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Abstract: The advent of machine learning provided numerous benefits to humankind, impacting fields such as medicine,
military, and entertainment, to cite a few. In most cases, given some instances from a previously known
domain, the intelligent algorithm is encharged of predicting a label that categorizes such samples in some
learned context. Among several techniques capable of accomplishing such classification tasks, one may refer
to Support Vector Machines, Neural Networks, or graph-based classifiers, such as the Optimum-Path Forest
(OPF). Even though such a paradigm satisfies a wide sort of problems, others require the predicted class
label and the classifier’s confidence, i.e., how sure the model is while attributing labels. Recently, an OPF-
based variant was proposed to tackle this problem, i.e., the Probabilistic Optimum-Path Forest. Despite its
satisfactory results over a considerable number of datasets, it was conceived to deal with binary classification
only, thus lacking in the context of multi-class problems. Therefore, this paper proposes the Multi-Class
Probabilistic Optimum-Path Forest, an extension designed to outdraw limitations observed in the standard
Probabilistic OPF.

1 INTRODUCTION

Machine learning-based approaches became essential
in the twenty-first century’s daily life, impacting in
trivial tasks such as movie recommendations, as well
as complex ones, such as safety and health condition
predictions, among others. In general, most of these
techniques learn patterns from data and assign each
compounding sample a label, thus classifying them
as a member of a specific group.

Despite the aforementioned paradigm, several
problems demand a different approach concerning the
classification procedure. Consider, for instance, an
automotive insurance company computing the risks
associated with each customer profile (Apte et al.,
1999). In this scenario, a specialist usually consid-
ers the driver’s age, gender, vehicle price, vehicle
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age, among others (Huang and Meng, 2019), to es-
timate the probabilities of theft and accidents, thus
implying in the final price charged by the company.
A common alternative to undertaking such problems
engages probabilistic models, which returns a real-
valued number denoting the degree of confidence or
probability of an event.

Different solutions may include Bayesian ap-
proaches, whose inference mechanism is based on a
stream of probabilities, and watershed-based models,
such as the Probabilistic Watershed (Sanmartin et al.,
2019), which considers all possible spanning forests
in a graph to compute the probability of connecting a
particular seed to a node. Besides, one can consider
extending traditional classifiers to create probabilistic
models, e.g., the probabilistic Nearest Neighbor (Ma
et al., 2020) and the probabilistic Support Vector Ma-
chines (SVM) (Platt, 1999).

Considering traditional classification techniques,
a graph-based approach called Optimum-Path For-
est (OPF) (Papa et al., 2009; Papa et al., 2012) ob-
tained notorious relevance in the last years due to its
outstanding results in a wide range of applications,

Fernandes, S., Passos, L., Jodas, D., Akio, M., Souza, A. and Papa, J.
A Multi-Class Probabilistic Optimum-Path Forest.
DOI: 10.5220/0011597700003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP, pages
361-368
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

361



such as anomaly detection, data oversampling, and
medical issues, to cite a few. In short, the OPF is
a graph-based framework developed to tackle super-
vised (Papa et al., 2009; Papa et al., 2017) and unsu-
pervised (Rocha et al., 2009) classification problems,
among others. Contextualizing with pertinency-based
methods, Souza et. al (Souza et al., 2019) proposed
the Fuzzy OPF, a variant that considers each sam-
ple’s membership while computing its predicted la-
bel. Besides, Fernandes et. al (Fernandes et al., 2018)
proposed an OPF extension to deal with probabilis-
tic classification problems, the so-called Probabilistic
Optimum-Path Forest.

The Probabilistic OPF extends the “Platt Scaling”
concept (Platt, 1999) to the context of the Optimum-
Path Forest classifier. In a nutshell, the variant consid-
ers the cost assigned to each sample during OPF train-
ing and classification steps to approximate the poste-
rior class probability distribution. Even though ex-
periments conducted over distinct scenarios demon-
strated that the algorithm is suitable to attack several
problems, they regard to binary classification tasks
only.

Therefore, this paper proposes two main contri-
butions to address such a drawback: (i) to propose
the Multi-Class Probabilistic Optimum-Path (MCP-
OPF), an extension of the Probabilistic OPF to carry
out probabilistic classification issues in multi-class
environments; and (ii) to promote the literature re-
garding graph-based learning architectures, proba-
bilistic classification, and multi-class handling meth-
ods.

