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Abstract: To operate effectively across a variety of environments, personnel (e.g., air traffic controllers, pilots, truck 
drivers, emergency response crews) need to be trained to the point at which their responses are automatic. If 
their responses require high mental effort when carried out in emergency situations, they may be unable to 
perform or to establish situation awareness (SA) needed to perform and to keep themselves safe. We have 
been developing a software application to assess cognitive workload (i.e., mental effort) during task 
performance using functional near-infrared spectroscopy (fNIRS). Here we present our work toward 
extending this human state assessment software to include SA. We used a driving task (Crundall & Kroll, 
2018; Muela et al., 2021) in which participants saw a clip of someone driving from a first person perspective 
followed by a Level 3 SA (prediction) question asking what hazard was about to occur. Participants were 22 
Brown University undergraduate and medical students (8 females) with an average age of 22.2 (SD=4.7) and 
22 Army personnel in one of the U.S. Army installations with an average age of 49 (SD=11). We were able 
to predict performance on the SA questions using the fNIRS data, at the group level (mean accuracy = 65% 
in Brown students, 71% in Army personnel, and 65% in the combined datasets). We were also able to predict 
SA performance of individual participants with a mean accuracy of 69% (range = .45-.88). This adds to the 
growing literature indicating that neurophysiological information, even when data is acquired at a single 
location, is useful for predicting individual SA. 

1 INTRODUCTION 

To operate effectively across a variety of 
environments, personnel (e.g., air traffic controllers, 
pilots, truck drivers, emergency response crews) must 
act quickly and effectively in situations that can be 
highly stressful. Personnel who experience cognitive 
overload due to inexperience or lack of skill may 
hesitate, make judgment errors, or fail to attend to 
critical situational details; therefore, they must train 
to ensure skills transfer to operational environments 
(e.g., long durations of chaotic traffic, long duration 
travel, retrieving patients from active crime scenes, or 
disaster response scenarios).  

Those who have not mastered critical skills to the 
point of automaticity will be unable to establish and 
maintain situation awareness (SA), especially during 
chaotic battlefield conditions. This includes 
perceiving relevant elements in the environment 
(Level 1), understanding their meaning (Level 2), and 

projecting their status into the near future (Level 3) 
(Endsley, 1995). SA has been shown to be critical for 
effective performance in complex environments 
(Endsley, 2021).  

Realistic training simulations (e.g., computer 
simulators, medical simulation centers) provide 
opportunity to practice and hone skills; however, 
even the most rigorous training cannot ensure that 
personnel will perform effectively in the highest 
stress conditions. Currently, trainers must infer 
trainee competence through observation (e.g., did 
they hesitate before making a decision, did they 
communicate poorly with teammates). However, 
when trainees appear to be performing at similar skill 
levels, even highly experienced trainers cannot 
always reliably determine whether task execution still 
requires significant individual cognitive resources or 
whether individuals have been effective at 
understanding and interpreting information relevant 
to task performance. 
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Through multiple Phase I and II SBIR efforts, we 
have designed and developed a physiological system 
to assist trainers by providing quantitative 
information about trainee cognitive state. The 
advantage of such a system is that it can collect 
continuous data on trainees that may be used to detect 
problems such as cognitive overload or low SA, 
affording trainers the ability to make intervention as 
needed. Physiological data collection also has the 
advantage of not requiring additional inputs from 
trainees (such as questionnaire or probe data).  

The hardware component is our custom functional 
near-infrared spectroscopy (fNIRS) sensor, which 
uses fNIRS to non-invasively assess changes in the 
oxygenation of blood in the brain, which provides a 
robust, accurate, and real-time assessment of human 
state (e.g., cognitive workload (Ayaz et al., 2012; 
Bracken et al., 2019; Bunce et al., 2011; Xu et al., 
2019), and potentially SA (Hirshfield et al., 2015; 
McKendrick et al., 2016)). Our physiological sensors 
are paired with our Sherlock™ software product, 
which provides an end-to-end solution to collect, 
analyze, visualize, and reason about human states, 
such as workload.  

