Towards Low-Budget Real-Time Active Learning for Text Classification

Keywords:

Abstract:

via Proxy-Based Data Selection

Jakob Smedegaard Andersen and Olaf Zukunft

Department of Computer Science, Hamburg University of Applied Science, Germany

Text Classification, Active Learning, Cost-Sensitive Learning.

Training data is typically the bottleneck of supervised machine learning applications, heavily relying on cost-
intensive human annotations. Active Learning proposes an interactive framework to efficiently spend human
efforts in the training data generation process. However, re-training state-of-the-art text classifiers is highly
computationally intensive, leading to long training cycles that cause annoying interruptions to humans in the
loop. To enhance the applicability of Active Learning, we investigate low-budget real-time Active Learning via
Proxy-based data selection in the domain of text classification. We aim to enable fast interactive cycles within
a minimal labelling effort while exploiting the performance of state-of-the-art text classifiers. Our results
show that Proxy-based Active Learning can increase the F1-score of a lightweight classifier compared to a
traditional budget Active Learning approach up to ~19%. Our novel Proxy-based Active Learning approach
can be carried out time-efficiently, requiring less than 1 second for each learning iteration.

1 INTRODUCTION

The acquisition of training examples is an integral
part of a classifier’s learning process (Yang, 1999).
While unlabelled data is nowadays commonly avail-
able, the general lack of labelled data-instances forms
a bottleneck. Human annotators are needed to manu-
ally label and extend the training corpus until a suffi-
cient amount of data is acquired (Fails and Olsen Jr,
2003). However, human involvement is typically time
and cost-intensive. In order to save human efforts, it
is desirable to only manually label instances which
highly contribute to a model’s learning behaviour.
Active Learning (AL) (Settles, 2009) provides a
framework to efficiently spend human efforts in the
training data generation process by reducing the num-
ber of annotations needed (Lewis and Gale, 1994).
The overall idea of AL is simple: a small but infor-
mative set of training examples can lead to the same
or even better performance than larger and noisier
training data collections. In AL, a classifier itera-
tively queries additional labels from human annota-
tors and is frequently re-trained when new training
data is available. AL comes with a special time-
related requirement to maintain its applicability in
real-world settings (Settles, 2011). Fast interaction
cycles are considerably more important for interac-
tive Machine Learning (ML) approaches than their

Andersen, J. and Zukunft, O.

actual accuracy (Fails and Olsen Jr, 2003). In the do-
main of text classification, transformer-based models
such as BERT (Devlin et al., 2019) and its variations
provide state-of-the-art accuracies. However, BERT
consists of hundreds of millions of parameters requir-
ing very long training and inference durations. Enor-
mous waiting times and interrupts emerge when us-
ing BERT within AL, negatively impacting the over-
all user experience (Doherty and Sorenson, 2015). In
order to maintain fast interaction cycles, less complex
and usually far less accurate classifiers have to be used
instead, to reduce the latency of AL in real-world ap-
plications.

In this work, we study the potential of Proxy-
based AL in the context of text classification. We aim
to drastically reduce the computational duration time
of AL while still taking advantage of state-of-the-art
text classifiers during deployment. In a traditional AL
process, the same classifier is used for data selection
and deployment (Settles, 2009). Contrary, we investi-
gate whether the data selection step can be carried out
in real-time by a very fast but usually weak classifica-
tion algorithm (called Proxy) to accelerate the overall
AL process. Afterwards, the collected training data is
used to train a state-of-the-art target classifier (called
Consumer), i.e. BERT, which is then used in deploy-
ment. In this paper, we investigate the following re-
search questions:

25

Towards Low-Budget Real-Time Active Learning for Text Classification via Proxy-Based Data Selection.

DOI: 10.5220/0011606000003393

In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 25-33

ISBN: 978-989-758-623-1; ISSN: 2184-433X

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

RQ1: How accurate are BERT classifiers trained via
low-budget Proxy-based Active Learning?

RQ2: How big is the gain in accuracy of using
Proxy-based Active Learning compared to tra-
ditional Active Learning using a budget classi-
fier for data selection?

RQ3: How suitable is Proxy-based Active Learning
for real-time processing?

The remainder of this paper is structured as fol-
lows. We shed light on related work in Section 2.
Section 3 discusses our Proxy-based AL approach.
Then, Section 4 introduces state-of-the-art candidate
classifiers to implement Proxy-based AL. Section 5
outlines our evaluation design and Section 6 presents
our results. We discuss our findings in Section 7. Fi-
nally, Section 8 outlines the conclusion.

