
Quantitative Analysis to Find the Optimum Scale Range for Object
Representations in Remote Sensing Images

Rasna A. Amit a and C. Krishna Mohan b

Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India

Keywords: Dynamic Kernel, Gaussian Mixture Model, MAP Adaptation, Object Representations, Remote Sensing
Images, Scale Effect.

Abstract: Airport object surveillance using big data requires high temporal frequency remote sensing observations. How-
ever, the spatial heterogeneity and multi-scale, multi-resolution properties of images for airport surveillance
tasks have led to severe data discrepancies. Consequently, artificial intelligence and deep learning algorithms
suffer from accurate detections and effective scaling of remote sensing information. The quantification of
intra-pixel differences may be enhanced by employing non-linear estimating algorithms to reduce its impact.
An alternate strategy is to define scales that help minimize spatial and intra-pixel variability for various image
processing tasks. This paper aims to demonstrate the effect of scale and resolution on object representations
for airport surveillance using remote sensing images. In our method, we introduce dynamic kernel-based
representations that aid in adapting the spatial variability and identify the optimum scale range for object rep-
resentations for seamless airport surveillance. Airport images are captured at different spatial resolutions and
feature representations are learned using large Gaussian Mixture Models (GMM). The object classification is
done using a support vector machine and the optimum range is identified. Dynamic kernel GMMs can handle
the disparities due to scale variations and image capturing by effectively preserving the local structure infor-
mation, similarities, and changes in spatial contents globally for the same context. Our experiments indicate
that the classification performance is better when both the first and second-order statistics for the Gaussian
Mixture Models are used.

1 INTRODUCTION

Remote sensing technology has access to a large va-
riety of real-time spatial data and is also known for
its multi-scale multi-resolution properties that can be
used for varied surveillance applications. Due to its
rich information, these data are largely used to char-
acterize remote sensing images aiding in multiple im-
age processing tasks. These images, however, suf-
fer from two major problems: greater scale sensitiv-
ity and information loss at coarse spatial resolutions.
Hence, the need for enhancing feature representations
and characterization of these images.

Scale sensitivity phenomena can be classified into
scaling-effect and zoning-effect problems. Scale ef-
fects refer to the use of coarser or finer analysis units
and zonal effects refer to the case of the problem by
the division of the geographical area under study that
may or may not be at the same spatial scale. The size
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of the units in spatial analysis directly determines the
amount of information that needs to be included in
the analysis, hence creating a scale effect. In gen-
eral, scale is considered a function of resolution with
a dependency on land-surface parameters and is con-
sidered a ‘basic problem in Geomorphometry’.

While most studies consider multi-scale multi-
resolution models, the extraction of spatial patterns
continues to rely on the single scale or single res-
olution. For example, standard grid sizes are used
for most urban-oriented studies, where the sizes vary
from 0.125m to 1m. Hence, selecting an appropriate
scale when examining big data(geo-data) is deemed a
challenge. Thus, scale sensitivity has been identified
as a major challenge for object classification and de-
tection for airport surveillance using remote sensing
images.

Many researchers have confirmed the scale de-
pendency of land-surface parameters and land-surface
objects extensively in their works. Therefore, the fac-
tor of scale and resolution play a critical role in the
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use of digital models. Also, the examination of the
characteristics mainly the changing pattern as a func-
tion of scale and resolution is deemed critical for the
study of images with an appropriate spatial resolution.

The high dimensional characteristics of remote
sensing images introduce data variability and hence
information loss. Hence, different feature represen-
tations are required to efficiently represent this data.
Furthermore, due to the scarcity in the availability of
labeled data for airport surveillance, a robust method-
ology is required to eliminate noise in the observa-
tions. Factors like, the proximity of objects due to
the arbitrary distributions, visual similarity between
structures, and the number of objects contribute ma-
jorly to the data variability in remote sensing im-
ages. Thus, requires enhanced techniques to tackle
data variability. Non-uniform imaging environments
also continue to increase the complexity of image-
processing tasks.

It is observed that there is insufficient research on
the quantification of images based on spatial hetero-
geneity and multi-scale multi-resolution. Therefore, it
is crucial to identify approaches to enhance the selec-
tion of spatial scale for analyzing and differentiating
aggregated data.

