
A New Approach to Probabilistic Knowledge-Based Decision Making

Thomas C. Henderson1 a, Tessa Nishida1 Amelia C. Lessen1, Nicola Wernecke1, Kutay Eken1

and David Sacharny2

1School of Computing, University of Utah, Salt Lake City, Utah, U.S.A.
2Blyncsy Inc, Salt Lake City, UT, U.S.A.

Keywords: Probabilistic Logic Decision Making.

Abstract: Autonomous agents interact with the world by processing percepts and taking actions in order to achieve a

goal. We consider agents which account for uncertainty when evaluating the state of the world, determine a

high level goal based on this analysis, and then select an appropriate plan to achieve that goal. Such knowledge-

based agents must take into account facts which are always true (e.g., laws of nature or rules) and facts which

have some amount of uncertainty. This leads to probabilistic logic agents which maintain a knowledge base of

facts each with an associated probability. We have previously described NILS, a nonlinear systems approach

to solving atom probabilities, and compare it here to a hand-coded probability algorithm and a Monte Carlo

method based on sampling possible worlds. We provide experimental data comparing the performance of

these approaches in terms of successful outcomes in playing Wumpus World. The major contribution is the

demonstration that the NILS method performs better than the human coded algorithm and is comparable to the

Monte Carlo method. This advances the state-of-the-art in that NILS has been shown to have super-quadratic

convergence rates.

1 INTRODUCTION

Knowledge-based agents generally exhibit brittle be-

havior when propositions can only be true or false.

For example, Casado et al. (Casado et al., 2011) have

used a knowledge-based approach to handle event

recognition in multi-agent systems without consider-

ation of uncertainty. More nuanced and informed de-

cision making is possible when the uncertainty of a

proposition can be characterized and included in the

evaluation of the current state in order to select an ac-

tion. Wang et al. (Wang et al., 2006) extend Hin-

drik’s logic programming language for Belief, De-

sire, Intention (BDI) agents (Hindriks et al., 1997)

by incorporating an interval-based uncertainty rep-

resentation for the language. They define a prob-

abilistic conjunction strategy to update the intervals

based on the probabilities of random variables which

satisfies the axioms of probability theory. However,

to capture all necessary relations between the atoms

requires an exponential number of constraints (i.e.,

∑
n
k=1

(

n

k

)

= 2n, where n is the number of logical

atoms). Dix et al. (J. Dix and Subrahmanian, 2000)

provide two broad classes of semantics for probabilis-
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tic agents. The drawback is that their analysis only

applies to negation free programs, thus limiting their

usefulness here. As another example, consider Milch

and Koller (Milch and Kller, 2000) whose probabilis-

tic epistemic logic (PEL) provides a formal semantics

for probabilistic beliefs. However, PEL is based on

Bayesian networks which require the definition of the

full joint probability distribution. Other approaches to

probabilistic logic have been proposed. Pearl (Pearl,

1988) developed Bayesian networks which structure

the full joint probability distribution as conditional re-

lations between the logical variables. Reiter (Reiter,

2001) extended the situation calculus of McCarthy

to include probabilities, and Domingos and Lowd

(Domingos and Lowd, 2009) applied Markov Logic

Networks to relational problems in artificial intelli-

gence. All these methods have high computational

complexity (e.g., the expression of a Bayesian net-

work requires representing the 2n complete conjunc-

tions in the network’s conditional tables, and MLN

inference is #P-complete). Moreover, none of these

methods exploit the probabilistic logical framework

as advocated here wherein the agent’s decision mak-

ing processes are based on a novel probabilistic analy-

sis of the world in terms of it laws (rules) and sensory

data.
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The approach proposed here (called NILS: Non-

linear Logic Solver) solves the probabilistic sentence

satisfiability problem (see (Henderson et al., 2020) for

details). This allows the estimation of the atom proba-

bilities based on all a priori knowledge as well as that

acquired from sensors during the execution of a task.

The method is described in detail below as well as the

results of its application to the Wumpus World prob-

lem (for more on Wumpus World, see (Russell and

Norvig, 2009; Yob, 1975)).