2 RELATED WORK

The idea of using two distinct algorithms to train
a classifier was initially discussed by Tomanek and
Morik (Tomanek and Morik, 2011). They raise the
so called re-usability problem of AL, which is about
whether “a set of labelled examples that is deemed
most informative using one classification algorithm
necessarily informative for another classification al-
gorithm?” They found that using traditional machine
learning text classifiers, foreign selection is around
75% of the cases better than a random selection strat-
egy. Hu et al. (Hu et al., 2016) investigate the mu-
tual re-usability of pairs of traditional text classifiers.
They investigate which combination of Proxy and
Consumer provides the best performances. In con-
trast to our work, they do not consider the time sav-
ings of less complex Proxies. Lowell et al. (Lowell
et al., 2019) investigate Proxy-based data sampling
between similar accurate classifiers, including Deep
Neural Networks (DNN). We focus on the transfer-
ability between a fast classifier and a state-of-the-art
Deep Learning approach. Coleman et al. (Coleman
et al., 2020) investigate the time-saving and error us-
ing a FastText classifier as the Proxy and a DNN
as the Consumer. They show that FastText is up to
41.9 times faster while causing no significant error in-
crease and does not harm the accuracy. However, their
approach still requires multiple minutes for training,
which is too slow for real-time processing. Prabhu et
al. (Prabhu et al., 2019) also investigate Proxy-based
AL using FastText, but they rely on very large la-
belling budgets. In contrast, we focus on a low-budget
real-time setting where no more than 500 instances
are queried during the AL process.

26

data selection Classifier re-train

(Proxy)

query label .
train | Classifier

Unlabeld)] | [Training | {._____,
(Consumer)

Data

& extend ! Production !
Annotator i Deployment |

Traditional AL Loop

Proxy-based AL

Figure 1: Proxy-based AL as an extension of the traditional
AL loop.

3 PROXY-BASED AL FOR TEXT
CLASSIFICATION

3.1 Text Classification

Text classification deals with the automatic catego-
rization of text documents into predefined classes
(Yang, 1999). The learning process of a classifier
is supervised by a set of training examples Dy, C
X x Y consisting of text documents xp,...,xy € X and
associated class labels yq,...,yy € Y. A classifier can
be seen as a function f : X — Y predicting a class label
y €Y for new data samples x € X which are related ac-
cording to an unknown class probability p(y|x). Our
study focuses on classification tasks where each doc-
ument x € X belongs exclusively to one class. Typi-
cally, a large amount of manually labelled training ex-
amples have to be acquired to accurately train a clas-
sifier f. However, human time is typically sparse and
can easily be too expensive to be used in real-world
applications. Therefore, we strive to reduce human
involvement within the training data generation pro-
cess (Lewis and Gale, 1994).

3.2 Active Learning

Active Learning (AL) (Settles, 2009) is an interac-
tive approach to reduce the number of annotations
needed in order to adequately train classifiers and
thus drastically hasten the learning process (Dor et al.,
2020). The traditional AL process is depicted in the
left part of Figure 1. In AL, a classifier selects in-
stances which are likely to contribute the most to its
learning behaviour. Labels of the selected data in-
stances are queried from human annotators and are
used to frequently re-train the model. In this work,
we adopt pool-based AL (Sugiyama and Nakajima,
2009) where a large pool of unlabelled text documents
is available. In this setting, AL aims to select a train-
ing data set which is likely to provide the best model

Towards Low-Budget Real-Time Active Learning for Text Classification via Proxy-Based Data Selection

improvements when used as training data.

3.3 Proxy-Based AL

Traditional AL uses the same classification algorithm
for data selection and deployment (self-selection).
However, in many situations, self-selection is usu-
ally not applicable or desired (Tomanek and Morik,
2011). In real-world domains, rapid AL cycles are
essential to continuously integrate humans in the AL
loop (Fails and Olsen Jr, 2003). State-of-the-art clas-
sifiers like BERT are too complex for rapid AL, be-
cause they train and infer very slowly. Practitioners
must choose less complex and thus usually less accu-
rate models to meet time constraints.

In this paper we adapt Proxy-based AL (Tomanek
and Morik, 2011; Coleman et al., 2020) which in-
corporates two different classifiers in its learning pro-
cess. As illustrated by Figure 1, one classifier is ded-
icated to the selection of data (called Proxy). The
secondary classifier is trained on the acquired dataset
(Proxy sampling) and used in deployment (called
Consumer). To hasten the data selection process, the
Proxy has to be much faster, typically less complex
and generally provides a less accurate result. In com-
parison, the Consumer should be a state-of-the-art
classifier, likely to provide the best classification re-
sults on the gathered dataset.

4 TEXT CLASSIFIERS FOR
PROXY-BASED REAL-TIME AL

4.1 Proxy and Consumer Candidates

A Proxy-candidate has to be computationally efficient
while providing a reusable set of training data. In
this work, we apply FastText (Joulin et al., 2017)
and Logistic Regression as the Proxy. FastText is a
simplistic neural network-based linear text classifier,
which represents sentences by averaging trainable
word vectors. Logistic Regression for text classifica-
tion has shown to be very fast and more accurate than
other budget classifiers such as Decision Trees, Naive
Bayes and k-Nearest-Neighbours classifiers (Pranck-
evi¢ius and MarcinkeviCius, 2017). While FastText
is based on a bag of words and bigrams, Logistic Re-
gression models require meaningful feature vectors as
inputs. In our experiments, we utilize state-of-the-art
pre-trained language models (Qiu et al., 2020) to ex-
tract meaningful feature representations, i.e. embed-
dings, from text instances. We consider BERT (De-
vlin et al., 2019), Sentence-BERT (SBERT) (Reimers

and Gurevych, 2019), and ELMo (Peters et al., 2018).
Embeddings are pre-computed for all data-instances,
cached and queried during the AL process.