In the area of deep learning, a variety of convolu-
tional neural networks (CNN) have aided in deep fea-
ture extractions to study the data variability in depth.
The performance of image processing tasks have no-
tably enhanced with the introduction of CNN’s, which
allows for model transferability and generalizations to
describe the local semantics of an image. Although
various qualitative assessments are widely used for
performing remote sensing image processing, these
rely heavily on scale sensitivity and expert knowl-
edge for accurate and precise object representations.
Therefore, the goal of our research is to develop a
generic model applying different dynamic kernels.
Furthermore, these models are designed to aid in
quantitative assessments that help in determining the
optimum scale range for object representations in re-
mote sensing images. Kernel methods effectively pre-
serve both the local and global structure in addition to
handling high variations in patterns.

Researchers have proposed multiple kernel meth-
ods like the Base kernel function in dynamic kernels
to enable similarity index measurement by calculating
the proximity of the local features in an image. The
posterior probability of local features corresponding
to Gaussian Mixture Models (GMM) is calculated in
the probability-based kernels. Kernel computations in
matching base kernels restrain themselves to include
features that are analogous to the mean of the GMM
ensuring the retention of spatial patterns.

Taking inspiration from both deep learning tech-
niques and machine learning methods, we propose a
learning method to address the data variability and
scale sensitivity in remote sensing images. Our ap-
proach consists of two critical phases – feature ex-
traction and model training. Local features are ex-
tracted using CNN and then we train these features
using a universal GMM. Both the local and global at-
tributes are learned using the kernels for better repre-
sentations. The variability in spatial patterns is han-
dled by dynamic kernels. The similarity index is then
calculated using the means of GMM and the distance
between features in the images.

It is observed the use of kernel methods allows for
combining different feature entities and dimensions
to account for high dimensional data. Kernel methods
achieve a better separability by projecting distances to
higher dimensions, however, are identified to be most
suitable for fixed-length pattern handling. This con-
strains the comparison between two images contain-
ing a varying number of local features. Hence, dy-
namic kernels are used in our approach which enables
the transformation and assimilation of spatial variabil-
ity in images.

The major contributions of the paper is as follows:

1. A generic Gaussian Mixture Model (GMM) is
trained to learn the scale effect using three differ-
ent scale views and objects from remote sensing
images for better evaluation of scale sensitivity for
learning representations.

2. Dynamic kernels are introduced to handle varia-
tions across scales and resolutions. The global
variations are captured to preserve local structures
while managing the spatial variability in object
patterns.

3. The efficacy is demonstrated on a custom dataset
that is developed using :

(a) NWPU-RESIC45 (Cheng et al., 2017) – six
classes, namely, airplane, building, freeway,
parking lot, runway, and vehicles are consid-
ered. The spatial resolution of the images
ranges from 0.2m to 30m.

(b) Images captured from GoogleEarth™ for six
object classes, namely, airplane, building, free-
way, parking lot, runway, and vehicles. The
images are captured at three different scales /
resolutions –

i. SS05 subset dataset - Scale - 1:500; Spatial
Resolution : 0.125m

ii. SS10 subset dataset - Scale - 1:1000; Spatial
Resolution : 0.25m

iii. SS20 subset dataset - Scale - 1:2000; Spatial
Resolution : 0.5m
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The remainder of this paper is organized as fol-
lows: the related research works on scale effects on
remote images, classification tasks, and dynamic ker-
nels are summarized in Section 2. The Section 3 de-
scribes the proposed approach to classify and iden-
tify the optimum range of object representations in
remote sensing images using dynamic kernels. The
experimental results along with the analysis are sum-
marized in the Section 4. In Section 5 we provide the
conclusion and future works of this paper.

2 RELATED WORKS

This section details about the existing works on image
classifications, dynamic kernels usage in remote sens-
ing image processing, and scale-effect analysis on re-
mote sensing images in general and in the context of
airport object representations.

2.1 Object Classifications in Remote
Sensing Images

The initial research on object representation using re-
mote sensing images indicates the handcrafted tech-
niques to extract multi-level (low, mid, and high) fea-
tures for object classifications.

Early works (Pi et al., 2003; Jackson et al.,
2015; Cheng et al., 2017; Burghouts and Geusebroek,
2009; Geusebroek et al., 2001; Van De Sande et al.,
2009) used handcrafted methods focusing on geomet-
ric characteristics, namely, shape, color, edge and
boundary, texture, and structural information. The
studies also indicate the use of statistical features,
namely, variances, means, intensity, etc., to extract
low-level features. These methods predominantly
used local features and to some extent global features,
however, local properties could not be encoded com-
pletely.

