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Abstract: Transformer-based QG models can generate question-answer pairs (QAPs) with high qualities, but may also
generate silly questions for certain texts. We present a new method called tag-set sequence learning to tackle
this problem, where a tag-set sequence is a sequence of tag sets to capture the syntactic and semantic infor-
mation of the underlying sentence, and a tag set consists of one or more language feature tags, including,
for example, semantic-role-labeling, part-of-speech, named-entity-recognition, and sentiment-indication tags.
We construct a system called TSS-Learner to learn tag-set sequences from given declarative sentences and the
corresponding interrogative sentences, and derive answers to the latter. We train a TSS-Learner model for the
English language using a small training dataset and show that it can indeed generate adequate QAPs for cer-
tain texts that transformer-based models do poorly. Human evaluation on the QAPs generated by TSS-Learner
over SAT practice reading tests is encouraging.

1 INTRODUCTION

Multiple-choice questions (MCQs) are often used to
assess if students understand the main points of a
given article. An MCQ consists of an interrogative
sentence, a correct answer (aka. answer key), and a
number of distractors. A QAP is an interrogative sen-
tence and its answer key. We study how to generate
QAPs from declarative sentences.

The coverage of the main points of an article may
be obtained by selecting important declarative sen-
tences using a sentence ranking algorithm such as
CNATAR (Contextual Network and Topic Analysis
Rank) (Zhang et al., 2021) on the article. QAPs may
be generated by applying a text-to-text transformer on
a declarative sentence, a chosen answer key, and the
surrounding chunk of sentences using, for example,
TP3 (Transformer with Preprocessing and Postpro-
cessing Pipelines) (Zhang et al., 2022), which gener-
ates interrogative sentences for the answer keys with
much higher success rates over previous methods.
TP3, however, may generate silly QAPs for certain
chunks of texts.

Training a deep learning model like TP3 for gen-
erating QAPs may be viewed as learning to speak in a
language environment, akin to how kids learn to talk
from their environment. On the other hand, learn-
ing to write well would require kids to receive for-
mal educations. This analogy motivates us to explore

machine-learning mechanisms that could mimic ex-
plicit rule learning.

To this end we devise a method using a tag-set
sequence to represent the pattern of a sentence, where
each tag set consists of a few language-feature tags for
the underlying word or phrase in the sentence. Given
a declarative sentence and a corresponding interrog-
ative sentence, we would like to learn the tag-set se-
quences for each of these sentences and derive the tag-
set sequence for the answer key, so that when we are
given a new declarative sentence as input, we could
generate a QAP by first searching for a learned tag-
set sequence that matches the tag-set sequence of the
input sentence, then use the learned tag-set sequence
of the corresponding interrogative sentence to map the
context of the input sentence to produce an interroga-
tive sentence and derive a correct answer.

We construct a general framework called TSS-
Learner (Tag-Set-Sequence Learner) to carry out this
learning task. We train a TSS-Learner model for
the English language over a small initial training
dataset using SRL (semantic-role-label), POS (part-
of-speech), and NER (named-entity-recognition)
tags, where each data entry consists of a well-written
declarative sentence and a well-written interrogative
sentence. We show that TSS-Learner can generate ad-
equate QAPs for certain texts on which TP3 generates
silly questions. Moreover, TSS-Learner can generate
efficiently a reasonable number of adequate QAPs.
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On QAPs generated from the official SAT practice
reading tests, evaluations by human judges indicate
that 97% of the QAPs are both grammatically and se-
mantically correct.

The initial training dataset is not big enough to
contain tag-set sequences that match the tag-set se-
quences of a number of declarative sentences in the
passages of the SAT reading tests. We manually add
new interrogative sentences for some of these declar-
ative sentences, and show that TSS-Learner is able to
learn new rules and use them to generate additional
adequate QAPs.

