.e. ŷl ≥ 0 and
∑l∈L ŷl = 1). The standard loss function is then the
Cross Entropy LCE between the available positive ex-
amples z+ and the normalized predictions ŷ:

LCE(z+, ŷ) =−∑
l∈L

z+l log(ŷl). (4)

3.2.2 Supervised Multi-Label Learning

On the other hand, in multi-label classification, mul-
tiple positive groundtruth are possible for a single im-
age (∑l∈L yl ≥ 1). Hence, the simplex constraint can
not be considered anymore, and each label prediction
is an independent score ŷl ∈ [0,1]. Negative predic-
tions must also be taken into account and compared
with negative examples contained in z-. In this work,
we use the Binary Cross Entropy loss LBCE, that is a
standard loss for multi-label classification. For each
class l ∈ L, BCE is the sum of two cross entropy (4)
terms between positive z+l = 1 (resp. negative z−l = 1)
ground truths observations and positive ŷl (resp. neg-
ative 1− ŷl) predictions:

LBCE(ŷ) = LCE(z+, ŷ)+LCE(z−,1− ŷ). (5)

3.2.3 Positive and Unlabeled Learning (PU)

PU learning involves two main difficulties: (1) the
groundtruth is partially labeled and (2) we only have
access to positive examples (z-

l = 0 for all l ∈ L).
To handle the partial labeling of positive exam-

ples, we make the assumption that, using the loss
LBCE, the features learned on one image for a given
label will transpose globally to others. To deal with
unknown negative labels, two possibilities can be dis-
tinguished. The first one consists in using the avail-
able positive labels only and train the model with the
loss LCE(z+, ŷ). However, this loss function is glob-
ally minimized with the trivial solution predicting all
labels as positive for all images. The second option is
to consider all labels except the observed one as neg-
ative examples (Mac Aodha et al., 2019), i.e. train-
ing with the loss LCE(z+, ŷ) + λLCE(1− z+,1− ŷ).
The penalization parameter λ ≥ 0 is difficult to tune
in general. This model realizes a blind homogeneous
penalization of negative examples, independently of
the image content, which encourages predicting only
one positive label (∑l∈L ŷl ≈ 1).
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We propose a trade-off between both approaches,
with the weak negative loss

LWN = LCE(z+, ŷ)+LCE(z̃−,1− ŷ), (6)

where z̃− is a weak estimation of the unknown ground
truth negative examples. We highlight a main dif-
ference between our model and the one introduced
in (Cole et al., 2021). In (Cole et al., 2021), all un-
observed ground truth labels are learned, i.e. the un-
known value of yl is estimated online for all z+l = 0.
On the other hand, we only aim at estimating partial
weak negative examples z̃−l = 1, corresponding to a
subset of ground truth labels yl = 0. In the next sec-
tion, we detail how leveraging our image representa-
tion to obtain these negative examples.

3.3 Negative Example Estimation with
Embedding Self-Similarities

In order to tackle the positive and unlabeled prob-
lem, we propose to estimate negative examples z̃ =
{z̃−l }l∈L for each image. This estimation is done using
the information contained in image representations
Eimage, together with our initial postulate hypothesis:
at most one label can be observed in a patch.

3.3.1 Image Representations Self-Similarities

We first show that two image representations, eimagel
and eimagek for labels l and k respectively, are similar
if they come from similar image patches. To mea-
sure patch closeness, we consider the cosine similar-
ity metric sim(u,v) = u . v

‖u‖2×‖v‖2 between two vectors
u and v. As defined in (2), the image representa-
tion eimagel ∈ Eimage for label l is designed to select
patch embeddings epatchi ∈ Epatch that positively cor-
relate with label embeddings elabell . We also highlight
that with our multi-class classifier, label embeddings
Elabel = {elabell , l ∈ L} are assumed to cluster the em-
bedding space. As a consequence, if the cosine sim-
ilarity sim(eimagel ,eimagek) between the image repre-
sentations for two labels is large, it is most likely that
these representations are based on similar subsets of
patch embeddings epatchi. Therefore, they come from
similar image patches.

Next, as we assume that one label is mainly ob-
served in a patch, if a set of patches is really repre-
sentative of a label l∗, this set can not be relevant for
characterizing other labels k 6= l∗. Thus, the model
should not return a positive classification score for a
label k different from l∗.

Combining these observations, we conclude that
when the cosine similarity sim(eimagel ,eimagek) is
large, the image representations eimagel and eimagek are

based on the same set of patches and at least one of the
prediction for the labels l and k should be negative.