Previous work has focused exclusively on 
cognitive workload. Here we will present our work to 
extend capability to also assess SA under our 
Monitoring, Extracting, and Decoding Indicators of 
Cognitive Workload (MEDIC) and Physiological 
Index of Situation Awareness (PISA) efforts. 

2 METHOD 

The goal of the experiments was to provide a ground 
truth (i.e., data on which we know how cognitive 
workload or SA is being manipulated) in order to 
ensure the models are producing an accurate estimate 
of participant SA. In addition, we wanted to collect 
data in a diverse population of participants to assess 
whether the results are generalizable outside of a 
university population. 

2.1 Participants 

Participants were 22 Brown University 
undergraduate and medical students (8 females) with 
an average age of 22.2 (SD=4.7) and 22 Army 
personnel in one of the U.S. Army installations with 
an average age of 49 (SD=11). 
 
 
 

2.2 Sensors 

We used the fNIRS Pioneer and fNIRS Explorer 
sensors available at https://www.pluxbiosignals. 
com/products/functional-near-infrared-spectroscopy-
fnirs-sensor. The fNIRS Pioneer (Figure 1, left) is a 
single channel system. One sensor was placed at F6 
in the 10-20 EEG system (dorsolateral prefrontal 
cortex; dlPFC), and a second sensor was placed at 
FP2 (frontopolar prefrontal cortex). The fNIRS 
Explorer (Figure 1, right) is a two-channel system 
with an attached headband placed on the forehead 
below the hair line at approximately FP2. 

Figure 1: fNIRS Pioneer; a single channel sensor (left), and 
fNIRS Explorer, a two-channel sensor (right). Note, the 
image is the lead author on this paper, not a participant in 
the study.

2.3 Experimental Task 

We chose the driving hazard awareness task which 
has been validated in a number of studies as 
predictive of performance in driving (Crundall & 
Kroll, 2018; Horswill, 2016) and is used as part of the 
tests for obtaining a driver's license in several 
countries. Participants are shown a driving video in 
the first-person view. Videos were taken in Spain, 
therefore driving is on the right side of the road (see 
example screenshot in Figure 2) 

 
Figure 2: Screenshot of a hazard perception video (Muela 
et al., 2021). 
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We used a version of the hazard awareness task 
that assesses level 3 SA (predicting future events), by 
asking drivers to indicate what is likely to happen 
next after watching a short video clip (Muela et al., 
2021). An example question and answer set is:  

What is the driving hazard that is about to happen? 
1. A truck is cutting us off. 
2. A parked care is about to reverse into our 

lane. 
3. The car behind us is following too closely. 

2.4 Data Analysis 

To process the hazard awareness task fNIRS data, we 
first normalized each subject’s data to a common 
baseline with a time window of 30 seconds prior to 
the onset of the first video. We then segmented the 
data into task-specific epochs determined by the 
variable durations of the observed videos and 
response times. For each feature in Table 1, we 
calculated the average feature value over the duration 
of the task. This yielded point-like fNIRS features 
that could be used to predict performance on each task 
trial. 

To build models to predict SA performance 
(correct vs. incorrect responses to SA questions) from 
fNIRS data used a logistic regression of the form: 

log൫𝑓ሺ𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒ሻ൯ ൌ  𝛽଴ ൅ ෍ 𝛽௜𝑋௜௡
௜ୀଵ  

where f(performance) is the logistic equation 
(p(y))/(1-p(y)), β are the model coefficients, and X 
are the model features. 

3 RESULTS 

3.1 Behavioral Results 

There were three types of hazard scenarios: 
1. Single event in which one hazardous event 

was present 
2. Co-located dual events in which there were 

two hazardous conditions present, in close 
proximity with each other 

3. Separated dual events in which there were 
two events that occurred at different times 
and locations (not in close proximity with 
each other). This was the most difficult 
condition with more errors expected because 

attention could be incorrectly focused on the 
potential hazard at a different location than 
the real developing hazard 

Behavioral results (Figure 3) were as expected 
with the lowest accuracy occurring for the most 
difficult condition (separated dual events) with 60% 
accuracy for separated events, 78% for co-located 
events, and 80% for single events. There were 
significant differences between separated vs. co-
located events (t(36)=5.95, p<0.001) and separated 
vs. single events (t(36)=6.00, p<0.001). Response 
time was also longest in the separated dual events 
condition—taking 7332 ms for separated, 6278 ms 
for co-located, and 6647 ms for single events. There 
were significant differences in response time between 
separated vs. co-located events (t(36)=4.63, 
p<0.001) and separated vs. single events (t(36)=2.62, 
p<0.013) with longer response times associated with 
greater likelihood of poorer performance accuracy.  