The remainder of this paper is presented as fol-
lows. Section 2 describes the supervised Optimum-
Path Forest, as well as the Probabilistic OPF, while
Section 3 introduces the proposed approach to tackle
multi-class problems through the Probabilistic OPF.
Further, Sections 4 and 5 present the methodology
and experiments conducted in work, respectively. Fi-
nally, Section 6 states the conclusions and future
work.

2 THEORETICAL BACKGROUND

In this section, we present a brief introduction to the
Optimum-Path Forest classifier, as well as its exten-
sion for probabilistic classification.

2.1 Optimum-Path Forest Classifier

Let D = {(xxx1,y1),(xxx2,y2), . . . ,(xxxm,ym)} be a dataset
of samples such that xxxi ∈ Rn and yi ∈ {−1,+1}. Be-
sides, we have that D = D1∪D2∪D3, where D1,D2,

and D3 denote the training, validation, and testing
sets, respectively. The Optimum-path Forest classi-
fier (Papa et al., 2009; Papa et al., 2017) is a graph-
based algorithm where the nodes denote data samples,
and edges represent connections between each pair of
instances. Besides, the most representative samples
are selected as prototypes, i.e., the nodes that com-
pete among themselves in a conquering-like process
whose objective is offering optimum-path costs to the
remaining samples in the graph. Consequently, the
training process is succeeded by minimizing a path-
cost function fmax, described as follows:

fmax(⟨vvv⟩) =

{
0 if vvv ∈ P ,
+∞ otherwise

fmax(φvvv · ⟨vvv, ttt⟩) = max{ fmax(φvvv),d(vvv, ttt)}, (1)

where φvvv represents a path starting from a root in P
and ending at sample vvv, d(vvv, ttt) denotes the distance
between samples vvv and ttt, and P stands for the set
prototypes. Moreover, φvvv · ⟨vvv, ttt⟩ represents the con-
catenation between the path φvvv and the edge ⟨vvv, ttt⟩.
In short, fmax(φvvv) computes the maximum distance
among adjacent samples in the path φvvv.

Let P ∗ ⊆ P be the set of optimum prototypes1,
i.e., a set of adjacent samples with different labels dis-
covered after computing the Minimum Spanning Tree
over D1. Such a step is accomplished by assigning an
optimum cost Cttt to each sample ttt ∈D1, i.e.:

Cttt = min
∀vvv∈D1

{max{Cvvv,d(vvv, ttt)}}, (2)

where vvv represents the training instance that con-
quered ttt. The classification step is achieved by
discovering the training sample that confers the
optimum-path cost to each test instance, computed
through Equation 2.

2.2 Probabilistic Optimum-Path Forest

The first change imposed to OPF in order to ac-
complish probabilistic classification concerns approx-
imating the posterior class probability based on the
fmax path-cost function (Fernandes et al., 2018), per-
formed as follows:

P(ŷi = yi|xxxi)≈ PA,B(Cxxxi) =
1

1+ exp(AyiCxxxi +B)
,

(3)
where A and B are parameters to be learned, Cxxxi stands
for the cost assigned to sample xxxi during OPF train-
ing or classification steps, and ŷi denotes the label

1P ∗ denotes the set of optimum prototypes, i.e., the set
of prototypes that minimizes the training error over D1.
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predicted by the classifier. The rationale behind the
proposed approach is to assume the lower the cost as-
signed to sample xxxi, the higher the probability of that
sample be correctly classified. Therefore, the training
process considers minimizing the classification error,
determined as follows:

F(θ) =
|D2|

∑
i=1

(tiqi + log(1+ exp(−AyiCxxxi −B))), (4)

where θ = (A∗,B∗) denotes the set of parameters that
optimizes the equation, and qi =Cxxxi +B. Since prob-
abilistic OPF deals with binary values only, ti is for-
mulated as follows:

ti =

{
N++1
N++2 if yi =+1

1
N−+2 if yi =−1,

(5)

where N+ and N− stand for the number of positive
and negative samples, respectively. Such an approach
is considered to handle unbalanced datasets.