We deploy BERT as the Consumer in our inves-
tigation of Proxy-based AL, as BERT has shown to
reach state-of-the-art accuracies across a range of text
classification tasks (Devlin et al., 2019). BERT is
pre-trained on an unlabelled text corpus and can be
directly incorporated in a downstream classification
task by adding a softmax-function on top to predict
the probabilities of class labels. BERT requires task
specific fine-tuning using labelled data of the target
domain to reach state-of-the-art accuracies (Devlin
et al., 2019). Its default configuration consists of hun-
dreds of million parameters, making it very resource
hungry and slow in training and inference.

4.2 Data Selection Strategies

A selection strategy aims to identify the most infor-
mative text instances which are likely to have the
highest impact on a model’s accuracy when used for
re-training. We focus on selection strategies which ei-
ther perform very fast during the AL process or which
can be calculated prior training to not affect the total
duration of each AL iteration. We focus on the fol-
lowing selection strategies, including a baseline:

* Random: Selects instances uniformly at ran-
dom.

* Uncertainty: Data instances are selected based
on where the model is most uncertain about in
regard to its labelling (Lewis and Catlett, 1994).
We apply margin sampling (Scheffer et al., 2001)
to quantify the uncertainty of predictions, which
is U(x) = argmin,P(y;|x) — P(y2]x) where y;
and y, are the first and second most probable
class labels of a text input x.

* Density*Uncertainty: Since highly uncertain
instances might not be representative, Zhu et al.
(Zhu et al., 2008) suggest selecting instances
according to the maximum uncertainty and the
highest representatives in terms of density. The
authors suggest a k-Nearest-Neighbour density
measurement to evaluate the density of an in-
stance i € D), in respect to the K most similar
examples S(x) = {s;}X |, which is defined as:

DS(x)=K~! Z cos(x,s;) (1)
5;€8(x)
where cos(x, s;) is the cosine-similarity between
x and s;. The density*uncertainty score function
is defined as DSH (x) = DS(x) x U (x).

¢ Instability: Zhu et al. (Zhu and Ma, 2012)

suggest an instability-based selection strategy.

27

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

The instability of a prediction is measured based
on the changes of the predictive uncertainty
scores during recent (n) consecutive learning cy-
cles. The most unstable instances are those
with the highest numerical changes. The authors
provide two instability measurements, namely
Label-Insensitive Instability Sampling (ISy 1) and
Label-Sensitive Instability Sampling (ISLs). IS11
reports high uncertainties when instances cause
unstable uncertainty estimates during the / most
recent consecutive learning cycles, that is:

ISux)=U'x)+ Y U -0 @
i—l<k<i
IS g selects the most informative example from
the set of unlabelled examples that have a high
instability and different label predictions during
recent consecutive learning cycles, that is:

ISps(x) = U'(x)+
Y 3050 x (U U) @)

i—l<k<i
¢ Density*Instability: (Zhu and Ma, 2012)
also suggest selecting instances according to
the maximum instability, that is DSISi;(x) =
DS(x) x ISpr(x) and highest density which can
be formulated as: DSIS.s(x) = DS(x) X ISLs(x).

S EVALUATION DESIGN

5.1 Datasets Used for Evaluation

We consider three publicly available English datasets
covering a variety of domains. The datasets are sum-
marized in Table 1. First, we use the App Store
dataset from the domain of participatory requirements
engineering (Maalej et al., 2016). The dataset consists
of manually labelled app reviews covering feature re-
quests, bug reports and praise. Second, we utilize the
Hate Speech (Davidson et al., 2017) dataset, which
consists of tweets manually labelled for their toxic-
ity (toxic / non-toxic). Third, we use the Reuters
dataset (Lewis et al., 2004) consisting of highly un-
balanced topic modelling tasks. In our experiments,
we select a subset of the 9 most frequent topics with
unambiguous labels. We split all the datasets into a
50% training and 50% test set, keeping the original
label distribution. The training set is used as the pool

Table 1: Statistics of the datasets used.

Dataset Size |C] Class Distribution #Words (1 +0)
App Store 6392 3855:1437:1100 24+£29
Hate Speech | 24783 2 20620:4163 14£7

3930:2319:527:495:

Reuters 8759 9 458.425:282:166:157

152+176

28

for data selection. Training is then only performed on
the selected instances. For the training of the BERT
classifier, we use 10% of the selected training data as
a validation set.