3.3.2 Estimating Negative Labels

We propose to exploit self cosine similarities between
image representations to estimate negative examples
z̃−. We recall that at least one positive example, say
z+l∗ = 1, is observed for any image. Hence, we rely
on the value of the cosine similarity with observed la-
bels, sim(eimagel∗ ,eimagek) ∈ [−1,1], to determine if
unobserved labels k can be considered as negative ex-
amples. To that end, we first define the weights

βl,k = ϕ(sim(eimagel ,eimagek),θ), (7)

where ϕ(x,θ) = 1[x>θ]x is a thresholded Relu op-
erator of parameter θ. This parameter θ ∈ [−1,1]
is the value at which the cosine similarity is small
enough to consider the two embeddings eimagel and
eimagek as different. Choosing θ ≥ 0 guarantees that
ϕ(sim(eimagel ,eimagek),θ) ∈ [0,1].

Then, as illustrated in Fig. 2, we estimate for each
image a negative example score z̃−l for all unobserved
labels l ∈ L (i.e. when z+l = 0):

z̃−l = max
k∈L

z+k =1

βl,k. (8)

This states that the label l can be considered as a
(weak) negative example if its embedding is similar
enough to the embedding of one of the observed la-
bels z+

k = 1. Negative scores z̃−l take continuous val-
ues in the range [0,1] thus giving weak negative labels
for 0 < z̃−l < 1. The score is 0 if the cosine similarity
value is smaller than the threshold θ (see z̃−l′ in Fig. 2).

Figure 2: Estimation of weak negative example scores z̃−l
and z̃−l′ for unobserved labels and l and l′ from the single
observed label k.

Reintroducing the image index n, and recalling the
definition (4) of the Cross Entropy, our weak negative
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loss function (6) can be rewritten as

LWN = ∑
n

LCE(z+n , ŷn)+LCE(z̃−n ,1− ŷn)

=−∑
n

∑
l∈L

z+n,l log(ŷn,l)−∑
n

∑
l∈L

z̃−n,l log(1− ŷn,l).

(9)

This model thus provides negative scores z−n,k which
values depend on the embedding similarity between
unobserved labels z+n,k = 0 and observed ones z+n,l = 1.

4 EXPERIMENTS

In this section, we first describe the experimental set-
ting in section 4.1. In section 4.2, we validate numer-
ically our proposed architecture and our framework
for negative estimation from multiple image represen-
tations self-similarities. Comparisons and discussions
are finally provided in section 4.3.

4.1 Settings

4.1.1 Datasets

Only few datasets propose multi-label annotated im-
ages. Datasets traditionally used for detection or
segmentation can nevertheless be adapted to fit the
multi-label learning problem. With such datasets, the
ground truth bounding boxes or masks are discarded,
and only the associated labels are conserved. All the
instances of a label are considered as one label in the
resulting annotation. Hence, in the ground truth an-
notation, yn,l = 1 means that at least one instance of
label l is observed in the image xn. In our work, the
single positive label is obtained with a uniform ran-
dom selection between all ground truth labels.

As in (Cole et al., 2021; Verelst et al., 2022), we
consider two datasets that are adapted to the multil-
abel Positive and Unlabeled problem, since different
labels are present in an image: COCO (Lin et al.,
2014) and Pascal VOC (Everingham et al., 2010).
The 2012 version of VOC contains 5,717 images for
model learning and 5,823 images for validation. Ob-
jects can be of 20 different classes, giving 20 different
labels. Each color image can be at a resolution of up
to 640× 640. The 2014 version of COCO contains
82,081 images for model learning and 40,137 images
for validation. The dataset is annotated with 80 differ-
ent labels. The dataset images are also in colors and
have a resolution of up to 500×500.

4.1.2 Model Architecture

The patch extraction was performed on R = 3 down-
sized levels of resolution, with a factor of d = 2 be-
tween each level. The patches are squared sub im-
ages of size w = h = 64, extracted with a stride of 64.
For COCO and VOC, it results in a set of around 130
patches per images. All embeddings epatchi, elabell and
eimagel are of size F = 256. The 64× 64 patches are
processed with a CNN backbone. This patch embed-
der contains the first five EfficientNet blocks with the
same hyperparameters than (Tan and Le, 2019). The
last two layers are composed of an average pooling
layer and a fully connected layer of size F = 256 in
order to obtain the patch representations epatchi.

Label embeddings Elabel of size |L|×F are learned
by the model, the number of labels being |L|= 80
for COCO and |L| = 20 for VOC. Attention pooling
is performed with a regular cross attention and pro-
cessed by a MLP of two layers with 256 neurons,
resulting in L image representations eimagel of size
F = 256. All weights are initialized with the unit vari-
ance scaling method. The GELU activation is used for
MLPs and the swish activation for all convolutions.