Finally, one can attribute a label +1 to a sample
whose probablitily P(ŷxxx = 1|x)> P(ŷxxx =−1|x). Oth-
erwise, the sample is labeled with −1.

3 Multi-Class Probabilistic
Optimum-Path Forest Algorithm

Even though the Probabilistic OPF was designed to
tackle binary classification problems in its original
formulation (Fernandes et al., 2018), several tech-
niques have been developed to decompose multi-class
problems into a variety of simple multi-class prob-
lems (Madzarov et al., 2009). Among them, the one-
against-all (OvA) (Vapnik, 1999) approach obtained
notorious popularity due to its simplicity and effec-
tive results. Therefore, such a method was adopted to
extend the binary version of the Probabilistic OPF.

To deal with problems composed of K-classes,
where K > 2, the Multi-Class Probabilistic OPF in-
stantiates K versions of the binary Probabilistic OPF,
such that the k-th model is trained to classify k labeled
samples as positive, and the remaining as negative,
such that k ∈ {1,2, . . . ,K}. Further, the testing pro-
cedure considers presenting each testing sample to all
K binary Probabilistic OPFs and attributing the sam-
ple to a label whose respective classifier provided the
maximum output among all others.

Algorithm 1 implements the proposed approach.
Lines 2−8 construct a new k-class set for training and
validation purposes. Lines 9 and 10 execute the OPF

training and classification algorithm according to sec-
tion 2.1. Line 11 is in charge of optimizing parame-
ters A and B, i.e., they aim at computing the best set of
parameters using Newton’s method with backtracking
line search proposed by Platt et al. (Platt, 1999) and
further improved by Lin et al. (Lin et al., 2007). Lines
12−13 repeats the OPF training and testing algorithm
using the original training set. Parameters A and B for
the k-th model are then used to compute the probabil-
ity of each test sample in Lines 14− 20. The steps
mentioned above are repeated during K times to ob-
tain an array of probabilities for each sample in D3.
Finally, the loop presented in Lines 21− 22 assigns
each test sample the label whose score obtained the
highest probability.

The additional training step (Line 11) provides the
parameters A and B by solving the regularized max-
imum likelihood problem, according to Equation 4.
Even though any optimization algorithm could be em-
ployed for the task, the optimization approach pro-
posed by Platt et al. (Platt, 1999) and further improved
by Lin et al. (Lin et al., 2007), has been proved to be a
simple and robust solution, and it has been integrated
into LibSVM2 source code. Consider the works pro-
posed by Platt et al. (Platt, 1999) and Lin et al. (Lin
et al., 2007)3 for more details about the optimization
method.

The main drawback related to the OvA approach
regards its increasingly training complexity when the
number of training samples is large. Such behavior
is expected since each of the K classifiers is trained
considering the whole training set. Figure 1 illustrates
the OvA probabilistic classification idea. Notice the
probability of the class pertinence presented in each
image denote the values obtained by the Probabilistic
OPF after normalizing the outputs obtained through
OvA.

4 METHODOLOGY

This section describes the datasets employed in the
work. Further, it also presents the setup considered in
the experiments.

4.1 Datasets

The experiments performed in this paper were con-
ducted over seven datasets, described as follows:

• Gases05 (Lupi Filho, 2012): it comprises 1,201

2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3https://www.csie.ntu.edu.tw/∼cjlin/papers/plattprob.
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Algorithm 1: Probabilistic Optimum-Path Forest Algo-
rithm.
Input: A λ-labeled training G tr = (D1,A) and

validating G vl = (D2,A) sets, unlabeled
test G ts = (D3,A) set, and the number
of classes K.

Auxiliary: Optimum-path forest P, cost map C,
and label map L.

Output: Probability output p for each sample in
D3.

1 for each k ∈ {1, . . . ,K} do
// Build a new λ-labeled

training and validation
sets

2 Dk
1 ← /0 and Dk

2 ← /0;

3 for each d ∈ {D1,D2} do
4 for each v ∈Dd do
5 if λ(v) = k then
6 Dk

d ← (v,+1);
7 else
8 Dk

d ← (v,−1);

9 P1← OPF Training(Dk
1);

10 [C2,L2]← OPF Testing(P1,Dk
2);

// Newton’s method with a
backtracking line search, a
Platt’s Probabilistic
Output with an improvement
from Lin et al. (Lin
et al., 2007).