5.2 Evaluation Criteria

To answer our research questions, we first investi-
gate the predictive performance of Proxy-based AL
using FastText and Logistic Regression as the Proxy
and BERT as the Consumer. Our investigation cov-
ers three datasets, two classifiers, three text embed-
dings and seven query strategies. Second, we investi-
gate the performance improvements of a low-budget
Proxy-based AL approach (Bert as the Consumer;
FastText and Logistic Regression as Proxy) compared
to traditional AL. We evaluate the performance gains
the training of an additional state-of-the-art Consumer
provides and whether it is worth the effort. Third,
we investigate the real-time ability of our Proxy-based
AL approach to assess its applicability in real-world
settings. We measure the time needed to perform a
learning iteration consisting of model training, infer-
ence and data selection. We follow the rule of thumb,
that a user in an interactive setting should not wait
more than 1 second for the response of his or her
action, to maintain user experience and productivity
(Tolia et al., 2006; Martin and Corl, 1986).

5.3 Evaluation Setup

For each experiment, we report the mean of 5 in-
dependent model runs based on stratified train-test
splits. For the App Store and Hate Speech datasets,
we randomly select 10 instances per class and 3 in-
stances for the Reuters dataset. Leading to an initial
training dataset of 30, 20 and 27 instances respec-
tively. In each iteration, only one instance is queried.
Training is always performed from scratch. In total,
we perform 500 learning iterations. We perform our
experiments with fully labelled datasets, which allows
us to simulate manual labelling, a common practice
in evaluating the performance of AL approaches (Dor
et al., 2020; Lewis and Gale, 1994). For the Logis-
tic Regression classifier, we rely on the default im-
plementation of the Scikit-learn library!. We set the
maximum number of iterations to 100. We use the
FastText implementation provided by (Joulin et al.,
2016). We set the embedding size to 10, train for 5
epochs and use a learning rate of 0.1. For the Fast-
Text classifier, we do not use the density of the learned
sentence representation for the query strategy, since

Uhttps://scikit-learn.org/

Table 2: Micro and macro F1-scores of the BERT Consumer after 300 and 500 iterations.

Towards Low-Budget Real-Time Active Learning for Text Classification via Proxy-Based Data Selection

Strategy App Store Hate Speech Reuters

FastText | SBERT | BERT | ELMo || FastText | SBERT | BERT | ELMo || FastText | SBERT | BERT | ELMo
random 83.30 83.07 | 83.03 | 83.12 88.29 87.91 87.93 | 88.51 88.38 88.28 | 89.11 | 88.85
U 84.42 83.24 | 84.69 | 83.78 91.24 88.27 | 90.94 | 93.02 91.33 89.69 | 9215 | 9143 || 2
U*DS - 83.48 | 84.59 | 84.32 - 91.16 | 90.90 | 92.27 - 89.44 | 91.39 | 92.33 §
N 83.15 82.49 | 84.02 | 83.26 91.13 89.36 | 91.43 | 92.03 86.30 91.11 92.23 | 90.59 || —
ISL*DS - 83.50 | 85.03 | 81.93 - 87.64 | 91.50 | 91.87 - 90.45 | 9242 | 92.62 %
ISis 83.92 82.27 | 85.13 | 83.59 90.52 85.28 | 91.85 | 9245 86.88 9098 | 92.82 | 91.14 || 3| »
IS .s*DS - 82.43 | 84.95 | 82.57 - 90.12 | 91.07 | 92.56 - 9049 | 93.16 | 91.54 || E _§
AVG (unc) 83.83 82.78 84.74 | 83.24 90.96 88.64 | 91.28 | 92.37 88.18 90.36 | 92.36 | 91.61 8
random 78.50 78.18 | 78.19 | 78.27 70.36 69.07 | 69.25 | 71.22 65.79 66.16 | 68.67 | 67.17 2
U 79.98 78.87 | 80.62 | 78.78 83.76 80.34 | 82.87 | 87.20 74.61 80.25 | 7999 | 7925 || 2 | 8
U*DS - 79.05 | 80.47 | 79.73 - 84.82 | 83.46 | 85.30 - 80.36 | 79.06 | 79.71 § «
IN 78.14 77.55 | 79.43 | 7855 84.21 80.65 83.77 | 85.10 63.00 83.62 | 79.02 | 72.37 E
ISLi*DS - 79.11 81.08 | 77.22 - 78.17 | 83.18 | 85.03 - 83.25 | 80.48 | 79.74 o
ISLs 79.35 77.42 | 81.08 | 79.51 83.16 76.91 84.29 | 86.32 67.32 82.96 | 79.56 | 79.52 || 8
ISp.s*DS - 78.05 | 80.84 | 77.95 - 82.49 | 83.03 | 86.60 - 82.41 80.28 | 80.00 || &
AVG (unc) 79.16 78.12 | 80.59 | 78.62 83.71 80.56 | 83.44 | 85.93 68.31 82.14 | 79.73 | 78.43
random 85.06 84.64 | 85.06 | 84.76 93.09 93.09 | 93.23 | 92.84 92.54 92.29 | 92.56 | 92.50
U 86.29 84.71 86.55 | 86.23 93.83 9339 | 93.60 | 94.35 94.56 95.41 9538 | 95.19 || 2
U*DS - 85.04 | 86.38 | 86.08 - 93.49 | 94.30 | 94.62 - 95.39 | 95.60 | 95.44 §
N 85.96 85.27 | 86.38 | 86.31 94.31 9277 | 94.29 | 94.54 91.21 95.12 | 9533 | 9595 || =
ISL*DS - 85.47 | 86.27 | 85.06 - 93.58 | 94.28 | 94.39 - 94.97 | 95.37 | 95.08 ”g
ISLs 85.96 84.99 | 86.23 | 85.64 94.29 93.58 | 93.98 | 94.51 92.52 95.13 | 94.90 | 9565 || 3| »
IS .s*DS - 85.61 86.45 | 85.66 - 93.98 | 93.94 | 94.64 - 9537 | 9532 | 9537 || E E
AVG (unc) 86.07 85.18 86.38 | 85.83 94.14 9347 | 94.06 | 9451 92.76 95.23 | 95.32 | 9545 =
random 80.75 80.32 | 80.84 | 80.48 86.92 87.09 | 87.46 | 86.64 76.57 7540 | 7691 | 75.75 2
U 82.48 80.49 | 82.89 | 8241 88.93 88.55 88.35 | 89.95 82.50 91.32 | 87.18 | 87.01 | 2 | S
U*DS - 81.18 | 82.59 | 82.11 - 88.51 89.61 | 90.25 - 91.04 | 88.68 | 88.78 § o
N 82.27 81.32 | 82.71 | 82.66 89.71 87.45 | 89.63 | 90.25 77.49 90.69 | 88.42 | 91.15 E
ISL.*DS - 81.66 | 82.29 | 80.87 - 88.95 | 89.75 | 90.14 - 9045 | 88.01 | 87.22 || o
ISis 82.35 81.13 | 82.49 | 81.83 89.87 88.62 | 89.12 | 90.08 82.48 90.31 | 84.80 | 88.40 || 2
1Sp.s*DS - 81.99 | 82.77 | 81.61 - 89.55 | 88.57 | 90.65 - 91.42 | 87.55 | 87.35 || E
AVG (unc) 82.37 81.30 | 82.62 | 81.92 89.50 88.61 89.17 | 90.22 80.82 90.87 | 87.44 | 88.32

