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Abstract: This study has introduced a new approach to clinical data processing. Clinical data is unstructured, 
heterogeneous, and comes from various resources. Although, the challenges associated with processing such 
data have been discussed widely in literature, addressing those aspects is fragmented and case-based. This 
paper presents the initial outcome of applying the Time series Multi-Variables model (TsMV) to 12 different 
datasets from Intensive Care Units (ICU), medications, and laboratories. TsMV supports the development of 
an Intelligent Decision Support System for PM (IDSS4PM) by preparing effective data. Moreover, the 
CRISP-DM methodology was employed, and based on the proposed solution, we have adjusted the significant 
steps to CRISP-DM, where those extra phases are essential for taking future works. 

1 INTRODUCTION 

While, growing the aging population, 
consumerism, increasing the availability of patient 
data and limited human-cognitive for timely 
decision-making, in addition to the economic 
pressure have challenged the old model of clinical 
decision-making, big data, and analytics have 
provided the opportunity for developing Precision 
Medicine (PM). Although there is various 
definition of PM, the US National Library of 
Medicine, referred it to as “an as emerging approach 
for disease treatment and prevention that takes into 
account individual variability in genes, environment, 
and lifestyle for each person” (Hulsen et al., 
2019),(Y. Zhang, Silvers, & Randolph, 2007). 
Hence, not only biological factors are taken into 
the consideration, but also environmental, 
lifestyle, and patient’s condition and preferences 
are important for releasing the best possible 
treatment (Fenning, Smith, & Calderwood, 
2019),(Williams et al., 2018). 

The advantages of Artificial Intelligence (AI) and 
analytics to reduce medical errors and increase the 
performance of clinical decision-making are 
extensively highlighted in the literature (Jiang et al., 
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2017). While descriptive, diagnosis and predictive 
analytics discover insights from data, prescriptive 
analytics focuses on optimal decision-making 
(Mosavi & Santos, 2020). Even though such 
promising technologies are advanced to extract, and 
interpret meaningful information from raw data, there 
are major challenges and limitations associated with 
data acquisition and processing in the context of the 
adoption of PM. Based on that, current studies have 
not demonstrated practical and valid frameworks to 
address the limitations in processing diverse and 
complex data (McPadden et al., 2019). This paper 
aims to present TsMV approach for filling the 
identified gaps in clinical data processing which is 
essential for the development of IDSS4PM. 

IDSS4PM is a framework from the concept of 
“Decision Support Systems”, where AI and analytics 
pioneer the development of PM to propose an optimal 
outcome for clinical decision-making.  

The Time series Multiple-Variables Approach for 
Precision Medicine (TsMVs4PM) is designed to 
address the challenges such as infrequent registration 
of data, dimensionality, variety, velocity, and 
integration aspects.  

From a general point of view, the key limitations 
and restrictions that have challenged the adoption of 
PM are classified into three categories: “Definition of 
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PM”, “Data source/Data Management” and 
“Validity/Reliability of clinical practice”. Although 
there are wide contributions to explaining PM, the 
terms have evolved and it requires time and practice 
to emerge with the best possible performance. 
Moreover, issues related to the variety and types of 
data that come from diverse resources resulted in 
limitations in data integration. Even though there are 
defined standards for data exchange, stakeholders and 
potential adopters need to cooperate to employ the 
available policies (Sadat Mosavi & Filipe Santos, 
2021). In addition, dealing with data quality, privacy, 
dimensionality, integration, and interoperability have 
provided remarkable research opportunities under the 
category of “Data Management” (Liu, Luo, Jiang, & 
Zhao, 2019). Finally, the shift from the traditional 
protocol of clinical decision-making to the new one 
needs valid and reliable practices in the area of AI and 
Machine Learning (ML). This effort mostly depends 
on overcoming the limitations of data sources, 
handling big data, and data processing. However, 
policies and regulations of data privacy, cost of 
project development, multidisciplinary cooperation, 
and technology acceptance by the professionals must 
be considered to facilitate the fusion of PM (Sadat 
Mosavi & Filipe Santos, 2021). 

The TsMV method supports the development of 
an analytical dashboard to monitor and analyze all the 
clinical transactions from the time of admission to 
discharge. This solution addresses infrequent data 
registration and provides an integrated/unique 
platform for the decision maker to analyze the clinical 
background. Where It facilitates future works 
(clustering prediction and optimization). 