11 [Ak,Bk]←
Sigmoid Training(Dk

1 ,C2,L2)

12 P1← OPF Training(Dk
1 ∪Dk

2);
13 [C3,L3]← OPF Testing(P1,D3);

14 for each i ∈D3 do

15 f ACpB← AkLi
3Ci

3 +Bk;

16 f ACmB← AkLi
3Ci

3−Bk;

// Compute sigmoid
probability

17 if ( f ACpB)≥ 0 then

18 pk
i ←

exp(− f ACmB)
1+exp(− f ACmB) ;

19 else
20 pk

i ←
1

1+exp( f ACpB) ;

21 for each i ∈D3 do
22 [k, pi]← argmax

k∈{1,...,K}
(pk

i )

New Sample
Class 1
Class 2
Class 3

Class 1

Not Class 1

New Sample

p=4.46%

(a) (b)
Class 2

Not Class 2

New Sample

p=95.11%

Class 3

Not Class 3

New Sample

p=0.43%

(c) (d)

Figure 1: Illustration of the OvA procedure. (a) the 2-D plot
considers three distinct classes and a new sample to be clas-
sified. Further, frames (b), (c), and (d) depict the normalized
probability of this sample belonging to classes 1 (4.46%), 2
(95.11%), and 3 (0.43%), respectively, compared against all
other classes.

instances with 5 features each describing dis-
solved gas analysis in oil-filled power transform-
ers. The dataset is composed of 3 classes, repre-
senting normal behavior, thermal faults, and elec-
trical faults.

• Gases07 (Lupi Filho, 2012): similar to the
Gases05 dataset. The difference lies in the num-
ber of samples, i.e., 1,144 instances, and the num-
ber of features, comprising 7 distinct gasses, in-
stead of 5.

• Scene (Boutell et al., 2004): it is composed of
2,407 semantic scene classication samples repre-
sented by 294 extracted features each, divided into
6 classes, i.e., Beach, Sunset, Fall foliage, Field,
Mountain, and Urban.

• Sonar (Gorman and Sejnowski, 1988): it is com-
posed of 208 instances with 60 features each, this
dataset is employed to discriminate sonar signals
bounced off a metal cylinder or cylindrical rocks.

• Synthetic: dataset generatad by sampling over a
Gaussian distribution. Comprises 1,000 samples
with 6 features each. The dataset is divided into 3
classes.

• Synthetic01 and Synthetic02: similar to Syn-
thetic dataset, Synthetic01 and Synthetic02 were
generatade by sampling over Gaussian distribu-
tions. Both of them comprise 1,000 samples with
2 features each. Both are also divided into 2
classes.
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4.2 Experimental Setup

The experiments conducted in this paper compare the
Multi-Class Probabilistic OPF against six baselines:
the standard OPF (Papa et al., 2009), as well as five
other probabilistic classifiers adopted, i.e., the prob-
abilistic SVM (Platt, 1999), Naive Bayes (Kuncheva,
2006), Decision Tree (Nagabhushan and Pai, 1999),
Linear Discriminant Analysis (LDA) (Al-Dulaimi
et al., 2019), and Logistic Regression (Yang and
Loog, 2018). The methodology considered for the
evaluation employs a data pre-processing procedure
using the z-score normalization, described as follows:

t′ =
t−µ

ρ
, (6)

where µ denotes the mean and ρ stands for the stan-
dard deviation. Besides, t and t ′ correspond to the
original and normalized features, respectively.

