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Abstract: At the current stage of automated vehicle development, the control handover from the system to a human 
driver (and back) is inevitable. It is essential to distinguish between situations in which the handover is 
possible and in which it could be dangerous and is therefore highly undesirable. We evaluated traffic situations 
based on two modalities: own vehicle state and traffic objects. To assess the former, supervised machine 
learning was applied, reaching an accuracy of 80.3% and specificity of 77.8% with Multilayer perceptron 
Classification. Traffic objects data were subject to different clustering techniques. The final grouping was 
done according to manually elaborated rules, resulting in a range of situation complexity scores. Improving 
the discriminative power of vehicle state classification, including driver’s state and weather information, and 
predicting situation complexity are to be addressed in future research. 

1 INTRODUCTION 

The future of mobility is automated. Researchers all 
over the world are working towards fully automated 
vehicles. Connected and cooperative automated 
mobility (CCAM) is one important keystone to 
accomplishing that goal. Vehicles by themselves can 
only have a limited view as today the driver of a 
vehicle. To enhance the safety and efficiency of road 
traffic, cooperation and information exchange are 
vital to see around the corner and to help traffic run 
smoothly. The research goal of fully automated 
condition-independent driving (SAE Level 5 (SAE 
International, 2018)) is not yet on the horizon for 
market introduction. Levels 3 and 4 serve as transition 
steps from lower-level driver-support features. At the 
current moment, Level 3 automated vehicles (AV) 
just start being publicly available (Honda, 2020). 
Level 3 implies occasional handover from 
autonomous to human control, which is one of its 
challenges. In this paper, we particularly focus on the 
control handover from automated to manual driving. 
There are many possible reasons for this handover. 
Automated driving could only be allowed on some 
roads or road classes, the driver could indicate the 
willingness to drive because she wants the pleasure to 
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drive or feels more comfortable driving in a certain 
situation. The handover, however, should not be a 
surprise for the driver and therefore requires the 
driver’s awareness and sufficient transition time 
(Trimble et al., 2014). It can be planned, and the 
transition can be done smoothly in situations, where 
the traffic allows a switch of responsibility. There are, 
however, more demanding and challenging 
situations. What if an automated vehicle is not able to 
steer through a certain situation because of technical 
limitations or the fact that not enough sensor 
information is available (e.g., due to weather 
conditions or malfunction)? In some situations, 
especially in urban environments, the handover is not 
possible. For example, at a confusing construction 
site or an intersection with many pedestrians, a human 
driver needs time to adapt to the situation and gain an 
overview. 

In this paper, situations that could hinder a 
handover process from the automated driving to the 
driver are investigated. The focus is on determining 
which situations in an urban environment are critical 
and should not be used for handover scenarios.  

The paper is structured as follows: first, the 
related work is presented. Then, the methods of how 
we handled the data are described in Section 3. In 
Section 4, the results of the data modalities are 
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analyzed. The conclusion in Section 5 features the 
significance of the results that were obtained and 
highlights open research questions.  

2 RELATED WORK 

Most research related to the transition from 
automated driving to manual driving is related to the 
human factor of reaction to the takeover request 
(TOR) (Eriksson and Stanton, 2017; Clark et al., 
2020). The awareness of the drive may be increased 
by augmented reality (Schroeter and Steinberger, 
2016). Some research sees the decision between the 
two options: drivers are allowed to do other tasks or 
drivers have to monitor the system at all times 
(Borojeni et al., 2017). The traffic situation has an 
important impact on the reaction time and the 
probability of accidents (Radlmayr et al., 2014; Gold 
et al., 2016).  