these are not available in our FastText implementa-
tion. We implement BERT using huggingface?. We
use the bert-base-uncased pre-trained model and per-
form fine-tuning over 5 iterations. Further, we set
K = 20 to estimate the density (Eq. 1) as proposed
by the original authors. Further, we calculate the in-
stability (Eq. 2, 3) across the / = 5 recent iterations.
All experiments are performed on an Intel® Core™
i7-8550U CPU @ 1.80GHz with 16 GB RAM.

6 RESULTS

6.1 Performance of Proxy-Based AL
(RQI)

Table 2 lists the Fl-scores of the BERT Consumers
when trained via Proxy-based AL using 300 and 500
iterations. The table is organized in sampling strate-
gies, classifiers, datasets, and number of AL itera-
tions. The average (AVG unc) Fl-scores across all
selection strategies are stated at the bottom of each
table. Significant improvements (paired t-test with p-
value < 0.05) in regard to a random selection strategy

Zhttps://huggingface.co/

are highlighted in bold. The best and worst perform-
ing embeddings for each dataset and selection strat-
egy are marked as green and red, respectively.

Our results show that across all datasets, Proxy-
based AL can significantly improve the F1-score of a
target BERT classifier compared to a random selec-
tion strategy. After 500 iterations, a relative improve-
ment of the micro F1-score of 1.75, 1.15, and 3.18%
were obtained respectively for each dataset. The
macro F1-score increased by 2.54, 2.62 and 15.30%.
Across all experiments, BERT and ELMo embed-
dings provide the best Consumer performances. Fast-
Text provides the second best scores on the App
Store dataset, but does not perform well on the
Reuters dataset. SBERT embeddings perform worst
and do only reach significant improvements on the
Reuters dataset. The improvements in F1-score be-
tween the 300" and 500" iteration is straightforward,
since more instances are used for training. Further,
the macro F1-score improvements were much higher
compared to the micro Fl-score, which is caused by
the highly unbalanced datasets. None of the strategies
consistently outperforms the others, a common effect
when evaluating AL (Dor et al., 2020). Overall, the
results show that Proxy-based AL can significantly
improve the F1-score compared to selecting instances

29

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

Table 3: Relative F1-score improvements of Proxy-based AL (BERT as Consumer) compared to traditional AL (FastText and

Logistic Regression) using 300 and 500 iterations.