Further, a cross-validation process with 30 runs
is performed for statistical analysis based on the
Wilcoxon signed-rank test (Wilcoxon, 1945) with a
significance of 0.05. In this scenario, the best method
over each dataset (i.e., the one that obtained the high-
est F1 score) is compared against all other algorithms
individually. Furthermore, a post hoc analysis is con-
ducted using the Nemenyi test (Nemenyi, 1963) with
α = 0.05, which exposes the critical difference (CD)
among all techniques. Finally, the runs mentioned
above are divided into three groups of 10 runs each,
such that the datasets are randomly split as follows:
1. 10 runs using 70% of the samples for training and

30% for testing;
2. 10 runs using 80% of the samples for training and

20% for testing; and
3. 10 runs using 90% of the samples for training and

10% for testing.
The evaluation procedure focuses on finding the

set of hyperparameters that maximizes the models’
accuracy. In this context, both MCP-OPF and Proba-
bilistic SVM were optimized using Newton’s method
with a backtracking line search comprising a minimal
step of 1e−7, Hessian’s partial derivatives σ = 1e−7,
stopping criteria η = 1e−3, and the maximal num-
ber of iterations equal to tmax = 100. At the same
time, the probabilistic SVM hyperparameters C and γ,
and the remaining techniques were optimized using a
grid search. The optimization process was performed
through a 5-fold cross-validation procedure, i.e., for
each fold, 80% of the training set was used to train the
model, while the remaining 20% was used for valida-
tion purposes. Finally, Table 1 presents the parame-
ter configuration. Notice the probabilistic SVM em-
ploys a Radial Basis Function kernel. Additionally,

the standard OPF and Naive Bayes have no hyperpa-
rameters to be tuned.

Table 1: Parameter configuration.

Algorithm Parameters

Decision Tree criterion ∈ {‘gini’, ‘entropy’}
max depth ∈ [2,15]

LDA Solver ∈ {‘svd’, ‘lsqr’, ‘eigen’}
tol ∈ [1.0e−5,1.0e−1]

Logistic Regression Solver ∈ {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}
C ∈ {0.01,0.1,1.0,10.0,100.0}

Probabilistic SVM C ∈ {1,10,100,1,000}
γ ∈ {0.001,0.01,0.1,1}

Finally, the experiments were conducted over the
C-based library LibOPF4 for both OPF and MCP-
OPF, as well as the well-known Python library Scikit-
learn (Pedregosa et al., 2011) considering other tech-
niques. Besides, the computational environment com-
prises a 3.9 GHz Intel i7 processor with 16 GB of
RAM, running over an Ubuntu 16.04 Linux machine.

5 EXPERIMENTS

This section discusses the experimental results con-
sidering the proposed Multi-Class Probabilistic OPF
classification effectiveness and computational burden.
Results presented in bold denote the best values ac-
cording to the Wilcoxon signed-rank test.

5.1 Effectiveness

Table 2 presents the F1 score and the accuracy5 val-
ues obtained over the aforementioned datasets6. Even
though MCP-OPF did not obtain the best results in
some cases, it is worth noting some interesting partic-
ularities. Regarding the standard OPF, even though
its absolute value outperformed the ones obtained
by the proposed approach in four-out-seven datasets,
i.e., SCENE, SONAR, SYNTHETIC01, and SYN-
THETIC02, the accuracy difference is minimal (ap-
proximately 0.5%). On the other hand, MCP-OPF
is capable of producing results considerably higher
than the ones obtained by OPF in some cases, as ob-
served over the GASES05 dataset, where MCP-OPF
performed 36% better.

Concerning the remaining techniques, one can ob-
serve that MCP-OPF obtained the best results in two-
out-of-seven datasets, i.e., SYNTHETIC01 and SYN-

4https://github.com/jppbsi/LibOPF
5By accuracy, this work considers the number of cor-

rected classified instances over the total number of testing
samples.

6Results presented in bold denote the best values ac-
cording to the Wilcoxon signed-rank test.
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THETIC02, as well as similar statistical results over
SONAR datasets and a relatively small accuracy dif-
ference over GASES05 and GASES07 (≈ 2%). In
fact, SVM presents a considerable upper hand over
two datasets, i.e., SCENE and SYNTHETIC. How-
ever, such an advantage comes at a price of 9 to 49
times the computational burden cost demanded in the
learning process, as presented in the next section.

Notice the purpose of the present work is not to
outperforming the standard OPF classifier, but to pro-
vide a suitable alternative considering the context of
multi-class probabilistic classification. Nevertheless,
the Probabilistic OPF obtained results comparable to
the standard OPF in the worst case and much better
ones in others, e.g., Gases05. Further, together with
the standard OPF, the model also outperformed the
baselines considering different cases, such as Syn-
thetic01 and Synthetic02, confirming the contribu-
tion’s relevance.