To assess the possibility of a takeover, the time 
necessary for the driver to react is the decisive factor 
(Ayoub et al., 2022). Some research estimates the 
readiness of the driver to take over the driving task 
based on the complexity of the traffic situation, the 
secondary task, and the gazes at the road (Braunagel 
et al., 2017). For this estimation, only vehicle sensors 
are used. To our knowledge, no research was 
conducted using the combination of infrastructure 
and vehicle sensor information to estimate factors for 
takeover. More information can help to lower the 
stress factor during and shortly after the handover 
(Kerautret, 2023)  

3 MATERIALS AND METHODS 

3.1 Data Collection 

Traffic situation information consisted of data 
gathered from the following sources: 
 Own vehicle state, consisting of sensor data 

from the vehicle Controller Area Network 
(CAN) bus (ISO, 2015) system. 

 Information from message exchange between 
other road users and infrastructure via Vehicle-
To-Everything (V2X) communication, such as: 
o Detected road users in the immediate 

vicinity by optical sensors (e.g., traffic 
cameras) at intersections; distribution of this 
information by Collective Perception 
Messages (CPM) (ETSI, 2019a) of 

Intelligent Transportation System (ITS) 
Roadside Stations (IRS); 

o Other V2X communication like warnings of 
dangerous events via Cooperative 
Awareness Messages (CAM) (ETSI, 2019c) 
and Decentralized Environmental 
Notification Messages (DENM) (ETSI, 
2019d) from ITS Vehicle Stations (IVS’s) 
and IRS’s (e.g., broken down vehicle 
warning, pedestrian collision warning, etc.). 

 Topology information of intersections: MAP 
(ETSI, 2019b) information at traffic 
intersections. 

 Weather conditions: weather information 
provider in the backend. 

Since all the data were collected under similar 
weather and lighting conditions (daylight, warm 
temperature, zero precipitation), the weather data 
were not included in the further analysis as a 
discriminative factor.  

To control the condition of the driver, driver-
monitoring functionality and corresponding 
equipment must be included in an (automated) 
vehicle. However, in the current research, data on the 
driver’s condition are not available yet, so the 
evaluation is based only on non-driver data. 

Description of traffic situations included 1) data 
recording, 2) aggregation and fusion of information 
from several sources, and 3) storage in the database. 
Data collection and pre-processing are described in 
(Otte et al., 2021). Several test drives were performed 
to generate the (training) data in the city of 
Saarbrücken. It must be noted that our test vehicle 
was not automated so the control handover was 
explored hypothetically. 

A traffic situation is a certain point in time 
represented by the vehicle state and the detected 
objects at the corresponding traffic intersection. A 
test drive represents a chain of several successive 
traffic situations. The time interval between two 
situations is one second. Since situations are 
snapshots, they were assessed individually, or 
independently from the previous and following states. 
During the execution of several test drives, a total of 
7,854 traffic situations were recorded and stored in 
the fusion database. 

The goal of the evaluation is to determine the 
degree of suitability of traffic situations for the 
handover, in other words – the degree of situation 
complexity. To keep the decision-making process 
transparent and explainable, a cumulative multimodal 
approach to situation evaluation was chosen. One 
modality was sensor data of the test vehicle, and the 
other modality was the information on detected traffic 

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

126



objects. The final decision depended on the outcomes 
of each modality evaluation. 

3.2 Vehicle Data Modality 

Own state of the vehicle has a direct straightforward 
influence on the control handover. “Handover 
possible” and “handover not possible” are binary 
labels that could be assigned to situations by human 
raters and are further used for supervised machine 
learning (classification algorithms and logistic 
regression) (Awad & Khana, 2015).  

An evaluation basis was required for labeling the 
handover as possible or not possible. For this purpose, 
videos were recorded from the interior of the test 
vehicle during the test drives, capturing the driver's 
point of view. The videos were time-stamped so that 
they could be matched to the data in the fusion 
database. With the help of the self-generated MAP 
messages and the GNNS (global navigation satellite 
system) position information from the test vehicle, it 
was possible to perform lane matching with the 
corresponding traffic light phases. This provided an 
information gain to the overall traffic situation. 