Later works (Yang and Newsam, 2008; Cheng
et al., 2015a; Cheng et al., 2014; Cheng et al.,
2015b; Cheng et al., 2015c) discuss the use of scale-
invariant transform features, histogram of oriented
gradients (HOG) features, and explored various rep-
resentations. In more recent years, convolutional neu-
ral networks (CNN) is used for effective image clas-
sifications. These methods (Cheng et al., 2018; Ak-
bar et al., 2019; He et al., 2018; Nogueira et al.,
2017; Sitaula et al., 2020) allow for the extraction
of low, mid, and high-level features providing a bet-
ter representation of objects/scenes in remote sensing
images. They also provide better generalization and
transferability. However, we observe that there has

been negligible work in object representation for air-
port surveillance. These methods allow to preserve
the spatial information but fail to provide better dis-
crimination during the training process.

2.2 Dynamic Kernels Usage in Remote
Sensing Images

In recent years, we have observed the introduction of
dynamic kernels in audio, image, video, and speech
analysis in various domains. The dynamic kernels due
to their ability to represent variable length patterns
to fixed length patterns allow for better discrimina-
tion of data. An intermediate matching kernel (IMK)
(Boughorbel et al., 2005) is developed to reduce com-
putational complexity. A set of virtual feature vec-
tors are used to obtain the nearest local feature vec-
tor. Methods like Gaussian densities are used to con-
struct probabilistic sequence kernels and similarities
are derived using distance-based measures (Lee et al.,
2007; You et al., 2009). A universal background
model is generated that models the features from var-
ious inputs and is trained. A mean super vector model
is created that adapts the means and covariances of the
universal model thus creating a kernel function. This
kernel function called Gaussian means interval kernel
(MIK) along with a support vector machine aids in the
classification tasks.

These models are based on Gaussian mixture
models and are deemed to be highly effective. More
recently, (Datla et al., 2021) discusses the use of dy-
namic kernels for scene classifications using various
dynamic kernel methods and support vector machine
(SVM).

2.3 Scale-Effect Analysis in Remote
Sensing Images

Early research has used several representative meth-
ods for scale effect analysis on remote sens-
ing images, such as, Geographic variance method
(GVM) (Moellering and Tobler, 1972), Wavelet trans-
form method (WTM) (Pelgrum, 2000), Local vari-
ance method (LVM) (Woodcock and Strahler, 1987),
Semi-variograms methods (Artan et al., 2000; Wack-
ernagel, 1996; Garrigues et al., 2006), and Fractal
methods. However, these methods relied on relative
variability, strict dimensions for data sets, dependen-
cies on mother wavelets, a global variance of images,
etc. They introduce difficulties in comparing local
variances and depends heavily on second-order hy-
pothesis as well as irregularities of an object.

In later years, (Ming et al., 2015) in their work
proposes scale selection based on spatial statistics
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for Geo-Object-Based Image Analysis(GEOBIA), us-
ing average local variance graph to replace semi-
variograms to pre-estimate the optimal spatial band-
width using segmentation. Average local variograms
are suitable for local information extraction and fail
to capture information from complex nested struc-
tures or scenes. These tasks are based on segmenta-
tion techniques and hence computationally expensive.
Also, enhancements of algorithms to multi-spectral
images become challenging.

From the existing literature, we observe that most
of the research focused on classification tasks, scale-
effect analysis, and/or dynamic kernel analysis in var-
ied domains. There is limited work in airport ob-
ject representations using one or a combination of the
above-mentioned methods.

3 PROPOSED METHOD

In this section, we detail the proposed approach for
identifying the optimum scale range for object rep-
resentations in remote sensing images that will aid
in better surveillance decision-making. Airport im-
ages are captured at different spatial resolutions and
feature representations are learned using large Gaus-
sian Mixture models (GMM). Dynamic kernel GMMs
can handle the disparities due to scale variations
and image capturing by effectively preserving the
local structure information. These kernels are de-
signed for varying length patterns extracted from im-
age data that correspond to sets of local feature vec-
tors. The entire process can be described in Fig-
ure 1 and consists of various stages, namely, data
pre-processing feature extraction, Gaussian mixture
model training and adaptation, feature representations
using dynamic kernels, classification, and finally op-
timum scale range analysis.

3.1 Data Processing and Feature
Extraction

One of the challenging areas for the application of
computer vision-based algorithms to remote sensing
images is scale variability. In our proposed method,
images are obtained at various scales ranging from
1:500 to 1:2000 with a spatial resolution of 0.125m
to 0.5m. Each of these images is resized to a one-
size of 640×640 pixels. In addition, we introduce
zero padding at the top/bottom or left/right for all non-
square images to support batch processing and main-
tain aspect ratios.