 

 
Figure 3: Accuracy (top) and response time (bottom) results 
were as expected. The lowest accuracy was on the most 
difficult condition, dual events separated. The response 
time data suggests that correct responses take longer to 
consider when dual events are separated relative to the other 
conditions. Additionally, when responses are incorrect, the 
simplest condition takes longer to consider, while the most 
complex (separated) takes less time. *p<0.05, **p<0.01, 
***p<0.001. 

Features used in the model predicting SA 
performance from neurophysiological data are shown 
in Table 1. 
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Table 1: Features used in analysis of physiological results, 
and rationale for each. 

Feature Rationale/Hypothesis 

Signed 
HbO / 
HbR 
amplitude 

Amplitude changes in hemoglobin 
concentrations correspond to level of 
neural activity according to the 
known neuroscience principles of 
neurovascular coupling 

Unsigned 
HbO / 
HbR 
amplitude 

Amplitude changes matter, but their 
sign with respect to a baseline is not 
as important 

HbO / 
HbR 
direction 

Precise amplitude of the fNIRS signal 
is not as important as its direction 
with respect to some baseline 
(competing hypothesis to that 
proposed by the unsigned amplitude) 

HbO / 
HbR 
variance 

Increased neural activity (and by 
extension, SA) leads to a non-linearly 
related fluctuation in the fNIRS 
signal which is expressed by 
increased variance in the signal 

HbO / 
HbR 
derivative 

Rate of change of fNIRS signal gives 
information about level of SA 

The first goal was to address the general 
predictive power of the model features and 
understand the variability of predictive power among 
individual subjects. To quantify the general predictive 
power, data was grouped into training and testing sets 
ensuring no overlap of subjects with a ratio split of 
60:20:20 for training, test, and validation sets, 
respectively. We trained the model on 14-15 
participants and tested and validated logistic 
regression model performance on between 2 and 6 
participants. We repeated this training and testing 
process five times (i.e., five-fold cross validation) and 
assembled each iteration of the model test results into 
a confusion matrix, which shows the number of 
correct responses predicted by the models (i.e., true 
positives), incorrect responses predicted by the 
models (i.e., true negatives), and incorrectly predicted 
responses (i.e., false positives and false negatives).  

The confusion matrices for the Brown University 
student participants are shown in Figure 4. The 
accuracy for fold 1 was 61%, for fold 2 was 65%, for 
fold 3 was 65%, for fold 4 was 68%, and for fold 5 
was 67%. The mean accuracy was 65%. 

 
Figure 4: Confusion matrix for predicting SA from fNIRs 
data for Brown University students only. Mean accuracy is 
65%. 

The confusion matrices for Army personnel data 
only are shown in Figure 5. The accuracy for fold 1 
was 70%, for fold 2 was 73%, for fold 3 was 75%, for 
fold 4 was 72%, and for fold 5 was 66%. Mean 
accuracy was 71%. 

 
Figure 5: Confusion matrix for predicting SA from fNIRS 
data for Amy personnel only. Mean accuracy is 71%. 

Next, to examine model performance on a larger 
dataset, data from both participant populations were 
combined to see whether doubling the size of the data 
set improved the predictive power of the model. We 
trained the model on 30 participants and tested 
logistic regression model performance on 11 
participants for the test set and three for the validation 
set. We repeated this training and testing process five 
times (i.e., five-fold cross validation) and assembled 
each iteration of the model test results into a 
confusion matrix. The confusion matrices for data 
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from both Brown University students and Army 
personnel is shown in Figure 6. The accuracy for fold 
1 was 65%, for fold 2 was 65%, for fold 3 was 65%, 
for fold 4 was 66%, and for fold 5 was 66%. Mean 
accuracy of the combined model for predicting level 
3 SA in the driving task is 65%. 