Furthermore, since the objective is to maximize 
the rationality of clinical decision-making via 
adopting analytics, we have employed Simon's model 
of decision-making as the theoretical foundation. 
Intelligence-Design-choice, introduced by Simon has 
been identified as the most common framework in 
decision making where the “Intelligence” phase is 
about identifying the problem, searching and 
collecting relevant information, and “Design” is 
associated with generating alternatives and 
developing possible courses of action. Furthermore, 
evaluating the consequences of each option and 
choosing the optimal performance are related in the 
“Choice” phase (Mosavi & Santos, 2021). 

 Simon in “Bounded Rationality” identified that 
the decision-maker chooses the first attention which 
is good enough without evaluating alternatives, but 
the optimum option cannot be the best decision as 
there is a difference between decision making and 
searching for the best (Barros, 2010),(Gigerenzer, 

2001). Following the assumptions to decide 
rationally, the decision-maker should know all the 
alternatives as well as the consequence of each 
alternative. In addition, the decision-maker should be 
able to compute with perfect accuracy. Hence, 
optimization is one step closer to normative decision-
making. In other words, optimization identifies the 
best course of action; maximizing the value between 
alternatives(Hertog, 2015),(Delen, 2020). 

This paper has employed the CRISP-DM 
methodology, so it is organized based on the six 
phases of this methodology to present the initial result 
in the data processing phase. Therefore, the first 
three-phased are explained and the last three are 
planned as future work for developing the final 
framework of IDSS4PM. 

2 CRISPS_DM METHODOLOGY 

CRoss-Industry Standard Process for Data Mining 
refers to the process of applying intelligent techniques 
to data to extract patterns and identify valid and useful 
information (S. Zhang, Zhang, & Yang, 2003). It is a 
multidisciplinary subject, leveraging various 
techniques such as ML, statistics, and data analytics 
(Leprince, Miller, & Zeiler, 2021). Whereas Fayyad 
considers DM as one of the phases in the Knowledge 
Discovery from Database (KDD) process for 
searching and discovering patterns(Fayyad & 
Uthurusamy, 1996), CRISP-DM guides people to 
know how DM can be applied in practice in real 
systems (Ipp, Azevedo, & Santos, 2004). This is a 
standard methodology used to support translating 
business problems or application requirements and 
objectives into data mining projects. Regardless of 
the type of industry, CRISP-DM helps the 
effectiveness of the outcome by extracting knowledge 
from the raw data (Pete et al., 2000). This 
methodology was introduced in the late 90s for 
Knowledge Discovery from Database (KDD) (Grady, 
2016) and was developed by the means of the effort 
of a consortium initially composed of Daimler-
Chrysler, SPSS, and NCR. The six phases of CRISP-
DM 0.1 include “Business/Application 
Understanding”, to identify problems or to define 
objectives. This phare requires domain knowledge 
and consists of various tasks and reports. “Data 
Understanding” includes activities such as data 
collection, exploration, and quality verification. The 
third phase, “Data Preparation”, includes different 
activities to prepare data for modelling. Moreover, in 
“Modelling”, the most promising and potential ML 
algorithms will be applied. In addition, “Evaluation”, 
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uses techniques to assess the accuracy of the result, 
and finally, in “Deployment”, the most suitable 
algorithm will be selected for practical use (Pete et 
al., 2000). This paper presents the result of the first 
three steps of developing IDSS4PM. This road map is 
adjustable to analytics where Simon’s model of 
decision-making is taken into consideration. 
According to table 1, the first step is “Business 
Understanding”; identifying scientific gaps and 
defining objectives. Moreover, data collection and 
analysis are associated with “Data Understanding”. In 
addition, major activities are required to prepare 
effective data such as data aggregation, feature 
engineering, transformation, and cleaning. 
Furthermore, TsMV as an integrated approach is 
necessary for performing the discovery and 
prediction. Accordingly, prediction and evaluation 
are associated with “Modelling” and “Evaluation”. 
Finally, we have justified “Optimization” as the part 
of “Modelling “and “Evaluation” phases for 
obtaining the sub-optimal result. 

Table 1: Workplan According to CRISP-DM. 