Recorded traffic situations were assessed 
empirically according to the four-eyes principle. 
First, transition points, where the handover status 
changed from possible to not possible and vice versa, 
were determined. All time points in between counted 
as having the same handover status. The time interval 
between two situations was set to one second to keep 
a certain degree of differentiation of adjacent 
situations as well as to avoid generating too much 
data. “Handover possible“ (1) and “handover not 
possible” (0) labels were stored in the situation 
database, which was linked to the vehicle database 
and traffic objects database through equivalent 
situation identification numbers. 

It was assumed that the movement state of the 
vehicle was the most decisive for the evaluation, 
whether it was moving, stationary, accelerating, or 
braking. Based on the mentioned features, a decision 
was made on whether the vehicle state was suitable 
for the handover to the driver in the current situation 
(see Table 1). 

Table 1: Presumed handover decision matrix. 

Handover possible Handover not possible
Vehicle is stationary 

(even at red traffic light) 
Traffic light turns green, 

vehicle starts moving
Vehicle moves at a 

constant speed 
Vehicle accelerates or 

brakes 
Vehicle is driving 

straight ahead 
Vehicle is in a curve (or at 

an intersection)

This information was provided directly by the 
vehicle sensors from the CAN bus interface. Vehicle 
data dimensionality was reduced by filtering out the 
features, whose values did not change during the test 
drive. The remaining features are listed in Table 2.  

Table 2: Vehicle data set. 

Brake 
actuation

Direction 
of driving

Current 
gear 

Clutch switch 
actuation

Door 
position

Hazard 
warning

Lateral 
acceleration 

Longitudinal 
acceleration

Pedal 
force 

Speed Steering 
wheel angle 

Steering 
wheel angle 

velocity
Turn 
signal 
level

Wiper 
front 

system

Yaw rate  

The classification process consisted of applying 
different classification algorithms to the vehicle data 
set and comparing the accuracy score. To achieve a 
better understanding of how the model would perform 
in practice, 10-fold cross-validation (70/30 split) was 
applied, after which the mean accuracy score of each 
algorithm was calculated. All utilized algorithms and 
methods came from the free software machine 
learning library scikit-learn (Pedregosa et al., 2011).  

For selected algorithms, an attempt to increase the 
accuracy was made by applying “GridSearchCV” 
(CV = Cross Validation), which performed an 
exhaustive search on parameter values for the best 
estimator. Optimized models were evaluated not only 
based on the accuracy but on the specificity of the 
model (True Negatives / (True Negatives + False 
Positives)), which was considered a more important 
metric for the investigated scenarios (False positives 
would be more dangerous errors than False 
Negatives). 

3.3 Traffic Objects Modality 

Situation complexity/criticality level was considered 
depending on the level of danger of each traffic object 
present in the current situation so that the primary 
goal was to find a way of assessing the danger level 
of individual traffic objects. 

Traffic objects data consisted of entries for 18,030 
objects of two types: 13,384 (passenger) cars and 
4,646 pedestrians. These objects corresponded to 
1,868 situations. The number of objects in a situation 
ranged from 1 to 33, mean (M) = 9.7, and standard 
deviation (SD) = 6.9. Each data entry contained the 
following features: 
 situation id;  
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 object information: type of object; distance to 
the test vehicle; speed; heading; longitude; 
latitude; time to intersection (tti); 

 test vehicle information in the corresponding 
situation: heading; longitude; latitude; time to 
intersection (tti_v). 

Time-to-intersection calculations are explained in 
(Jiménez et al., 2013). When the intersection point did 
not lie ahead on the course of the object/test vehicle, 
the time-to-intersection was set to -1 (e.g., when the 
object and the test vehicle moved parallel). Including 
a negative value, however, disrupted the continuity of 
the feature: -1 was not less than non-negative values. 
Since maximum positive values of time-to-
intersection features were great enough (ttimax= 
83,542.98 s; tti_vmax = 43,955.02 s) to be seen as 
irrelevant at the current time point, all the -1 values 
were converted into the maximum positive value of 
the corresponding feature.  