Strategy App Store Hate Speech Reuters

FastText | SBERT | BERT | ELMo || FastText | SBERT | BERT | ELMo || FastText | SBERT | BERT | ELMo
U 1.34 1.37 5.31 1.97 3.34 -4.43 3.21 6.24 3.34 -6.50 1.62 | 227 |
U*DS - 2.19 5.70 2.01 - -1.23 2.94 5.56 - -6.75 076 | -124 || 3
IND -0.17 0.99 4.63 1.26 3.21 -3.15 4.14 4.89 -2.36 -5.00 2.53 3.06 || %
ISL*DS - 1.72 5.78 -0.37 - -5.19 3.92 4.67 - -5.64 2.88 0.76 || =
ISis 0.74 0.14 6.57 1.17 2.53 -7.48 4.36 5.31 -1.70 -5.08 246 | -2.65 g 2
IS1.s*DS -0.82 6.25 0.73 - -2.34 3.40 5.57 - -5.39 3.18 201 |'E| 8
AVG (unc) 0.57 0.93 5.71 1.13 3.03 -3.97 3.66 5.37 -0.24 -5.73 224 | -2.00 5]
U 1.88 2.82 8.25 1.73 19.05 -6.54 8.72 17.99 13.42 -1244 1 270 | -9.24 || 2
U*DS - 3.28 8.64 1.83 - -1.13 8.21 16.23 - -12.23 | -3.96 | -9.14 ‘g §
IND -0.45 1.79 7.50 1.93 19.69 -5.83 10.14 | 12.66 -4.23 -8.56 206 | -16.59 || ¢
ISL*DS - 3.15 9.61 0.05 - -9.05 8.30 | 13.15 - -9.12 092 | 874 || &=
ISis 1.08 0.53 10.70 | 2.08 18.19 -10.33 | 10.80 | 15.28 2.33 -9.47 -2.68 | -9.14 g
ISy s*DS - -0.70 10.01 1.42 - -3.86 9.32 15.25 - -9.49 -1.32 | -8.09 || §
AVG (unc) 0.84 1.81 9.12 1.51 18.98 -6.12 9.25 15.09 3.84 -1022 | -1.97 | -10.16
U 1.45 2.44 6.59 3.66 0.80 0.72 5.55 6.82 2.19 -0.84 3.66 0.90 °
U*DS - 2.81 6.73 3.67 - 0.76 6.06 7.27 - -0.89 4.03 1.22 3
IND 1.03 2.89 6.58 3.52 1.31 0.15 6.49 6.86 -1.43 -1.10 3.66 1.73 ¢
ISL*DS - 2.79 7.00 2.01 - 0.68 6.30 6.74 - -1.34 3.96 085 ||
ISis 1.07 2.33 6.12 2.71 1.29 0.93 6.09 7.26 -0.02 -1.29 3.25 1.40 g 2
ISis *DS - 2.95 6.76 2.79 - 1.29 5.95 6.95 - -0.99 3.83 1.11 E| S
AVG (unc) 1.18 2.70 6.63 3.06 1.13 0.75 6.07 6.98 0.24 -1.08 3.73 1.20 51
U 2.14 3.80 9.80 4.63 232 2.36 13.82 | 18.61 7.75 -0.90 254 | 222 | =
U*DS - 4.37 9.93 4.49 - 1.95 14.44 | 19.34 - -1.27 5.05 -0.39 § §
IND 1.88 4.52 10.11 | 4.95 3.22 1.25 15.57 | 16.71 1.21 -1.50 3.74 2.54 ¢
ISL*DS - 4.29 10.73 | 2.55 - 2.31 1530 | 17.20 - -1.99 4.53 2.06 || =
ISis 1.98 3.77 9.81 3.67 3.40 2.41 1543 | 18.73 7.72 -2.28 0.10 | -0.66 g
IS s*DS - 4.70 1029 | 3.95 - 3.40 14.85 | 17.84 = -0.98 3.91 -1.98 g
AVG (unc) 2.00 4.24 10.11 4.04 2.98 2.29 14.90 | 18.07 5.56 -1.49 3.31 -0.80

at random, which would cause no waiting times at all.

6.2 Proxy-Based AL Compared to
Traditional AL (RQ2)

The question arises whether it is worth to train an ad-
ditional BERT classifier as performed in Proxy-based
AL or whether a traditional AL approach would lead
to similar Fl-scores. Figure 3 shows the relative im-
provement of a FastText and Logistic Regression clas-
sifiers used in traditional AL compared to training an
additional BERT classifier on the selected training set.

The results show that training a BERT Consumer
can improve the micro F1-score up to 7.27% and the
macro F1-score up to 19.34% compared to traditional
AL.

Using less training data, i.e. 300 instances, only
BERT, ELMo and sometimes FastText provide strong
improvements (> 3%) whereas SBERT performs sim-
ilar or even worse than the Proxy alone. In contrast,
using 500 instances as the training data for Proxy-
based AL, both the App Store and the Hate Speech
datasets show strong improvements. Only on the
Reuters dataset, no improvements were reached com-
pared to a stand-alone Proxy. Proxy-based AL profit
from a larger number of iterations, since all F1-scores
improved when performing 500 iterations compared
to 300. While SBERT embeddings reach the highest

30

F1-scores when applying self-selection, they provide
the worst improvements within Proxy-based AL.

6.3 Run-Time of Proxy-Based AL
(RQ3)

Finally, we investigate the time behaviour of Proxy-
based AL. Rapid training, inference and data selection
times are mandatory for Proxy-based AL to enable
fast interaction cycles. Table 4 shows the time needed
to perform the 500" iteration across the algorithmic
settings outlined in Section 4. The table shows the av-
eraged run-time of all selection strategies. Averaging
is performed to keep the figure clear, since no large
differences between the selection strategies were ob-
served. We perform all experiments on a CPU as out-
lined in Section 5.