 
As table 2 presents, phases 1,2,3, and 4 which are 

informative, are adjustable with the “Intelligence” 
phase in Simon’s framework. Moreover, phases 1,2, 
and 3 are based on “Descriptive” analytics. phase 4 is 
associated with “Design” since in “Modelling” and 
“Evaluation”, various algorithms will be generated, 
and different scenarios will be analysed and assessed. 
Finally, based on objectives and the outcome of the 
evaluation, the most potentials and suitable 
performance (algorithm) will be selected Hence, this 
step is about decision making and performance 
selection and it is related to “choice and prescriptive 
analytics.  

Table 2: Towards optimal clinical decision making. 

Tasks CRISP_DM Simon’s 
Framework 

Analytics 

i Phase (1) Intelligence None
i, iii Phase (2) Intelligence Descriptive

iv,v,vi, vii Phase (3) Intelligence Descriptive
viii, ix NEW Intelligence Descriptive
x, xi Phase (4,5) Design, 

Intelligence 
Predictive 

xii Phase (4,5,6) Choice Prescriptive

2.1 Application| Business 
Understanding 

2.1.1 Precision Medicine  

PM as a new approach in medical decision-making 
has been motivated by major opportunities and 
challenges such as the failed business model of “one 
size fits all” (releasing similar treatments for patients 
with similar symptoms) (Barros, 2010) which 
resulted in less effective medical performance. In 
addition, the cost of overtreatment, less balance 
between patient expectations and the quality of 
services, the global aging population growth, and an 
increasing number of new chronic diseases, need a 
supply of advanced scientific and medical 
commitment and technologies (C. Kennedy & Turley, 
201AD). Besides, the availability of healthcare big 
data and advanced technologies such as AI, cloud 
computing, the Internet of Things (IoT), and analytics 
provide actionable and useful information for 
decision-making (Wu et al., 2017). Thus, it is 
expected, that by 2050, because of healthcare 
digitization under the influence of technological 
advancement, using patients’ biological data for 
clinical decision-making will pioneer the adoption of 
PM (Khadanga, Aggarwal, Joty, & Srivastava, 2019). 
This shift from the traditional approach to the new 
way of clinical decision-making will effectively 
change the quality of treatment, especially for PM 
where IoT facilitates customized data collection for 
individual patients by considering the influence of 
heterogeneous data (Brown, 2016). 

2.1.2 Scientific Gaps in Data Processing 
Phase 

“As ever, where new technology promises “Big 
Advances,” significant challenges remain” (Hulsen et 
al., 2019).  

As it was mentioned above, whereas aspects 
related to data processing such as “data source and 
management” are identified as the major limitations 

xii. Optimization

xi. Evaluation

x. Prediction

ix. Discovery (2);Clustering

viii. Discovery (1)- Analytical Dashboards

vii. TsMV(transformation, visualization, integration)

vi. Cleaning

v. Feature selection ¦ construction| exteraction

iv. Aggregation 
iii. Data Analysis

ii. Data Collection
i. Identify Gaps, Define objectives

Intelligent Decision Support System for Precision Medicine; Time Series Multi-variable Approach for Data Processing

233



for standardizing the fusion of the “one-size-fits-all” 
model, other problems are related to terminology 
itself, and existing clinical practices. Although there 
is, a definition of PM released by the U.S national 
library of medicine, since literature is heterogeneous 
in terms of using the terminology of PM, there has not 
been a standard paradigm used to develop a data-
driven DSS to conduct the protocol of PM (Sadat 
Mosavi & Filipe Santos, 2021). For example, some 
research works have considered genetic profiles as 
necessary data for obtaining precise treatment 
pathways, and others have defined PM as a process 
that needs to be evolved and completed over time. 
Therefore, by considering the general purpose of 
emerging PM in healthcare which is accepted as a 
process to develop the treatment pathway with more 
accuracy and transparency based on patient profile, 
research works and study designs strongly depend on 
the particular research questions (Hulsen et al., 2019).  