1.1 Probabilistic Logic

The agents considered here use a probabilistic logic

representation of knowledge (Nilsson, 1986). The

agent’s knowledge base is a set of propositions (or

beliefs) expressed in conjunctive normal form (CNF);

i.e.:

KB ≡C1 ∧C2 ∧ . . .∧Cm

where

Ci ≡ Li,1 ∨Li,2 ∨ . . .∨Li,ki

where

Li, j ≡ ap or ¬ap

where ap is a logical atom. In addition, a probability,

pi, is associated with each clause (Ci). The agent uses

the knowledge by selecting a goal (i.e., a belief which

is to be made true) based on the current assessment of

the situation. This involves assigning probabilities to

the beliefs, and then making a rational decision based

on these belief probabilities (e.g., to avoid danger or

to achieve a reward).

In order to reason using probabilities it is neces-

sary for the probabilities to be determined in a valid

framework; for this we must solve the probabilistic

satisfiability problem (Georgakopoulos et al., 1988)

which is NP-hard. Probabilistic satisfiability means

that there is a function, π : Ω → [0,1], where Ω is

the set of complete conjunctions over n variables such

that:

π(ω) ∈ [0,1],∀ω ∈ Ω

∑
ω∈Ω

π(ω) = 1

Pr(Ci) = ∑
ω|=Ci

π(ω)

where the complete conjunctions are the set of all

truth value assignments over n variables, and ω |= Ci

means that the truth assignment ω makes Ci true. The

probabilistic satisfiability problem is to determine if

there is an appropriate function π.

We have provided an analysis of this problem and

given the NILS method for its (approximate) solution

(Henderson et al., 2020). This involves converting

each clause to a nonlinear equation relating the prob-

ability of the clause to the probabilities of the atoms

in the clause; a solution is then found for the atom

probabilities which best satisfies the definition of the

function π. The method finds the best (local) func-

tion and not necessarily an exact solution by using a

nonlinear solver. NILS works as follows:

• Convert each CNF clause, Ci, with probability pi,

to an equation using the general addition rule of

probability: Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∧
B)

• Solve the system; note that this can be nonlinear if

the variables are independent, or linear over new

variables if not independent.

– independent: Pr(A ∪ B) = Pr(A) + Pr(B) =
−Pr(A)Pr(B), which leads to: pi = x1 + x2 −
x1x2

– not independent: Pr(A∪B) = Pr(A)+Pr(B)−
Pr(A∧B), which leads to pi = x1 + x2 − x3

For a simple example, consider the CNF sentence

S given by:

• C1 = a1[Pr(C1) = 0.7]

• C2 = ¬a1 ∨a2[Pr(C2) = 0.7]

A solution for this is:

• π(0,0) = 0.2

• π(0,1) = 0.1

• π(1,0) = 0.3

• π(1,1) = 0.4

Note that Pr(a1) = Pr(1,0) + Pr(1,1) = 0.3 +
0.4 = 0.7, and Pr(¬a1 ∨ a2) = Pr(0,0)+Pr(0,1)+
Pr(1,1) = 0.2+ 0.1+ 0.4 = 0.7. Nilsson (Nilsson,

1986) shows that the solution for π is not unique, and

that the Pr(a2) ∈ [0.4,0.7] for the PSAT solutions.

Solving as a nonlinear system:

0.7 = Pr(a1)

0.7=Pr(¬a1∨a2)=Prob(¬a1)+Pr(a2)−Pr(¬a1∧a2)

= (1−Pr(a1))+Pr(a2)− (1−Pr(a1)Pr(a2)

= 0.3+Pr(a2)− 0.3Pr(2)

So, Pr(a2) = 0.571. Note that logical variables are as-

sumed independent; that is, Pr(A∧B) = Pr(A)Pr(B).
We have also described a method for the case when

they are not independent (see (Henderson et al.,

2020)).
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1.2 Test Domain: Wumpus World

Wumpus world is given in the AI text of Russell and

Norvig (Russell and Norvig, 2009); however, Wum-

pus World was originally developed by G. Yob (Yob,

1975). It is a game defined on a 4x4 board (see Fig-

ure 1). The cells are defined by their (x,y) centers

Figure 1: Wumpus World Layout (Russell and Norvig,
2009).