All steps in the AL loop were carried out in less
than 1 second using Logistic Regression with pre-
trained text encodings. SBERT has shown to be the
fastest approach, followed by BERT and lastly ELMo,
which takes up to 0.68 seconds for the 500" itera-
tion. FastText is much slower, taking > 6 seconds
for the 500" iteration, which is too slow for real-
time AL. Overall, the total runtime has shown to grow
linear with respect to the number of iterations. We
consider Proxy-based AL using Logistic Regression
as fast enough to be performed in real-time applica-

Towards Low-Budget Real-Time Active Learning for Text Classification via Proxy-Based Data Selection

Table 4: Run-time of the 500" iteration in seconds on a CPU using Logistic Regression as the Proxy.

Runtime App Store Hate Speech Reuters

FastText | SBERT | BERT | ELMo || FastText | SBERT | BERT | ELMo | FastText | SBERT | BERT | ELMo
Training 6.62 0.08 0.17 0.20 6.68 0.14 0.27 0.30 7.42 0.04 0.14 0.15
Inference 0.11 0.01 0.01 0.01 0.31 0.02 0.01 0.02 0.53 0.04 0.02 0.05
Selection 0.08 0.12 0.12 0.15 0.29 0.14 0.13 0.16 0.37 0.39 0.39 0.48
Total 6.81 0.21 0.30 0.36 7.28 0.29 0.41 0.49 8.32 0.47 0.54 0.68

tions without causing large interrupts. Further, the
run-times indicate that a batch size of one is appropri-
ate and there is no need to use batch-based selection
strategies in order to save runtime even on a CPU.

7 DISCUSSION

The results demonstrate that Proxy-based AL can
provide significant improvements in F1-score within
a low-budget labelling setting. We found that our
Proxy-based data selection increases the micro F1-
score up to 7.27% and the macro Fl-score up to
19.34% compared to randomly selecting instances us-
ing a state-of-the-art BERT classifier as the Consumer
when labelling less than 500 instances manually. Fur-
thermore, we show that Proxy-based AL can be used
in real-time applications since it requires far less than
1 second for each iteration. We demonstrated that
a Logistic Regression classifier is up to ~ 33 times
faster and provides a better reusability of the sam-
pled data than FastText, which was previously con-
sidered as the state-of-the-art for rapid foreign selec-
tion (Coleman et al., 2020). We also show that Logis-
tic Regression is a very strong baseline, and training
a BERT model on the same training data might not
lead to a better performance. Overall, Proxy-based
AL does not increase the labelling effort compared to
traditional AL while providing significantly better re-
sults and enabling rapid interaction cycles.

Table 5: BERTSs’ maximal reachable F1-score when using
the entire data pool as training data.

Fl-score || App Store | Hate Speech | Reuters
micro 87.82 96.19 97.17
macro 84.30 93.21 93.94

The maximum reachable F1-scores of BERT are
shown in Table 5. The Fl-scores are obtained when
the entire data pool is labelled and used for training.
The Fl-scores show that on the Reuters dataset, the
Proxy already reaches up to 99% of the maximum
reachable F1-score after 500 iterations. In this case,
training an additional BERT classifier provides no im-
provements compared to the original Proxy. In com-
parison, the Proxy reaches only 90-96% of the max-
imum Fl-score on the App Store and Hate Speech

datasets. Thus, Proxy-based AL is most beneficial
when the Proxy’s maximum reachable Fl-score is
much lower than that of BERT.

Interactively re-training classifiers has become an
integral part of many real-world applications (Yarla-
gadda et al., 2021; Andersen et al., 2021). Typically,
classifiers are frequently re-trained while humans are
continuously interacting with a user interface. Proxy-
based AL provides a framework to enable a rapid flow
of user-interactions during the acquisition of training
data while significantly improving the performance.
Our findings also indicate that existing AL applica-
tions are likely to benefit from additionally training
a state-of-the-art Consumer on the already acquired
training data.

8 CONCLUSION

This paper investigates the potential of Proxy-based
AL to maintain real-time learning within a low-budget
labelling setting. We evaluate different algorithmic
settings for Proxy-based AL including two classi-
fiers, three datasets, seven data selection strategies
and three text embeddings. We focus on BERT as
the Consumer and FastText and Logistic Regression
as the Proxy. We show that Proxy-based AL can im-
prove the Fl-score by 7.27 to 19.34% compared to
traditional AL. Further, we demonstrate that a Logis-
tic Regression Proxy is very fast, taking less than 1
second for each iteration and thus enabling interac-
tive ML in real-time. Further work should investigate
stop criteria for Proxy-based AL to efficiently spend
human efforts. Also, the performance of Proxy-based
AL on balanced datasets should be investigated, since
we focus on unbalanced datasets.

REFERENCES

Andersen, J. S., Zukunft, O., and Maalej, W. (2021). Rem:
Efficient semi-automated real-time moderation of on-
line forums. In In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demonstra-

tions, pages 142—-149.

31

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B.,
Bailis, P, Liang, P., Leskovec, J., and Zaharia, M.
(2020). Selection via proxy: Efficient data selection
for deep learning. In International Conference on
Learning Representations (ICLR).