On the one hand, features (heterogeneous, 
diverted, and unstructured) carried by clinical data 
have resulted in poor synchronization, particularly in 
data acquisition and integration phases (Y. Zhang et 
al., 2007). On the other hand, the lack of an integrated 
platform for considering multi-variable data 
paradigm caused useful data and trend information 
not able to be incorporated into a single model for 
further decision-making (C. E. Kennedy & Turley, 
2011). One considerable reason is the diverse 
frequency of data registration from various resources. 
In addition, the different time granularity of data 
collection can result in ambiguous data correlation(Y. 
Zhang et al., 2007). For example, data from bedside 
monitoring has generally high frequency while 
clinical sampling and lab tests might be taken 
irregularly. Therefore, aspects such as frequency and 
regulations of data generation strongly influence the 
performance of the data processing phase (Wu et al., 
2017). In addition, verification of data quality is a 
critical step in data processing. Data quality 
considerably depends on major factors such as the 
assessment of a patient’s condition by the clinical 
team, misinterpretation of the original document, 
and mistakes in data entry(Brown, 2016). Also, 
Medical Waveforms (MW) such as 
electrocardiograms and electroencephalograms, 
which are widely utilized in physiological 
examination, might caries random noise and 
gaps(Khadanga et al., 2019).Therefore, deal with 
missing values is another point needs to be addressed 
in data cleaning and preparation (Adiba, Sharwardy, 
& Rahman, 2021).Finally, the validity and reliability 
of existing clinical practices in this area need 
maturity, and new policies, regulations, and 

cooperation pipelines between stakeholders to speed 
up the emergence of PM. In other words, successful 
and valid projects in scale affect positively the quality 
of performance in general and indirectly best 
practices boost problem solving associated with 
technical areas such as data processing aspects 
(Blasimme, Fadda, Schneider, & Vayena, 2018). 

One common situation in digitized healthcare 
platforms is where various physiological variables of 
patients are continuously monitored and stored 
resulting in huge amounts of data collected. Whereas 
the integration of data collected at the bedside is 
required to study associated with other data generated 
during the patient’s involvement with treatment, and 
other clinical aspects, outliers, and abnormal data 
present bias, and related data must be ignored in 
modelling and many cases data has to be filtered from 
the study(Seyhan & Carini, 2019). Hence, despite the 
promising start of Big Data analysis, manipulation, 
and interpretation in clinical research, which has seen 
a rising number of peer-reviewed articles, very 
limited applications have been used to overcome 
those aspects. A close future effort should be done to 
validate the knowledge extracted from clinical Big 
Data and implement it in clinical practice(Carra, 
Salluh, da Silva Ramos, & Meyfroidt, 2020). 

Major studies that contributed to offering a 
promising framework have focused on time series 
data and addressed limitations in data preparation. 
One example is the “attention scores” technique for 
feature importance in time series clinical data. This 
method is complex and applicable for nonlinear 
(Johnson, Parbhoo, Ross, & Doshi-Velez, 2021). 
Another research works used summaries of patient 
time series data for 24-72 hour from ICU to examine 
the early prediction of in-hospital mortality. In this 
study, static observations and physiological data 
including labs and vital signs extracted based on 
hourly circumstances. This approach limited the data 
to vital signs and lab results and considered data 
extraction and integration of time series clinical data 
in the context of data aggregation (Johnson et al., 
2021). Another limitation related to data 
management, and processing is storage and 
computing. Especially for handling data that is 
created with high frequency such as physiological 
indicators. Although this data is valuable for 
analyses, storing and managing such records needs 
high computation and storage facilities. The 
“Electron” framework is a solution offered to store 
and analysed longitudinal physiologic monitoring 
data (McPadden et al., 2019). Furthermore, the TDA 
approach is an effective way for large-scale datasets 
and employs algebraic topology to analysed big data 
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by reducing the dimension, particularly for geometric 
representations to extract patterns and obtain insight 
into them. In addition, to deal with data velocity, the 
“anytime algorithm “to learn from data streaming has 
been introduced as a useful approach for time series 
data which copies its growth over time. The 
effectiveness of this method depends on the amount 
of computation they were able to perform. Moreover, 
to deal with heterogeneous data (variety), although 
GNMTF is an efficient data integration framework, 
subject to the number of data types to be integrated 
the competencies complexity increased (Gligorijević, 
Malod-Dognin, & Pržulj, 2016). therefore, existing 
approaches have offered solutions to manage data 
such as time-series and case-based challenges such as 
feature importance, feature selection, dimensionally 
reduction, and velocity.  