The limited availability and the hyperspectral na-
ture of remote sensing images make them statistically

different from natural images, and hence difficult to
extract relevant features for training. Based on recent
advancements, the dataset is further enhanced using
both transfer learning and data augmentation tech-
niques. The images undergo color variations, hori-
zontal flips, random θ rotation, resizing, translations,
and vertical flips. We use convolutional neural net-
works to extract multi-level (low, mid, and high) fea-
tures from remote sensing images along with trans-
fer learning by fine-tuning the layers with pre-trained
convolutional neural network models. Thus, enabling
learning of generic features like those extracted us-
ing edge or line detectors. These features are fed to
the Gaussian mixture model in the training phase to
compute various statistics that allow for a quantitative
evaluation of the geographical variability.

3.2 Training the Gaussian Mixture
Model (GMM)

The features extracted from the convolutional neural
networks are used to train the Gaussian mixture model
(GMM). Given an image, each sample of the image
can be represented as I, the set of feature vectors are
represented as i1, i2, i3. . . iN , where N is the total num-
ber of local features extracted for the given image I.
The Gaussian mixture parameters is determined based
on the probability of occurrence of the latent variable
z, and can be defined as in Eqn. (1), which is actually
equivalent to mixing the coefficient for that Gaussian.

πk = p(zk = 1) (1)

The likelihood of the particular feature in gener-
ated from the GMM model for z = {z1,z2, ...,zK} is
given by Eqn. (2)

p(in) =
K

∑
k=1

p(in|z)p(z) =
K

∑
k=1

πkN (in|µk,Σk) (2)

where, k indicates each of the GMM component,
K is the total number of GMM components, µk,σk
represents the mean and the covariance respectively.
The Gaussian mixture weights is given by πk that sat-
isfies the constraint ∑

K
k=1 πk = 1. The optimal values

are determined using the Expectation-Maximization
algorithm, which is an iterative method to identify
the parameters θ = {π, µ, Σ} for fitting the mixture
of Gaussian models generated.

The Expectation-Maximization algorithm can be
divided into 2 steps, namely, the E-step and the M-
Step. In the Expectation step, we initialize and con-
tinue to estimate the value of missing variables by cal-
culating the probability of the data point in belonging
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Figure 1: Block diagram for the proposed method to find the optimum scale range for object representations using dynamic
kernels for Airport surveillance.

to distribution z. In the Maximization step, the pa-
rameters θ is updated using the values estimated in
the previous step.

The attributes and the variances in the spatial pat-
terns are captured in the Gaussian components after
the training phase. This helps in comparing the dif-
ferent images improving intra-class variability. Each
of the feature vectors in is aligned to the kth compo-
nent of the Gaussian mixture model using the poste-
rior probabilities and is defined as in Eqn. (3).

p(k|in) =
πk p(in|k)

∑
K
k=1 πk p(in|k)

(3)

The maximum aposteriori (MAP) adaptation
helps in generating multiple dynamic kernel-based
representations, that can efficiently represent each of
the images. These representations are further detailed
in the subsequent sections.

3.3 Feature Representations Using
Dynamic Kernels

Identifying the right kernel function for feature rep-
resentations is critical to obtain a good performance.
In the earlier days, multiple kernel functions are de-
veloped for the static or fixed-length pattern. In recent
years, researchers have discussed the dynamic kernels
built to address variable length patterns by designing a
new kernel function or converting the variable length
to fixed length patterns. In this section, we detail the
various dynamic kernel functions that effectively pre-
serve both local and global information for better fea-
ture representations.

3.3.1 Mapping Based Dynamic Kernel

This method uses a Gaussian mixture model-based
likelihood to explicitly map a set of variable length
representations onto a fixed dimensional representa-
tion. To obtain the maximum likelihood estimate of
the parameter θ, we calculate the derivative or gradi-
ent of the log-likelihood function defined in Eqn. (3)
for a given image I. The first derivatives of mean,
covariance, and weight parameters are defined as in
Eqn. (4), Eqn. (5), and Eqn. (6), respectively.

ψ
(µ)
k (I) =

J

∑
j=1

p(k|i j)r jk, (4)

ψ
(σ)
k (I) =

1
2

(
J

∑
j=1

p(k|i j)
[
−(xk)+y jk

])
, (5)

ψ
(π)
k (I) =

J

∑
j=1

p(k|i j)

[
1
πk

−
p(k1|i j)

π1 p(k|i j)

]
(6)

where,
r jk = ∑

−1
k (i j − µk), xk = ∑

−1
k , y jk =

[r j1krT
jk,r j2krT

jk, ...,r jdkrT
jdk] for any d × d ma-

trix A with elements ai j, i, j = 1,2, ...,d and
vec(A) = [a11,a12, ...,add ].