The experiments were conducted on one Tesla P40
GPU through an Azure virtual machine. Our model
has been trained for 25 epochs with batches of 16 im-
ages. The starting learning rate is set to lr = 0.001 and
scheduled to decrease every 5 epochs, taking the dif-
ferent values lr = [0.001,0.0005,0.00025,0.000125].
We use the optimizer LAMB (You et al., 2019) with
a weight decay of 0.0001. For the proposed negative
estimation framework, we used θ = 0 to compute the
weight β in (7), resulting in a standard ReLU for the
similarity normalization.

4.1.3 Compared Methods

We consider as reference the model trained using full
supervision (i.e. all positives and negatives labels are
known) with LBCE (5). We recall that all other models
are trained using only one positive label per image.

We also compare our method with two closely re-
lated methods (Cole et al., 2021) and (Verelst et al.,
2022) addressing the problem of multi-label learning
with single positive examples. All results are obtained
using the mean average precision (mAP) as the eval-
uation metric on the same validation sets of images
and from models trained on the same dataset versions.
We highlight that (Cole et al., 2021) presents results
obtained with a pre-trained (and fine-tuned) Resnet-
50. Our architecture being trained from scratch, we
consider the setting of (Verelst et al., 2022), obtained
with conditions similar to ours. Hence, for compar-
isons with (Cole et al., 2021), we report the results
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from (Verelst et al., 2022), where Resnet-50 archi-
tectures are trained from scratch with different losses
during 100 epochs.

We provide comparisons with the models obtained
after 100 epochs with the losses LAN, LEPR, LROLE
proposed in (Cole et al., 2021) and LEN+CL, LEN+SCL
from (Verelst et al., 2022). In brief, LAN is the ”as-
sume negative” loss considering all unobserved labels
as negatives; LEPR is the expected positive regulariza-
tion applying a penalization to make the sum of pos-
itively predicted labels close to the average number
of positive labels per image; and LROLE is the reg-
ularized online label estimation which considers the
same penalization and also estimates ground truth un-
observed labels as parameters of the model for all im-
ages. Next, LEN+CL is the expected negative with con-
sistency loss that uses augmented versions of an im-
age; and LEN+SCL is the expected negative with spa-
tial consistency loss that predicts spatial classification
scores on an augmented image feature map.

When training our architecture with LEPR, the av-
erage label per image is set to k = 2.92 for COCO and
k = 1.38 for VOC. As recommended in (Cole et al.,
2021), for LROLE, lr is multiplied by 10 in the branch
estimating the value of all unobserved labels.

4.2 Results and Comparisons

We now present experiments to validate both the ar-
chitecture and the framework for negative example
estimation. In Table 1, we provide mAP obtained
with our architecture (top part) and the Resnet-50 one
(bottom part). For fair comparison of architectures,
both models have been trained from scratch with the
loss LBCE. This provides upper bounds for the archi-
tectures, as this experimental setting corresponds to
the ”ideal” case where all positive and negative are
known. Globally, our patch-based architecture seems
adapted to multiple label learning. In full supervi-
sion, our architecture achieved 65.8 on COCO, which
is better than the 64.8 reported in (Verelst et al., 2022)
for the Resnet-50. On VOC, the difference in favor of
our patch model is significant (61.6 vs 53.4).

To validate our negative example estimation
framework, we present results obtained in the sin-
gle positive case. We recall that our strategy con-
sists in using image representations self-similarities
to estimate weak negative examples that are plugged
into the loss LWN. As illustrated in Table 1, for the
same number of epochs, mAP results are close to the
ones obtained with full supervision (63.2 vs 65.8 for
COCO and 60.4 vs 61.6 for VOC).

We also trained our patch-based architecture with
the competing LAN, LROLE and LEPR losses. Our ar-

chitecture trained with our negative estimation propo-
sition gives the best results both on COCO and VOC.
With LAN, the sum of predicted labels is always close
to 1, which better fits the VOC dataset (which true
mean number of labels per image is k = 1.38), than
the COCO one (k = 2.92). It should be noticed that
LROLE underperforms with the considered learning
setting. We suggest this is due to the complexity of
the model, which intends to estimate all unobserved
labels with a dedicated branch in the loss function.

For completeness, we reproduce in Table 1 (bot-
tom part) the mAP results reported in (Verelst et al.,
2022), when training a Resnet-50 architecture from
scratch with the competing losses. Contrary to our
architecture, the decrease of mAP performance with
single positive examples is significant with respect to
the full supervision.

All these results indicate that the proposed frame-
work is adapted to the complex multi-label PU prob-
lem including only single positive examples.