To make the data points more comparable and 
easier to visualize, they were brought into the same 
2D-coordinate system where the test vehicle would be 
at the origin (0,0) moving towards the geographical 
North (compass bearing = 0°, which corresponds to 
π/2 (90°) in the polar coordinate system). With this 
we consider the world view in this paper to be flat, 
because here the curvature of the earth is negligible. 
First, the differences between the longitude (long) 
and latitude (lat) of the object and the longitude and 
the latitude of the vehicle, respectively, were 
calculated. Then these differences were expressed in 
meters: 
 𝑥 = ଶగ∙௥௔ௗ௜௨௦ಶೌೝ೟೓ଷ଺଴°∙௖௢௦(೗ೌ೟ ೚್ೕ೐೎೟శ೗ೌ೟ ೡ೐೓೔೎೗೐మ )∙ௗ௜௙௙௘௥௘௡௖௘೗೚೙೒ ;        (1)                        𝑦 = ଶగ∙௥௔ௗ௜௨௦ಶೌೝ೟೓ଷ଺଴°∙ௗ௜௙௙௘௥௘௡௖௘೗ೌ೟  ;                           (2)  𝑤ℎ𝑒𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠ா௔௥௧௛ = 6371000.8 𝑚. 

Relative X and Relative Y were calculated, using 
trigonometric formulae for an axis rotation (Becker et 
al., 1999, p. 48) for clockwise rotation through an 
angle of the test vehicle’s heading. Longitude and 
latitude were mapped onto the abscissa and the 
ordinate, ignoring the z-axis because the objects were 
relatively close to each other (the maximum distance 
from the test vehicle was 100 m).  

The next step was to calculate the relative bearing 
of the objects (IVAO, 2020). For still objects, the true 
bearing was calculated first, using the coordinates of 
an object and the test vehicle (Ellis, 2020). Then, the 
relative bearing was calculated by subtracting the 
vehicle’s heading (true heading) from the object’s 
true bearing. For moving objects, their heading was 

used as the true bearing. The values were normalized 
to the [0, 360°) range.  

These and the following calculations were 
performed in JupyterLab environment, using various 
Python libraries (Pedregosa et al., 2011; Van Rossum, 
2020; Harris et al., 2020; Virtanen et al., 2020; Gillies 
et al., 2007), unless otherwise specified. Data 
visualizations were carried out in matplotlib (Hunter, 
2007). Illustrations of traffic objects in the coordinate 
system were obtained with the help of 
TeachingDemos package (Snow, 2020) in R (R Core 
Team, 2020). 

3.4 Clustering 

Situation complexity is multifaceted. First, the 
number of participants and their type varied. On the 
other hand, each object was described with several 
features. The situation’s complexity itself was 
difficult to define in terms of the limited number of 
labels. It seemed more reasonable to explore the data 
and find the tendencies to group the objects, which 
were addressed via unsupervised machine learning, or 
clustering (Awad & Khana, 2015). 

Several clustering options were explored to group 
the objects. The evaluation of clusters was empirical. 
Thus, a sample (<=80 samples) of observations from 
each cluster was visualized and analyzed, whether 
most of the objects in one cluster could be described 
as having the same danger level. The algorithms were 
first applied to the subset of data for pedestrians 
because it was smaller and required less 
computational space and time. When the approach 
was not considered suitable for the data (i.e., the 
results of clustering were not interpretable in terms of 
intuitive understanding of the danger level), it was not 
further applied to the subset of data for cars. 

3.4.1 Position and Speed Features 

Position features included relative X and Y 
coordinates and relative bearing. To be treated as a 
circular variable in centroid-based clustering, the 
relative bearing was transformed into two features: 
sine and cosine of the angular value. Since both sine 
and cosine functions take values from -1 to 1, the 
other features were scaled by their maximum absolute 
value. An attempt to treat relative bearing linearly 
proved to be inappropriate for circular variables. 