with the origin in the lower left, the x-axis is horizon-

tal and the y-axis is vertical. The agent starts in cell

(1,1) and tries to find the gold (in this instance lo-

cated in cell (2,3)) while avoiding pits (cells (3,1),
(3,3) and (4,4)) and the Wumpus (cell (1,3)). The

agent has the following percepts:

• Breeze: indicates there is a pit in a neighboring

cell

• Stench: indicates there is a Wumpus in a neigh-

boring cell

• Glitter: indicates gold in the current cell

• Bump: indicates running into a wall (after a For-

ward command and staying in start cell)

• Scream: indicates arrow (shot by agent) killed

Wumpus

There are six actions available to the agent:

• Forward: move forward one cell (agent has a di-

rection)

• Rotate Right: rotate direction 90 degrees to the

right

• Rotate Left: rotate direction 90 degrees to the left

• Grab: grab gold (if in current cell)

• Shoot arrow: shoot arrow in direction facing (only

one arrow)

• Climb: climb out of cave (only applies in cell

(1,1))

There are a number of rules in the game; for example:

• Cells neighboring a pit have a breeze

• Cells neighboring the Wumpus have a stench

• There is one and only one Wumpus

• There is gold in one and only one cell

• If the agent moves into a cell with a pit or Wum-

pus, the agent dies.

• Pits occur in each cell (except (1,1)) with a fixed

probability; here we use 0.2.

Given the rules of Wumpus, it is necessary to for-

mulate them as a CNF sentence. As a starting point,

the set of atoms is defined as follows; for each cell

(x,y):

• Bxy indicates a breeze in (x,y)

• Gxy indicates gold in (x,y)

• Pxy indicates a pit in (x,y)

• Sxy indicates a stench in (x,y)

• W xy indicates the Wumpus in (x,y).

Since there is only one Wumpus, there are rules stat-

ing that if the Wumpus is in a given cell, then it is

not in any other; e.g., W 23 →¬W 22; since implica-

tion is not a logical operator in CNF, this is written

as ¬W 23∨¬W22. Since the Wumpus must be some-

where, there’s a rule:

W21∨W31∨ . . .∨W44

Note that the Wumpus is not allowed in cell (1,1).
Also, there are rules expressing that there may not be

a pit and Wumpus in the same cell. The number of

atoms is then 80 (i.e., 5*16), and the rules give rise

to 402 clauses in the CNF KB. Note that the state of

neighboring cells (e.g., pit or no pit) requires proba-

bilistic reasoning since mutiple models can satisfy the

percepts.

To show the power of the NILS method, consider

estimating the a priori atom probabilities given just

the rules of the game. These probabilities can be es-

timated using Monte Carlo by sampling a large num-

ber of boards and finding the likelihood of each atom.

Similarly, NILS can provide an estimate. Figure 2

shows the two sets of probabilities, and it can be seen

that NILS provides a very good estimate; moreover,

the important issue is that safer cells be distinguished

from less safe ones, and even with the differences in

exact values, the order relations of the probabilities

are preserved.
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Figure 2: The A Priori Atom Probabilties found by Monte
Carlo sampling and the NILS method.

Performance in Wumpus world is measured by a

point system wherein:

• Take an action: costs -1 (except shoot the arrow

which costs -10)

• Die: costs -1000

• escape with gold: reward of 1000

The higher the score the better the performance. A

score greater than zero is deemed a success.

1.3 Problem Statement and

Experimental Methodology

The hypothesis is that it is possible to develop au-

tonomous agents that:

• represent knowledge of the world as logical

propositions, both universal laws and temporal

variables (fluents),

• assign probabilities to those propositions,

• use a consistent formal framework to make infer-

ences which allow informed rational actions to be

taken, and

• achieve a strong level of performance.

Cognitive-level knowledge forms the core of the

knowledge base, and goals are formulated as beliefs

to be made true. The agent’s task is to organize the

goals in a reasonable manner and select appropriate

plans which when executed will make the goal belief

true.

In order to restrict the study to compare only the

way in which probabilities are produced, a common

agent algorithm was developed; its logic is shown in

Figure 3. This allows alternative methods to be used

to provide the atom probabilities used by the agent

in its decision making process. That is, difference in

behavior is only possible due to differences in atom

probabilities. Note that the most important probabili-

ties concern whether a Wumpus or pit are present in a

cell.