5.2 Computational Burden

Table 3 exhibits the execution time for the learning
(i.e., training + evaluating), expressed in seconds.
Since both standard OPF and Naive Bayes do no
perform an evaluation step, i.e., they do not present
any hyperparameter to be tuned, they present the
lowest computational costs. Moreover, the standard
Optimum-Path Florest is incorporated as a procedural
step executed multiple times in the Multi-Class Prob-
abilistic OPF, as described in Algorithm 1. Therefore,
it is convenient to accept a considerable difference in
their computational burden. Even though this differ-
ence is proportionally significant, the algorithm can
provide a substantial gain in some cases, such as the
36% over the GASES05 dataset (Table 2), in an ef-
ficient manner if compared to SVM or Logistic Re-
gression, for instance. Indeed, the probabilistic SVM
is the most onerous technique in terms of computa-
tional resources since its learning time demanded, on
average, 256 and 24 times slower than OPF and MCP-
OPF, respectively.

Such an in-depth analysis of the results consider-
ing both the accuracy and the computational burden
shows that MCP-OPF poses itself as an efficient al-
ternative for the task of multi-class probabilistic clas-
sification, providing a balance between reasonable ac-
curacies at the cost of an acceptable execution time.

5.3 Statistical Analysis

Despite the statistical analysis performed in Sec-
tion 5.1, which compares all techniques against the
one that obtained the highest F1 score value consid-

ering the Wilcoxon signed-rank test, this section pro-
vides an alternative statistical analysis considering the
Nemenyi test. Such an approach verifies the presence
of critical difference among all techniques and depicts
the results in a diagram representing each method’s
average rank in a horizontal bar (Demšar, 2006), pre-
sented in Figure 2. Notice lower ranks denote the bet-
ter techniques, and methods connected do not signifi-
cantly differ between themselves.

One can notice that MCP-OPF obtained the best
results in four-out-of-seven datasets, i.e., Gases07,
Sonar, Synthetic01, and Synthetic02, performing bet-
ter than most of the techniques. Considering a solo
comparison against the standard OPF classifier, MCP-
OPF obtained statistically similar or better results.
Regarding the other techniques, the Nemenyi test
could not provide explicitly correlated patterns among
themselves, with exception to Logistic regression and
the LDA, which were considered similar in all situa-
tions. Such results confirm the suitability of the MCP-
OPF for multi-class probabilistic classification tasks,
once it provided a satisfactory classification perfor-
mance in a reasonably efficient fashion.

6 CONCLUSION

This paper proposes the Multi-Class Probabilistic
Optimum-Path Forest, a variant of the OPF classi-
fier designed to deal with probabilistic classification
problems over datasets composed of more than two
classes. Experiments conducted over seven datasets
showed the method is capable of outperforming the
standard OPF with considerable difference in some
cases or obtaining pretty approximate results in oth-
ers. Concerning the other techniques, the proposed
MCP-OPF obtained the best results over four datasets
considering the Nemenyi test, i.e., Gases07, Sonar,
Synthetic01, and Synthetic02, as well as comparative
effectiveness considering Gases05 dataset. Moreover,
the proposed approach showed itself computationally
efficient, performing way faster than traditional tech-
niques, such as the Probabilistic SVM and Logistic
Regression, for instance.
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Table 2: F1 scores and accuracies of the techniques considered in the work.

Algorithm Metric MCP-OPF OPF Decision Tree LDA Logistic Regression Naive Bayes Probablistic SVM

Gases05
F1 0.9207±0.0107 0.6771±0.3113 000...999444666222±±±000...000111666222 0.9117±0.0016 0.9121±0.0024 0.9315±0.0112 0.9392±0.0090

Accuracy 89.5210±2.5432 68.8818±30.0493 94.5281±1.5203 86.1681±1.0248 87.2736±1.0018 91.7969±1.2873 93.1041±1.2255

Gases07
F1 0.9424±0.0092 0.9256±0.0222 000...999444999111±±±000...000111444111 0.9338±0.0050 0.9349±0.0024 0.9390±0.0129 000...999555111555±±±000...000000777555