Two centroid-based clustering algorithms were 
applied to five features (scaled speed, scaled relative 
X, scaled relative Y, sine of relative bearing, and 
cosine of relative bearing), namely, Mean shift and K-
Means. For Mean shift clustering, bandwidth was 
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estimated with a given quantile = 0.05. For K-Means 
clustering, the Elbow Method was used to select the 
optimal number of clusters. 

Hierarchical agglomerative clustering was 
performed in R (Murtagh & Legendre, 2014). For the 
dissimilarity matrix with a circular variable, two 
options were explored: one implemented in dist.ktab 
function (Pavoine et al., 2009) of the ade4 package 
(Dray & Dufour, 2007), and the other – 
implementation of Gower’s dissimilarity (Maechler 
et al., 2019) proposed by Will (2016). Will discusses 
both methods applied to The Cape Blanco dataset, 
which contains hourly measured temperature, wind 
speed, and wind direction. The optimal number of 
clusters (tree cuts in R terminology) was estimated 
visually from the corresponding dendrograms. 

3.4.2 Time-to-Intersection Features 

Time-to-intersection (tti) features had exceptionally 
wide ranges of values. For both subsets of data, the 
median was equal to the maximum, which means that 
the data was highly skewed. Classical feature-
clipping to a fixed maximum value did not solve this 
problem. However, since situations were snapshots, 
large time-to-intersection values seemed to be out of 
interest then. Therefore, an intuitive border of 20 s 
was established, so that all the samples of data with 
tti > 20 s or tti_v > 20 s were excluded from further 
analysis. The total number of objects with “suitable” 
time-to-intersection features was 755: 139 
pedestrians and 616 cars. Since reduced times to 
intersection had the same range of values for both 
pedestrians and cars subsets, the analysis was carried 
out in three variations: for each of the subsets and the 
whole dataset. 

Mean shift and K-Means were also applied to 
time-to-intersection features, both on reduced 
pedestrians and cars subsets separately and all the 
reduced data. For Mean shift clustering, the 
bandwidths were estimated with quantiles 0.15, 0.1, 
and 0.07 for the pedestrians’ subset, cars’ subset, and 
all the data, respectively. For K-Means clustering, the 
Elbow Method was used to select the optimal number 
of clusters. 

Hierarchical agglomerative clustering with 
Ward’s linkage was performed. First, a dendrogram 
of hierarchical clustering was plotted, from which the 
optimal number of clusters was estimated. Then, the 
clustering with the selected number of clusters was 
performed using AgglomerativeClustering. 

 
 

3.4.3 Manual Evaluation 

Based on both the insights from machine learning 
clustering and the empiric account of time-to-
intersection features, a manually elaborated scheme 
for grouping the data points was proposed. Generally, 
it was considered critical if the time-to-intersection of 
the object and the test vehicle had similar values. 
Besides, lower values of time-to-intersection features 
were more dangerous than the higher ones. The 
evaluation scheme is presented in Figure 1. 

 
Figure 1: Manually elaborated scheme for grouping the data 
points according to the values of time to intersection 
features: Level 1 – the most critical (dangerous), Level 5 – 
the least dangerous. 

Since the objects were treated as points while they 
had certain widths and lengths, and possible 
imprecisions by data acquisition, it was decided to 
add one more manually evaluated group of dangerous 
objects. This group consisted of all objects located in 
the 90° range zone in front of the test vehicle (45° to 
the right and the left from the vehicle trajectory, or 
octants 2 and 3 in the 2D coordinate system, in which 
the test vehicle is at the origin and is moving towards 
the geographical North) at the distance closer than 
7.5 m. 