2.2 Data Understanding 

According to table 2, there are 12 datasets collected 
as excel files. The “vital sign” includes 439025 
records with 108 features and many of them came 
from biological sensors in ICU. Furthermore, “Lab 
Result” is a dataset that includes outcomes of 
laboratory exams. This table has113320 records with 
9 features. “Procedure”, with 911 records, and 6 
features consisting of raw data associated with an 
action prescribed by the doctors. In addition, “SOAP” 
with 2435 records and 8 features, keeps key data 
about the SOAP framework (Subject, Object, 
Assessment, Plan). Gravity score or “saps” presents 
data about the level of gravity where it has 176 
records and 6 features. Moreover, “Glasgow” carries 
861 records and 6 features. The Glasgow table has 
data about the consciousness status of each patient. 
The “diagnosis” table with 124 records and 9 features 
is about signs, symptoms, and laboratory findings. 
While “prescription of medicine” addresses key 
information about medications prescribed by the 
clinician, “administration of medicine”, with 993496 
records and 17 features is associated with drug 
administration. The tenth table shows the intervention 
data of each patient. Finally, an “admin-discharge” 
dataset includes data on admission and discharge 
from ICU. In addition, there is a reference dataset that 
includes episode/process number exist in eleven 
datasets. Those two variables are key to linking 
datasets and are patient identifications. 

The only dataset including time-series data is a 
“vital sign” marked by #. Moreover, tables such as 
“vital sign”, “procedure”, “SOAP” and “diagnosis” are 
arked by | including time or date of admission. Based 
on that, others specified by ||, have both time and date 

(admission). In addition, tables marked by * consist of 
data from ICU. R means the number of records and F 
means the number of features. Also, two features 
include distinct values whether “Process Number” 
(DP) or “Episode Number” (DE). The “procedures” 
and “SOAP” include DP (distinct process number) and 
other tables have DE (distinct episode number).  

Table 3: Data Collection/Initial Analysis. 

 

2.3 Data Preparation 

According to the CRISP_DM methodology, “Data 
Preparation” consists of activities to prepare data for 
the modelling phase. Since analytical dashboards and 
clustering (discovery) require integrated clinical data, 
TsMV performs to solve the limitation in the data 
processing. Thus, In addition to the initial data 
manipulation, TsMV method was applied. In this 
case, we have modified the CRISP-DM methodology 
by adding TsMV approach in data preparation and an 
extra step before modelling which is discovery. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: CRISP-DM - Adjusted for IDSS4PM. 
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2.3.1 Data Preparation- TsMV 

As it was mentioned above, In addition to the initial 
data manipulation (feature engineering, data 
cleaning, data extraction, etc.,), specific data 
processing works were performed.  
To solve the limitation associated with irregular data 
acquisition and synchronization, we aggregated 
physiological data (vital sign dataset) based on hourly 
circumstances. This solution addressed the diverse 
frequency of time series data registered by different 
sensors. In addition, because data generation from 
ICU (monitoring) has a high frequency compared 
with other data resources (medications, procedures, 
SAP, Glasgow, and intervention), therefore, to deal 
with fragmented and infrequent data generation, we 
performed a specific data transformation. where data 
has been transformed from the time/date dimension 
into a sequence dimension we called “Time Slot” 
(TS). According to the figure2, each patient has a 
Time Slot TS1 to TSn where the TS1 to TS23 
includes one day of clinical transactions. In other 
words, each (TS+1)-TS= 1 hour Therefore, each 
patient with different episode numbers has TS from 1 
to n where TS1 to TS23 shows transactions on the 
first day of admission and TS24 to TS71 is associated 
with the second day.  
 

 
Figure 2: Timeline platform using TsMV model. 

Data preparation is summarised in table 3 including 
transformation to TS, aggregation, feature 
engineering, selection, and data cleaning. 

Transformation to TS: Each data set includes the 
time/date of admission. Hence, in the transformation 
from time/date to TS, each episode number has TS (1 
to n). 

Feature Engineering | selection and Extractions: 
all tables had admission time in the format of seconds 
and data was extracted in the form of the hour to 
support TsMV solution. 

The “vital sign” data set consists of time series 
data from ICU, considering data quality analysis, and 
based on studying the domain|literature, significant 
physiological features were selected for hourly 
aggregation. Hence, out of 108 features, specific 
biological indicators (pulse rate, temperature, 
oxygen, saturation, and heart rate) were chosen. In 
addition, a new conditional column was constructed 
where oxygen saturation value resulted in four 
categories: “actual danger to life”, “critical-refer to a 
specialist”, “decrease-insufficient”, and “serve 
hypoxia hospitalization”. This new feature will 
support clustering performance and the same type of 
constructed feature will be applied to other biological 
indicators too. 