4.3 Discussion

4.3.1 Computational Burden

The computational burden for training our patch-
based architecture is significantly reduced with re-
spect to the Resnet-50 model of (Cole et al., 2021)
and (Verelst et al., 2022). First, the model size is re-
duced by a factor 100. Our model has approximately
250K parameters to learn, whereas the Resnet-50 ar-
chitecture is composed of 23M parameters. With our
light patch-based architecture, better results are also
obtained with only 25 epochs, instead of 100 epochs
for the Resnet-50 architectures. This suggests that our
architecture generalizes better.

4.3.2 Hyper-Parameters

Our weak negative loss does not include any hyper-
parameter. Excepting the network architecture, the
only extra hyper-parameter of our full model is the
threshold of the cosine similarity in (7) that we sim-
ply fix to θ = 0. On the other hand, the losses LEPR
and LROLE penalize the sum of positive predictions
with respect to the average number of label per image.
This is a strong assumption, as the variance of posi-
tive labels on all image of the dataset can be large.
Moreover, the prior knowledge of the mean number
of labels is often not available in real use cases.

The loss LROLE also relies on an online estimation
of all unobserved ground truth annotations from cur-
rent predictions. This model is thus greatly influenced
by the initialization and the first few epochs, while in-
creasing the memory requirements.
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Table 1: mAP results for our patch approach trained for 25 epochs and different losses (top) and comparisons (bottom) with
the results reported by (Verelst et al., 2022) after training a Resnet-50 architecture for 100 epochs. Best results in bold.

Model Loss/method COCO-14 VOC-12

Patch based
architecture

(ours)

LBCE (fully-annotated) 65.8 61.6

LAN (Cole et al., 2021) 62.6 60.0
LEPR (Cole et al., 2021) 61.4 58.8
LROLE (Cole et al., 2021) 33.3 49.7
LWN (ours) 63.2 60.4

Resnet-50
(reported in (Verelst et al., 2022))

LBCE (fully-annotated) 64.8 53.4

LAN (Cole et al., 2021) 50.2 45.7
LROLE (Cole et al., 2021) 51.9 45.0
LEN+CL (Verelst et al., 2022) 54.3 47.0
LEN+SCL (Verelst et al., 2022) 54.0 50.4

zebra: 94.8 zebra: 98.9 elephant: 58.6

airplane: 77.5 person: 51.1 kite: 55.5

bear: 57.1 person: 34.2 stop sign: 96.6
Figure 3: Examples of patch attention scores for true pos-
itives. Patches are filled with their attention score values,
that vary from 0 (transparent) to 1 (red). The second line
present the prediction score for the given labels..

4.3.3 Label Localization

Our architecture has the potential to locate patch ex-
amples corresponding to a detected label (Fig. 3). In-
deed, the attention scores αl,i computed in the atten-
tion patch pooling with relation (1) (see block 4 of
Fig. 1) allows determining the level of patch i par-
ticipation to the classification decision relative to la-
bel l. The patch-based model thus offers a natural
framework to interpret the obtained results, without
relying on advanced gradient backpropagation mech-

anisms (Selvaraju et al., 2017).

4.3.4 Pre-Training and Fine-Tuning

It is important to underline the current limitation of
our approach with respect to Resnet-50 architectures.
The models (Cole et al., 2021) and (Verelst et al.,
2022) provide significant better mAP results (72 for
COCO and even 88 for VOC), when considering
a Resnet-50 pre-trained on Imagenet, with potential
fine-tuning refinements. We postulate that our results
could also be improved by pretraining either our full
patch-based architecture on Imagenet, or the patch
embedder on bounding boxes of a detection dataset.
The performance could also be increased by conduct-
ing an extensive hyper-parameter search (dimension
of the representation space F , number of attention
layers, ...) and training tuning.

5 CONCLUSION

In this work, we proposed a light patch-based archi-
tecture for multi-label classification problems. Lever-
aging on patch embedding self-similarities, we pro-
vide a strategy for estimating negative examples when
facing the challenging problem of positive and un-
labeled learning. The patch-based attention strategy
also gives a natural framework to localize detected la-
bels within images.

Numerical experiments demonstrate the interest
of the approach when no dedicated pre-trained net-
work is available. Our model is able to generalize fast
from few labels, as it provides relevant results when
trained from scratch during a few epochs. In the re-
lated literature, the best performances are obtained
with pre-trained Resnet-50 architectures having a
number of parameters 100 times greater than ours.
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In order to improve our model and reach state-of-
the-art results, the main directions we draw are the
online estimation of positive and negative example at
batch level, the pre-training of the patch embedder
and an improved model to cluster the patch embed-
ding space with respect to the labels.
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