The Eqn. (4), Eqn. (5), and Eqn. (6) determines
the direction of the parameters (µ, σ, π). These gra-
dients are updated to obtain the best fit of the model.
The gradients capture the deviations introduced in the
objects due to spatial variability. The Fisher score
vector, which is the fixed dimensional feature vec-
tor is computed by stacking the gradients from the
Eqn. (4), Eqn. (5), and Eqn. (6).
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φk(I) =
[
ψ
(µ)
k (I)T ,ψ

(σ)
k (I)T ,ψ

(π)
k (I)T

]T
(7)

The Fisher score vector, for all the K components
of the GMM for a given space s, is given by the
Eqn. (8).

φs(I) =
[
φ1(I)T

φ2(I)T
φK(I)T ]T (8)

The similarities between the two samples Iu and
Iv with given local features, is captured by the Fisher
score vector and the kernel function is given by the
Eqn. (9).

KFK(Iu,Iv) = φs(Iu)
T F−1

φs(Iv) (9)

where F is the Fisher information matrix which
is the covariance in the Mahanolibis distance and is
given by the Eqn. (10).

F =
1
D

D

∑
d=1

φs(Id)φs(Id)
T (10)

The spatial variability between two image samples
is captured in the Fisher information matrix. Fisher
score and Fisher information matrix, thus capture
both the local and global information in the Fisher
kernel computation. However, the Fisher Kernel ap-
proach is computationally expensive.

3.3.2 Probability Based Kernel Functions

The probability-based kernel functions compare the
probability distribution of the local feature vectors
of two images. In this method, the set of variable
length local feature representations are mapped onto
fixed dimensional feature representations in the kernel
space using the probabilities. The maximum aposte-
rior (MAP) adaptation of mean and covariances are
calculated as given in the Eqn. (11a) and Eqn. (11b),
respectively.

µk(I) = αFk +(1−α)µk, (11a)

σk(I) = αSk(I)+(1−α)σk (11b)

where Fk and Sk are the first and second-order Baum-
Welch statistics for an image I, respectively, and is
calculated as in Eqn. (12a) and Eqn. (12b), respec-
tively.

Fk(I) =
1

mk(I)

M

∑
m=1

p(k|im)im, (12a)

Sk(I) = diag

(
M

∑
m=1

p(k|im)imiTm)

)
(12b)

The posterior probabilities of the given GMM
component for each of the image samples are deter-
mined by the adapted mean and covariance. It is also
observed that the posterior probabilities are directly
dependent on the adapted mean and covariance, im-
plying, that the higher the probability higher is the
correlation among the features captured in the GMM
components. Thus, indicating that the adapted mean
and covariances have a higher impact than the original
full GMM mean and covariance. We further derive
the GMM vector ψk(I) for an image I as in Eqn. (13).

ψk(I) =
[
√

πkσ
−1
2

k µk(I)
]T

(13)

The GMM super vector (GMM-SV) and the su-
per vector kernel Ssvk(I) and Ksvk(Iu,Iy) as defined
in Eqn. (14a) and Eqn. (14b), respectively, is obtained
by stacking the GMM vector for each component. We
obtain a supervector of Kd×1 dimension that utilizes
the first order adaptations.

Ssvk(I) =
[
ψ1(I)T ,ψ2(I)T , ...,ψK(I)T ]T , (14a)

KSV K(Iu,Iv) = Ssvk(Iu)
T Ssvk(Iv) (14b)

In the super vector kernel method, we only utilize
first order statistics of the GMM. To obtain the mean
interval vector for every component k of the GMM,
the second order statistics and the adapted means is
used as in Eqn. (15a). This help determine the statis-
tical dissimilarities between the mean and covariance
of the mean interval vector. The GMM mean interval
supervector is created by combining the mean inter-
val vectors across GMM mixtures Smik and the asso-
ciated GMM mean interval kernel KMIK between two
images Iu and Iv and is as given by Eqn. (15b) and
Eqn. (15c), respectively.