Davidson, T., Warmsley, D., Macy, M., and Weber, L
(2017). Automated hate speech detection and the
problem of offensive language. In Proceedings of
the International AAAI Conference on Web and Social
Media, volume 11.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, volume 1,
pages 4171-4186.

Doherty, R. A. and Sorenson, P. (2015). Keeping users in
the flow: mapping system responsiveness with user
experience. Procedia Manufacturing, 3:4384-4391.

Dor, L. E., Halfon, A., Gera, A., Shnarch, E., Dankin, L.,
Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y.,
and Slonim, N. (2020). Active learning for bert: An
empirical study. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 7949-7962.

Fails, J. A. and Olsen Jr, D. R. (2003). Interactive machine
learning. In Proceedings of the 8th international con-
ference on Intelligent user interfaces, pages 39-45.

Hu, R., Mac Namee, B., and Delany, S. J. (2016). Active
learning for text classification with reusability. Expert
systems with applications, 45:438—-449.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou,
H., and Mikolov, T. (2016). Fasttext.zip: Com-
pressing text classification models. arXiv preprint
arXiv:1612.03651.

Joulin, A., Grave, E., Bojanowski, P, and Mikolov, T.
(2017). Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, volume 2, pages 427-431.

Lewis, D. D. and Catlett, J. (1994). Heterogeneous uncer-
tainty sampling for supervised learning. In Machine
learning proceedings 1994, pages 148—156. Elsevier.

Lewis, D. D. and Gale, W. A. (1994). A sequential algo-
rithm for training text classifiers. In SIGIR’94, pages
3-12. Springer.

Lewis, D. D., Yang, Y., Russell-Rose, T., and Li, F. (2004).
Revl: A new benchmark collection for text catego-
rization research. Journal of machine learning re-
search, 5(Apr):361-397.

Lowell, D., Lipton, Z. C., and Wallace, B. C. (2019). Prac-
tical obstacles to deploying active learning. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 21-30.

Maalej, W., Kurtanovié¢, Z., Nabil, H., and Stanik, C.
(2016). On the automatic classification of app reviews.
Requirements Engineering, 21(3):311-331.

32

Martin, G. L. and Corl, K. G. (1986). System response time
effects on user productivity. Behaviour & Information
Technology, 5(1):3-13.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep con-
textualized word representations. In Proceedings of
NAACL-HLT, pages 2227-2237.

Prabhu, A., Dognin, C., and Singh, M. (2019). Sampling
bias in deep active classification: An empirical study.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4058—4068.

Pranckevicius, T. and Marcinkevicius, V. (2017). Compari-
son of naive bayes, random forest, decision tree, sup-
port vector machines, and logistic regression classi-
fiers for text reviews classification. Baltic Journal of
Modern Computing, 5(2):221.

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., and Huang,
X. (2020). Pre-trained models for natural language
processing: A survey. Science China Technological
Sciences, pages 1-26.

Reimers, N. and Gurevych, 1. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982-3992.

Scheffer, T., Decomain, C., and Wrobel, S. (2001). Active
hidden markov models for information extraction. In
International Symposium on Intelligent Data Analy-
sis, pages 309-318. Springer.

Settles, B. (2009). Active learning literature survey. In
ComputerSciences Technical Report 1648. University
of Wisconsin—Madison.

Settles, B. (2011). From theories to queries: Active learn-
ing in practice. In Active Learning and Experimental
Design workshop In conjunction with AISTATS 2010,
pages 1-18. IMLR.

Sugiyama, M. and Nakajima, S. (2009). Pool-based active
learning in approximate linear regression. Machine
Learning, 75(3):249-274.

Tolia, N., Andersen, D. G., and Satyanarayanan, M.
(2006). Quantifying interactive user experience on
thin clients. Computer, 39(3):46-52.

Tomanek, K. and Morik, K. (2011). Inspecting sample
reusability for active learning. In Active Learning and
Experimental Design workshop In conjunction with
AISTATS 2010, pages 169-181. JMLR.

Yang, Y. (1999). An evaluation of statistical approaches to
text categorization. Information retrieval, 1(1):69-90.

Yarlagadda, S., Scroggins, D. J., Cao, F., Devabhaktuni, Y.,
Buitron, F., and Brown, E. T. (2021). Doctable: Table-
oriented interactive machine learning for text corpora.
In 2021 IEEE Workshop on Machine Learning from
User Interactions (MLUI), pages 1-11. IEEE.

Zhu, J. and Ma, M. (2012). Uncertainty-based active learn-
ing with instability estimation for text classification.
ACM Transactions on Speech and Language Process-
ing (TSLP), 8(4):1-21.

Towards Low-Budget Real-Time Active Learning for Text Classification via Proxy-Based Data Selection

Zhu, J., Wang, H., Yao, T., and Tsou, B. K. (2008). Ac-
tive learning with sampling by uncertainty and density
for word sense disambiguation and text classification.
In Proceedings of the 22nd International Conference

on Computational Linguistics (Coling), pages 1137—
1144.

33