3.4.4 Situation Evaluation 

Eventually, the objects were divided into six groups 
according to their danger level. Each object then 
received a score from zero to five: zero – irrelevant in 
the current situation, and five – representing a critical 
level of danger in the current situation. To increase 
the importance of critical objects, the situation score 
was calculated as the sum of the squared scores of all 
the objects. 
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4 RESULTS 

4.1 Vehicle Data Modality 

The results of classification with 10-fold cross-
validation are shown in Figure 2. 

 
Figure 2: Classifier comparison - Mean accuracy. 

4.1.1 Random Forest Classifier 

Random Forest Classifier performed with the highest 
accuracy. Implementation of GridSearchCV 
algorithm achieved an accuracy score of 81.83%. 
However, the specificity of this model (66.95%, True 
Negatives = 640, False Positives = 316) was 
considered unacceptably low to predict a safety-
critical handover. 

Nevertheless, Random Forest Classifier provided 
useful insights into the impurity-based feature 
importance, or how much a single feature of the 
vehicle data set affected the result (see Figure 3). The 
presumed handover decision matrix (Table 1) could 
be confirmed with the obtained feature ranking: the 
values influencing the motion state of the vehicle 
were the most decisive for the accuracy of prediction. 

 
Figure 3: Feature importance revealed by Random Forest 
Classifier. 

From the bar chart in Figure 3, one can see that 
the feature importance values varied strongly. 
Furthermore, it is noticeable that the value 
direction_of_driving had an unusually high variance 
compared to the other features. Such variance 
resulted from the fact that the direction_of_driving 
feature in 1,609 cases was assigned as unknown, 
which made those values incorrect. The position of 
the three last-placed values can be explained by the 
fact that during the test drives not enough data were 
collected where these values were activated. 

4.1.2 Multilayer Perceptron (MLP) 
Classifier 

Since the specificity of the Random Forest Classifier 
was regarded as insufficient, it was necessary to 
consider another classification algorithm. MLP 
Classifier had a lower mean accuracy score than 
Gradient Boost Classifier in the overall ranking, but a 
lower standard deviation signaled higher robustness 
of the former. After applying GridSearchCV method 
for two different combinations of parameter grids and 
increasing the accuracy by 0.25% compared to the 
usage of the standard parameters, a final accuracy 
value of 80.31% was achieved. The specificity of this 
model reached 77.82% (see Figure 4), which was 
14.64%, greater than that obtained with Random 
Forest Classifier (see Figure 2). 

 
Figure 4: MLP Classifier confusion matrix. 

4.2 Traffic Objects Data Modality 

4.2.1 Position and Speed Features 

As mentioned above, the relative bearing is a circular 
variable and should not be treated linearly. Such 
attempts lead to losing the meaning of the values. 
Objects from the same cluster corresponded to a wide 
range of relative bearing values and could not be 
meaningfully interpreted. 

Sample visualizations of clusters obtained from 
Mean shift (nine clusters), K-Means (five clusters), 
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and hierarchical clustering with a circular variable (six 
clusters with both methods) applied on speed and 
position features suggested that the clusters could be 
described as having similar relative bearing features 
but not as having certain tendencies in terms of danger 
level so that the approach was not applied further. 

4.2.2 Time-to-Intersection Features 

According to visual analysis of dendrograms, the 
optimal number of clusters would be two. Such gross 
division, however, did not seem reasonable, 
considering the nature of the data. Thus, the number 

of clusters was selected as where the dendrogram was 
“cut” before going into finer clusters (the same 
principle was applied to hierarchical clustering with a 
circular variable). 

Visualization of the clustering results can be seen 
in Figure 5. Cluster evaluation from the empirical 
point of view suggested that the proposed clusters 
might lack the necessary granularity and symmetry. 
Machine learning algorithms provided, however, 
useful insights on how the data tended to be grouped 
naturally. 

 

 
Figure 5: Mean shift, K-Means, and hierarchical clustering applied on time to intersection features (data reduced to <= 20 s). 