ψk(I) =
(

σk(I)−σk

2

)−1
2
(µk(I)−µk) (15a)

Smik(I) =
[
ψ1(I)T ,ψ2(I)T , ...ψK(I)T ]T (15b)

KMIK(Iu,Iy) = Smik(Iu)
T Smik(Iv) (15c)

3.3.3 Matching Based Kernel Functions

The mapping-based and probability-based kernel
methods are based on mapping the feature represen-
tations from a variable to a fixed length. An alternate
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method to handle variable data lengths also known as
matching-based kernels is introduced in this section.
In this method, a pair of images is matched using their
local features (Datla et al., 2021) vectors. We use an
intermediate matching kernel (IMK) function that is
calculated using both the local feature vector and the
virtual feature vector. The virtual feature vectors are
obtained using the training data and are the closest
match to a set of local features. The feature vectors
i∗ul and i∗vl in Iu and Iv closest to the lth virtual feature
vector ql is given by the Eqn. (16).

i∗ul = arg min
i∈Iu

D (i,ql) and i∗vl = arg min
i∈Iv

D (i,ql)

(16)
where Q = {q1,q2, ...qL} represents the virtual

feature vectors and D (., .) measures the distance be-
tween the feature vectors Iu or Iv from the nearest fea-
ture vector in Q. The distance function helps in identi-
fying the closest matching point and hence the spatial
distance learned from one image to another, which is
captured by the GMM components. The kernel func-
tion KIMK is given by Eqn. (17).

KIMK (Iu,Iv) =
L

∑
l=1

k (iul , ivl) (17)

The set of virtual feature vectors also includes the
mean, covariance, and the weights. The posterior
probability of the GMM component determines the
distance, thus computing the virtual feature vectors
i∗ul and i∗vl for a given l for the image samples Iu or Iv
as in Eqn. (18).

i∗ul = arg max
i∈Iu

p(l|i) and i∗vl = arg max
i∈Iv

p(l|i) (18)

3.4 Classification and Optimum Scale
Range Analysis

In the next phase, we implement the Support Vector
Machine (SVM) for the classification task, for each
of the dynamic kernels. The support vector algo-
rithm helps determine a hyperplane between differ-
ent classes. Based on the dynamic kernel function
selected, we maximize the separation boundaries be-
tween the data points. For multi-class classification,
we use the one vs. all approach to find the hyperplane
to separate the classes. We use N support vector ma-
chines to classify data points from N class data sets.
For R training samples (Ir,yr)

R
r=1, where the label for

a particular class is represented by yr and the discrim-
inant function is given by the Eqn. (19),

f (I) =
R

∑
r=1

α
∗
r yrKDK(I, Ir)+bias∗ (19)

where Rs represents the number of support vec-
tors, the optimal values of the Lagrangian coefficient
is given by α∗ and bias∗ represents the optimal bias.
The class of I is determined by the sign of the func-
tion f . The 10-fold cross-validation helps discrimi-
nate the sample of the particular class against all other
classes. Further, we determine the correlation values
for various classes at different spatial distances. This
helps determine optimal range for the object represen-
tations.

4 EXPERIMENTAL RESULTS
AND ANALYSIS

The objective of our method is to identify the opti-
mum scale range for object representations that aids
in better airport surveillance. In this section, we dis-
cuss in detail the experimental results of applying
various dynamic kernel functions, namely, mapping
based, probability based and matching based kernels
on our custom dataset.

4.1 Datasets and Environmental Setup

Vision-based airport surveillance is challenging due
to non-availability of appropriate datasets. The com-
monly available remote sensing dataset is the NWPU-
RESISC45 (Cheng et al., 2017) that is design for the
classification tasks. This dataset consists of 45 scenes
with a mix of 31,500 images with spatial range of
0.2m to 30m. The images are sized to 256×256 pix-
els each. These images fail to provide the relevant
statistics based on the spatial distance.

Therefore, a custom dataset is developed by
capturing images from NWPU-RESISC45 (Cheng
et al., 2017), different public repositories and
from GoogleEarth™ at different spatial resolutions -
0.125m (Scale - 1:500), 0.25m (Scale - 1:1000), and
0.5m (Scale - 1:2000) to obtain a realistic view of the
dataset. The final airport object dataset is created with
six object categories, namely, vehicles, airplanes, run-
way, building, freeway, and parking lot.

The sample dataset is as shown in Figure 2. The
objects of interest are labeled using the polygon anno-
tation. A bounding box (x1,y1,x2,y2) is drawn using
the polygon points where (x1,y1) and (x2,y2) repre-
sents the top-left and bottom-right coordinates using
manual process and AI-enabled annotation tool.

The model is implemented using an NVIDIA
GeForce RTX 2060 Super EX (1-Click OC) with
CUDA cores 2176 and an 8GB GDDR6 256-bit
DP/HDMI. The proposed method is developed using
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(a) SS05: Spatial Resolution - 0.125m.

(b) SS10: Spatial Resolution - 0.25m.

(c) SS20: Spatial Resolution - 0.5m.