Accuracy 92.5401±1.8654 92.3230±1.9651 94.7790±1.3552 89.6237±1.2499 90.2258±0.9331 92.8461±1.1565 94.2133±1.0482

Scene
F1 0.6809±0.0224 0.6861±0.0223 0.6045±0.0247 0.6990±0.0228 0.7559±0.0178 0.6526±0.0295 000...888000666999±±±000...000111666444

Accuracy 68.3735±2.2019 68.8663±2.1772 60.7388±2.4528 70.1881±2.2343 75.6337±1.7203 65.3087±2.7866 80.6974±1.5899

Sonar
F1 000...888444444444±±±000...000444555888 000...888444555444±±±000...000444555666 0.7155±0.0613 0.7159±0.0657 0.7525±0.0542 0.6572±0.0577 000...888555999777±±±000...000555000111

Accuracy 84.3362±4.5961 84.4404±4.5781 71.2518±6.2225 71.3648±6.5491 75.0477±5.4414 65.1180±6.3343 85.9040±5.0213

Synthetic
F1 0.8376±0.0217 0.8360±0.0228 0.8793±0.0199 0.8808±0.0213 0.8896±0.0206 0.8873±0.0190 000...888999666666±±±000...000111888222

Accuracy 83.7388±2.2380 83.6064±2.3354 87.9310±1.9876 87.9698±2.2083 88.8961±2.0998 88.6087±1.9734 89.5588±1.8843

Synthetic01
F1 000...666111888000±±±000...000222666333 000...666222111111±±±000...000222888000 0.5892±0.0215 0.4749±0.0401 0.5184±0.0601 0.5260±0.0350 0.5657±0.0268

Accuracy 61.7222±2.6775 62.0444±2.8281 58.3556±2.2055 47.3667±3.9752 48.7444±2.9331 51.5833±3.5535 56.3778±3.0218

Synthetic02
F1 0.9029±0.0212 000...999000888999±±±000...000111888222 0.8917±0.0207 0.4768±0.1017 0.5510±0.0712 0.4649±0.0989 0.8448±0.0308

Accuracy 90.2833±2.1201 90.8889±1.8188 89.1556±2.0794 47.5944±10.1727 52.8389±6.7255 45.9389±10.1153 84.4667±3.0817
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Figure 2: Comparison of Nemenyi test concerning all techniques over (a) Gases05, (b) Gases07, (c) Scene, (d) Sonar, (e)
Synthetic, (f) Synthetic01, and (g) Synthetic02 datasets. Groups connected does not present a critical difference.

Table 3: Learning (training + evaluating) time, in seconds.

Algorithm MCP-OPF OPF Decision Tree LDA Logistic Regression Naive Bayes Probablistic SVM

Gases05 0.3228±0.0965 0.0257±0.0071 0.1148±0.0135 0.0285±0.0053 1.2868±0.1762 000...000000111222±±±000...000000000444 4.4331±1.0348

Gases07 0.4669±0.1281 0.0426±0.0143 0.1491±0.0120 0.0344±0.0088 1.4851±0.2446 000...000000111222±±±000...000000000333 4.2941±1.0569

Scene 32.4470±6.5194 1.0816±0.2626 49.1499±15.2594 4.7377±1.3074 133.1621±13.4707 000...000000888444±±±000...000000111222 291.4601±51.9725

Sonar 0.0273±0.0060 0.0029±0.0007 0.2563±0.0314 0.0962±0.0497 0.8907±0.2161 000...000000111000±±±000...000000000222 1.3286±0.3268

Synthetic 0.3734±0.0708 0.0344±0.0126 0.2427±0.0419 0.0326±0.0081 1.6555±0.2443 000...000000111222±±±000...000000000222 6.2055±1.0522

Synthetic01 0.2278±0.0611 0.0261±0.0105 0.1426±0.0176 0.0252±0.0057 0.3356±0.0609 000...000000111111±±±000...000000000222 8.9314±1.8717

Synthetic02 0.2679±0.0672 0.0321±0.0098 0.1269±0.0166 0.0264±0.0057 0.3369±0.0589 000...000000111000±±±000...000000000222 8.5503±1.8026
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