Lab result dataset includes features such as exam 
classification, detailed exam, and references 
associated with the value of the exam. This feature 
was split into min and max references to support the 
clustering phase. Moreover, result_status was created 
as a conditional column where it compares the result 
of the exam with the min-reference and max_refence, 
to show if the result is below the minimum or more 
than the maximum values. This new feature will be 
used in the clustering phase. 
The “procedures” table includes “zona” (specific area 
of the patient body) and “DNOME” (in the category 
of ZONA). Furthermore, the “SOAP” table includes 
the subject, assessment, and plan.  

The “saps”, has a feature (valor) to show the value 
of the patient's gravity. Furthermore, in “Glasgow”, 
The status of the patient’s consciousness level is 
presented in a feature called valor. 

In the “diagnosis” dataset, out of 124 features, 4 
are selected where “SERVICE” shows the type of 
diagnosis, and “DIAG1” addresses the description of 
diagnosis for each episode number.  

In addition, “medical administration” consists of 
features such as the dose of a drug used by the nurse, 
recommended dose, and the code of the drug. 

Of the “medical prescription” with 14, out of 39 
features, 10 effective ones were selected. Where the 
code of medication, prescriptions, dose, and unit of 
medicine are the essential ones. we have constructed 
a new feature: “Period of Stay” to analyse the period 
that a patient starts medication and finishes. This new 
feature will be used in clustering. 

Finally, the “intervention” like other datasets has 
time|date of admission and episode number. 
Moreover, intervention service shows the type of 
service. 

 In terms of handling missing cells, in some tables 
such as “vital sign,” we filled null cells with the 
average of previous and next values and in some other 

lab result 
procedure 

glasgw 

TS1

TS2

TS24

TSn

SOAP vital sign saps 

diognosis 
med_admin 

Interventinon 
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datasets, we deleted null cells and marked some other 
null cells to decide on the modelling phase. In “lab 
result” we constructed three columns to mark null 
cells with zero where this method will be used in the 
modeling phase. In addition, in “SOAP” we deleted 
variables with the majority of missing values and 
marked missing cells associated with main features. 

As it was discussed, all datasets include 
episid|process number, so this feature is used to link 
each table to the look-up table (the table consisting of 
the episode and process number was considered as the 
look-up). 

Besides, features such as age, gender, and status 
(pre-operation, post-operation) are excluded to a new 
table called demographics. 

Table 4: Summary of data preparation. 
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Vital sign Time hourly X Filled
Lab result Time - X Marked
procedures Date - X Deleted
SOAP Date - X Marked
saps both - X Deleted
Glasgow both - X Deleted
Diagnosis Time - X Deleted
Med_admin both - X Deleted
Med_pres both - X Deleted
intervention both - X Deleted

3 CONCLUSIONS  

This paper presents the initial result of TsMV 
approach to address the limitations and challenges 
identified in the clinical data processing phase. 

12 datasets have been used under the guidance of 
CRISP_DM methodology to develop the framework 
of IDSS4PM.  

The current study considered the literature gaps in 
integrating time series data from ICU and other 
clinical data resources which are multi variables. 
They proposed a solution by transforming time-
dependent data to TS (independent of time). This 
solution not only provided a unique time sequence 
platform for analysing the whole clinical background 
from admission to discharge but also can solve 
challenges highlighted in literature such as 
infrequence data registration. In addition, having sync 
data in a unique platform will facilitate the clustering 
phase to classify similar patients by various indicators 

(medications, period of stay, laboratory results, vital 
signs, and SOAP). In addition, the modelling phase 
will be performed based on the outcome of the 
preparation phase. Based on that, the first three stages 
of CRISP-DM are discussed, and this methodology 
was modified by adding extra steps (TsMV, 
discovery).  

Future work will be developed using the outcome 
of the fusion of TsMV for discovery phases 
(analytical dashboards and clustering) and predicting 
the best treatment pathway. Where optimization will 
present the sub-optimal outcome by considering the 
clinical objectives. Hence, “Discovery”, 
“Modelling”, “Evaluation” and “Optimization” will 
be performed as further steps to introduce an 
IDSS4PM.  
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