Figure 2: Airport Object Dataset: (a) SS05 : Spatial Reso-
lution - 0.125m (b) SS10 : Spatial Resolution - 0.25m (c)
SS20: Spatial Resolution - 0.5m.

open-source frameworks Keras, OpenCV, and Tensor-
Flow.

We use different convolutional features of vari-
ous convolutional neural networks (CNNs), namely,
AlexNet (Krizhevsky et al., ), GoogLeNet (Szegedy
et al., 2015), VGGNet-16 (Simonyan and Zisserman,
2014), DenseNet-121 (Huang et al., 2017), ResNet-
50 (He et al., 2016), and EfficientNet-B0 (Tan and Le,
2019) as shown in Table 1 for extraction of both lo-
cal and global feature vectors for GMM training. We
train a total of 24 GMMs, i.e, features from six convo-
lutional neural network models for four mixtures on
three dataset combinations from the custom dataset.

Table 1: Feature map sizes of various CNN Architectures
used for object representation modeling.

Architecture Feature Layer Feature Map Size

AlexNet conv5 13×13×256

GoogLeNet inception 4(e) 14×14×832

VGGNet-16 block5 conv3 13×13×256

DenseNet-121 conv4 block16 7×7×1024

ResNet-50 conv5 block4 7×7×2048

EfficientNet-B0 top conv 7×7×1280

4.2 Dynamic Kernel Evaluations

The performance of various dynamic kernels on our
custom dataset that is distributed based on the spatial
resolutions 1:500, 1:1000, and 1:2000 is as shown in
Table 2, Table 3, and Table 4, respectively. The clas-
sification performance is evaluated using support vec-
tor machine. The experimental results indicate that
the performance is best observed with the features ex-
tracted using EfficientNet-B0 followed by ResNet-50
and DenseNet-121 for different GMM mixtures and
datasets. We also observe that as the number of com-
ponents increases, the accuracy comes to a close satu-
ration. As shown in the Table 2, Table 3, and Table 4,
for a GMM mixture with 128 components, the accu-
racy is less as compared to that of 64 component. The
results also indicate that classification performance
is better with supervector kernels (GMM-SVK) and
mean interval kernels (GMM-MIK) compared to the
fisher kernel (GMM-FK) and intermediate matching
kernel (GMM-IMK).

4.3 Scale Effect Analysis

The scale-effect analysis is evaluated by measuring
the Pearson correlation coefficient. The input features
provide insight into the relationships between differ-
ent object classes for each of the subset datasets SS05,
SS10, and SS20.

SS05 dataset: The best classification accuracy of
96.89% is achieved for 128 components using GMM-
MIK as shown in Table 2. From the Figure 3a, at a
scale of 0.125m, we observe the following:

• High correlation between freeway and runways,

• Vehicles have a high correlation with buildings
and parking lots.

• Airplanes are best classified at this range due to
low correlations.

SS10 dataset: The best classification accuracy of
97.65% is achieved for 64 components using GMM
-MIK as shown in Table 3. From Figure 3b, at a scale
of 0.25m, we observe that all objects are less corre-
lated and better classified.

SS20 dataset:The best classification accuracy of
95.32% is achieved for 64 components using GMM-
MIK as shown in Table 4. From Figure 3c, at a scale
of 0.5m, we observe that there is at least one pair of
objects highly correlated which makes the classifica-
tion tasks difficult to achieve.
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Table 2: Classification accuracy (%) of various GMMS- GMM-FK, GMM-SVK, GMM-MIK, GMM-IMK over GMM mix-
tures on SS05 subset dataset.

CNN
Model AlexNet GoogLeNet VGGNet-16 DenseNet-121 ResNet-50 EfficientNet-50

GMM -FK
#

GMM
Mixtures

16 45.42 48.21 47.63 51.28 40.53 44.32
32 48.34 48.18 48.72 54.63 51.74 55.45
64 47.91 48.61 49.51 53.45 52.87 56.73
128 47.66 48.98 49.45 52.55 51.46 54.83

GMM -SVK
#

GMM
Mixtures

16 81.65 82.47 88.69 90.35 94.27 95.32
32 82.41 83.49 88.72 94.53 95.43 96.37
64 84.32 86.33 89.25 94.82 95.65 95.41
128 84.66 87.29 89.86 96.76 95.23 96.34

GMM -MIK
#

GMM
Mixtures

16 78.26 80.24 81.23 91.92 93.43 94.56
32 79.32 79.27 83.46 88.72 92.35 96.73
64 79.17 81.54 83.91 94.97 95.27 95.23
128 78.93 82.34 82.68 93.28 95.66 96.89

GMM -IMK
#

GMM
Mixtures

16 62.57 67.14 69.23 74.18 66.17 75.12
32 62.49 69.2 69.56 75.22 75.67 76.45
64 64.18 69.46 69.64 74.76 76.34 77.45
128 66.62 68.87 69.25 75.33 76.2 77.28

Table 3: Classification accuracy (%) of various GMMS- GMM-FK, GMM-SVK, GMM-MIK, GMM-IMK over GMM mix-
tures on SS10 subset dataset.