 
Figure 6: Examples of situations with different danger scores/complexity.
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4.2.3 Manual Evaluation and Final Situation 
Evaluation 

Objects in the dangerous proximity zone were 
selected first. There were 319 such objects: 27 
pedestrians and 292 cars. Of 755 that were to undergo 
dangerous level analysis based on time to intersection 
features, 62 were excluded because they were already 
in the dangerous proximity zone (Danger Level 1). In 
total, 1,012 objects were considered relevant in terms 
of danger. These objects corresponded to 552 
situations. The number of participants per situation 
ranged from 1 to 10, M = 1.83, SD = 1.52. Excluding 
situations with zero danger, situation scores ranged 
from 1 to 143, M = 23.13, SD = 18.76. In 1,316 
situations (70.4% of all the obtained data) there were 
only objects with a danger Level of 0. Symbolic 
representations of situations with different danger 
scores/complexity can be seen in Figure 6. 

5 CONCLUSIONS 

We addressed the problem of a handover from 
automated to human control through the multimodal 
description and analysis of traffic situations. We have 
focused on two modalities, namely own vehicle state 
and detected traffic objects.  

Own vehicle state can be directly mapped on one 
of the two labels, “handover possible” or “handover 
not possible”. These binary labels assigned by a 
human rater have been used as ground truth for 
training a range of classification models. The mean 
accuracy of algorithms ranges from 65.7% to 81.4%, 
the highest accuracy obtained with Random Forest 
Classifier. Optimization of the algorithm allows to 
improve the accuracy to 81.8%, However, False 
negatives (algorithm attributes the handover as “not 
possible” while in truth it is possible) do not seem to 
have the same impact as False positives so the trade-
off should be made towards higher specificity. The 
specificity of the Random Forest Classifier model is 
67%, which is unacceptably low. With a slightly 
lower overall accuracy of 80.3%, MLP Classifier 
provides a significantly higher specificity of 77.8%, 
which is nevertheless still unacceptable for robust 
prediction of the handover. Balancing the dataset in 
terms of outcome labels and feature weighting is seen 
as the way to improve the performance of machine 
learning models. 

Traffic objects can be described in terms of their 
danger level, which cumulatively corresponds to the 
traffic situation complexity/danger score. Different 
combinations of features have been explored with the 

help of centroid-based and hierarchical clustering. 
When features include a circular variable (relative 
bearing), this feature seems to become dominant, 
while the others are not interpreted by algorithms in a 
way that could be explained in real life. Clustering on 
time-to-intersection features with machine learning 
algorithms does not result in desired granularity and 
cluster symmetry, therefore a manual approach was 
selected for grouping the data points. Almost 30% of 
the investigated situations have been evaluated as 
having a complexity/danger score higher than 0, with 
maximum complexity of 143. 

The possibility of the control handover is 
determined via a cascade approach. First, own state 
of the vehicle is assessed. In the current work, vehicle 
data are available at any time, whereas the data of 
detected objects (traffic situation data) are only 
available at certain intersections. When the own state 
of the vehicle allows the handover, the complexity of 
the situation based on traffic objects is evaluated. The 
higher the complexity, the more critical the 
requirement of sufficient transition time, making an 
immediate control handover not possible. Predicting 
situation complexity in time, setting thresholds for 
handover, and issuing corresponding warnings are the 
topics for further research.  

Limitations of the current study include the 
absence of information on the driver’s state and 
attention, and uniformity of weather conditions, as 
well as the lack of perceptive capability of the 
onboard vehicle sensors for obstacles on the road. 
Adding these modalities and exploring the decision-
making with fusion at different levels (e.g., feature 
fusion and modality fusion) are planned as the 
following steps. Bringing data analysis into real-time, 
while the vehicle is performing test routes, and 
exploring delays in data processing and the ways of 
minimizing them are also seen as one of the future 
research directions. 
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