Figure 3: The Agent Behavior Algorithm.

Three mechanisms for atom probability are con-

sidered: (1) a human hand-coded method based on

an understanding of the game, (2) a Monte Carlo

method which samples a set of boards which sat-

isfy the known conditions and computes probabili-

ties based on those boards, and (3) the NILS method.

The Monte Carlo method serves as an approxima-

tion to the ground truth (and would produce the ex-

act probabilities if the samples included all satisfying

boards; since there 1,105,920 possible boards to filter

at each move, this option is not exploited). Therefore,

the comparison allows determination of how well the

NILS method performs compared to a human-based

method as well as with respect to the best possible

result.

2 EXPERIMENTS

Ten sets of 1000 random solvable boards were pro-

duced; that is, for each board there exists a path from

the start cell to the gold with no pit. The agent over-

all strategy is to move to the closest cell with low-

est probability of danger; the agent then goes there

either dies, finds the gold and escapes, or continues

searching. The number of successful games is used

as the measure of success. Table 1 gives the number

of boards solved for each probability method for each

of the ten sets of 1000 boards.

2.1 Discussion

The question posed here is whether probabilities pro-

duced by NILS lead to a higher rate of success com-

pared to the human defined probability algorithm, and

also to determine how well NILS performs compared

to the Monte Carlo approximation. As can be seen

in Table 1, NILS averaged about twelve more suc-

cesses per 1000 boards as the human algorithm, and

was only outperformed (by three successes) in one of

the test sets. Moreover, the 95% confidence intervals
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Table 1: Results of Performance Test of Agents. There are
10 trial sets consisting of 1000 solvable boards each. The
mean success rate for these 10 sets is given as well as the
variance. The 95% confidence intervals are [599.7,610.2],
[612.0,622.4], and [612.0,628.8], respectively. [Note that
the Monte Carlo success rates are the result of 10 indepen-
dent trials on each board test set.]

Board Set Human NILS Monte Carlo

1 590 609 613.3

2 610 620 626.1

3 590 608 617.9

4 610 619 628.5

5 607 604 619.3

6 597 620 619.7

7 611 630 627.6

8 614 626 631.0

9 611 626 638.2

10 609 610 623.4

Mean 604.9 617.2 624.9

Var 81.9 79.5 44.8

of the two methods do not overlap. With respect to

the Monte Carlo method, NILS averaged six fewer

successes per thousand, but outperformed it in two of

the trial sets. The confidence intervals of these two

methods do overlap.

The results support the claim that NILS is better

than the human probability algorithm and compara-

ble to the Monte Carlo method. In examining specific

cases, it was determined that the success of NILS over

the human algorithm mainly related to the fact that the

encoding of the Wumpus World rules into the knowl-

edge base provided implicit influence on probabili-

ties (i.e., implicit conditional probabilities) which the

human failed to capture. The success of NILS over

Monte Carlo when it occurred was seen to be related

to the result of the selection of sample boards by the

Monte Carlo method. To control for this, Monte Carlo

performance is given in terms of statistical measure-

ments (mean and variance) over a set of ten indepen-

dent trials per board set test case. It may be possible

to improve Monte Carlo performance by increasing

the number of samples, but computational costs go up

rapidly since each sample board must fit the current

sensed data constraints, and a larger set of random

boards must be examined to get the desired appropri-

ate sample set.

3 CONCLUSIONS

We have demonstrated the viability of the nonlinear

logic solver (NILS) system as the basis for probabilis-

tic logic agents. Moreover, the method is superior to

hand coded probability functions for the same appli-

cation domain, and comparable to the Monte Carlo

agent which operates with more detailed information

about the game.

In future work, we intend to investigate the appli-

cation of probabilistic decision making in terms of:

• deeper cognitive representations for the agent us-

ing a Belief, Desire, Intention (BDI) architecture.

• larger problem domains with multiple agents,

• knowledge compilation for individual agents co-

operating in a team effort in order to provide them

with just the information they need, and

• application to large-scale unmanned aircraft sys-

tems traffic management (UTM).
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