CNN
Model AlexNet GoogLeNet VGGNet-16 DenseNet-121 ResNet-50 EfficientNet-50

GMM -FK
#

GMM
Mixtures

16 47.35 51.76 52.63 52.35 51.33 55.21
32 47.76 53.23 51.25 63.43 61.65 65.78
64 46.34 51.34 52.45 64.57 63.56 66.24
128 48.66 52.54 51.23 64.23 62.49 65.32

GMM -SVK
#

GMM
Mixtures

16 77.26 83.36 83.56 92.23 94.76 95.12
32 78.87 81.34 81.56 94.34 93.67 95.45
64 78.32 82.75 82.78 94.23 94.98 96.89
128 79.24 83.24 83.23 93.22 94.32 96.32

GMM -MIK
#

GMM
Mixtures

16 80.34 86.56 87.54 91.76 95.19 95.32
32 82.67 85.45 87.65 92.99 94.8 97.32
64 83.87 85.65 88.34 95.87 95.34 97.65
128 83.44 87.65 87.25 95.92 95.67 95.36

GMM -IMK
#

GMM
Mixtures

16 66.36 65.56 68.65 75.43 75.34 75.33
32 69.39 68.56 67.34 76.34 76.36 76.76
64 68.38 69.34 66.78 76.23 77.1 77.98
128 67.56 69.34 68.43 76.76 77.14 77.65

Table 4: Classification accuracy (%) of various GMMS- GMM-FK, GMM-SVK, GMM-MIK, GMM-IMK over GMM mix-
tures on SS20 subset dataset.

CNN
Model AlexNet GoogLeNet VGGNet-16 DenseNet-121 ResNet-50 EfficientNet-50

GMM -FK
#

GMM
Mixtures

16 45.35 47.62 47.12 51.33 58.45 59.23
32 48.77 57.92 57.34 52.34 59.25 59.43
64 49.54 47.45 48.34 51.76 58.14 53.42
128 40.23 47.87 48.23 53.34 52.45 51.78

GMM -SVK
#

GMM
Mixtures

16 76.65 79.35 79.13 83.16 89.98 93.87
32 78.24 80.23 80.21 84.33 90.24 94.23
64 76.33 80.87 81.22 85.45 91.34 94.85
128 76.65 84.32 81.45 86.13 92.42 94.44

GMM -MIK
#

GMM
Mixtures

16 79.82 83.56 83.32 85.66 92.32 95.28
32 80.34 84.21 84.55 85.34 93.56 95.18
64 81.52 85.43 84.78 86.67 93.38 95.32
128 80.11 85.92 85.34 86.89 94.56 95.28

GMM -IMK
#

GMM
Mixtures

16 66.54 76.23 73.34 76.54 85.87 85.43
32 68.65 75.36 73.67 76.78 85.92 85.16
64 69.32 75.32 74.34 77.43 85.45 86.56
128 69.45 75.56 74.87 77.29 86.34 84.29
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(a) SS05 subset dataset. (b) SS10 subset dataset. (c) SS20 subset dataset.

Figure 3: Correlation matrix of GMM-MIK for (a) SS05 subset dataset (b) SS10 subset dataset (c) SS20 subset dataset.

5 CONCLUSIONS

In this work, we introduce the use of dynamic ker-
nels to find the optimum scale range for object repre-
sentations in remote-sensing images. For this, we ex-
ploit multiple dynamic kernels, namely, Fisher Kernel
(GMM-FK), Intermediate Matching Kernel (GMM-
IMK), Mean Interval Kernel (GMM-MIK), and Su-
per Vector Kernel (GMM-SVK) methods. The scale
effect analysis is evaluated using the first- and second-
order statistics of the Gaussian mixture model. The
Gaussian mixture models allow capturing spatial and
object variability while continuing to preserve the
global variance. Our analysis indicates that the mean
interval kernel method (GMM-MIK) is most suitable
for the classification task. We introduce a custom
dataset consisting of images at different spatial ranges
to evaluate the performance of our method. In the fu-
ture, the method needs to be optimized to find a closer
range of optimum values for object representations.
The method also needs to be expanded to evaluate ad-
ditional object classes to reflect the real-time environ-
ment.
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