Our conclusion from this analysis is that we were 
able to build a good predictive model of level 3 SA 
based on fNIRS data with accuracy ranging from 65% 
in the Brown University students to 71% in Army 
personnel. However, data from the combined datasets 
did not improve model accuracy. We hypothesize that 
accuracy was higher in the Army personnel because 
they were older, and therefore may have had more 
driving experience (including international driving 
experience) than the Brown University students.  

 
Figure 6: Confusion matrix for combined data from both 
Brown University students and Army personnel. Mean 
accuracy was 65%. 

Next, to examine the model’s ability to predict SA 
performance using neurophysiological data among 
individual participants, we trained the model on all 
but one participant and then tested the trained model 
of the participant that was omitted from the training. 
Results are shown in Table 2. 

The mean accuracy at predicting level 3 SA of 
individual participants is 69%, ranging between 45% 
and 88%. We conclude that the model shows a slight 
increase in accuracy when applied to individual 
participants. 

4 CONCLUSIONS 

With this initial data analysis from a driving task in 
which participants viewed videos of impending 
hazards from the first-person perspective of the driver, 

Table 2: Results of model to predict level 3 SA accuracy 
using neurophysiological data for each individual 
participant (leave one out validation). Mean accuracy = 
69%. 

Participant Accuracy Participant Accuracy
Brown 1 0.67 Army 1 0.65
Brown 2 0.53 Army 2 0.78
Brown 3 0.73 Army 3 0.76
Brown 4 0.53 Army 4 0.64
Brown 5 0.63 Army 5 0.73
Brown 6 0.67 Army 6 0.79
Brown 7 0.63 Army 7 0.57
Brown 8 0.53 Army 8 0.74
Brown 9 0.77 Army 9 0.87
Brown 10 0.73 Army 10 0.64
Brown 11 0.60 Army 11 0.75
Brown 12 0.63 Army 12 0.88
Brown 13 0.73 Army 13 0.78
Brown 14 0.63 Army 14 0.73
Brown 15 0.70 Army 15 0.58
Brown 16 0.45 Army 16 0.88
Brown 17 0.80 Army 17 0.72
Brown 18 0.60 Army 18 0.85
Brown 19 0.63 Army 19 0.70
Brown 20 0.67 Army 29 0.70
Brown 21 0.60 Army 21 0.77
Brown 22 0.60 Army 22 0.78

we have shown that we can build a good predictive 
model of level 3 SA on upcoming hazards. We have 
also shown that we can improve model performance 
for many individual participants if we apply the 
model to their new (not previously seen by the model) 
data only (not pooled with other participants.  

Level 3 SA, the ability to predict what is likely to 
happen, is considered the highest level of situation 
awareness and reflects high levels of expertise. It 
allows people to be proactive in their decision 
making, rather than just reactive. For example, hazard 
awareness in driving has been shown to increase with 
experience and to be related to reduced accidents. If 
the physiological correlates of level 3 SA (e.g, ability 
to detect and recognize key information in a visual 
scene) can be modelled, this work can be extended to 
many other domains and tasks in which the presence 
of level 3 SA is important.  

We continue to build, optimize, and integrate 
models assessing SA into our Sherlock software that 
can be transitioned into military training sites to 
unobtrusively assessing SA during training. Our goal 
is to transition MEDIC to live military (e.g., Fort 
Bragg, Fort Indiantown Gap) and civilian training 
environments (e.g., University of Massachusetts 
Medical School, Mayo clinic).  
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In 2022, the DoD requested almost $112.6B on 
training (Office of Under Secretary of Defense, 
2021). A comprehensive understanding of trainee 
knowledge acquisition and skill application will both 
improve educational assessment techniques and 
increase cost-effectiveness of medical team training 
practices by enabling trainers to focus on areas where 
trainees require the most improvement.  
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