The rest of the paper is organized as follows: We
summarize in Section 2 related work and present in
Section 3 a general framework of tag-set-sequence
learning. We then present in Section 4 an implemen-
tation of TSS-Learner for the English language and
describe evaluation results in Section 5. Section 6
concludes the paper.

2 RELATED WORK

Automatic question generation (QG), first studied by
Wolfe (Wolfe, 1976) as a means to aid independent
study, has attracted much research in two lines of
methodologies with a certain success; they are trans-
formative and generative methods.

2.1 Transformative Methods

Transformative methods transform key phrases from
a single declarative sentence into interrogative sen-
tences, including rule-based, semantics-based, and
template-based methods.

Rule-based methods parse sentences using a syn-
tactic parser to identify key phrases and transform a
sentence to an interrogative sentence based on syntac-
tic rules, including methods to identify key phrases
from input sentences and use syntactic rules for dif-
ferent types of questions (Varga and Ha, 2010), gen-
erate QAPs using a syntactic parser, a POS tagger,
and an NE analyzer (Ali et al., 2010), transform a
sentence into a set of interrogative sentences using a
series of domain-independent rules (Danon and Last,
2017), and generate questions using relative pronouns
and adverbs from complex English sentences (Khullar
et al., 2018).

Semantics-based methods create interrogative
sentences using predicate-argument structures and se-
mantic roles (Mannem et al., 2010), semantic pattern
recognition (Mazidi and Nielsen, 2014), subtopics
based on Latent Dirichlet Allocation (Chali and

Hasan, 2015), or semantic-role labeling (Flor and Ri-
ordan, 2018).

Template-based methods are used for special-
purpose applications with built-in templates, includ-
ing methods based on Natural Language Generation
Markup Language (NLGML) (Cai et al., 2006), on
phrase structure parsing and enhanced XML (Rus
et al., 2007), on self questioning (Mostow and Chen,
2009), on enhanced self-questioning (Chen, 2009), on
pattern matching and templates similar to NLGML
(Wyse and Piwek, 2009), on templates with place-
holder variables (Lindberg, 2013), and on semantics
turned to templates (Lindberg et al., 2013).

2.2 Generative Methods

Recent advances of deep learning have shed new light
on generative methods. For example, the attention
mechanism (Luong et al., 2015) is used to determine
what content in a sentence should be asked, and the
sequence-to-sequence (Bahdanau et al., 2014; Cho
et al., 2014) and the long short-term memory (Sak
et al., 2014) mechanisms are used to generate each
word in an interrogative sentence (see, e.g., (Du et al.,
2017; Duan et al., 2017; Harrison and Walker, 2018;
Sachan and Xing, 2018)). These models, however,
only deal with question generations without generat-
ing correct answers. Moreover, training these models
require a dataset comprising over 100K interrogative
sentences.

To generate answers, researchers have explored
ways to encode a passage (a sentence or multiple sen-
tences) and an answer word (or a phrase) as input,
and determine what interrogative sentences are to be
generated for a given answer (Zhou et al., 2018; Zhao
et al., 2018; Song et al., 2018). Kim et al. (Kim et al.,
2019) pointed out that these models could generate a
number of answer-revealing questions (namely, ques-
tions contain in them the corresponding answers).
They then devised a new method by encoding an-
swers separately, at the expense of having substan-
tially more parameters. This method, however, suffers
from low accuracy, and it is also unknown whether the
generated interrogative sentences are grammatically
correct.

Recently, a new method is presented to perform
a downstream task of transformers with preprocess-
ing and postprocessing pipelines (TP3) for generating
QAPs (Zhang et al., 2022). They showed that TP3
using pretrained T5 models (Raffel et al., 2020) out-
performs previous models. Human evaluations also
confirm the high qualities of QAPs generated by this
method. However, TP3 may generate silly questions
for certain chunk of texts. This calls for further in-
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vestigations for improving the qualities of generated
QAPs.

3 GENERAL FRAMEWORK

Let L be a natural language. Without loss of general-
ity, we assume that L has an oracle OL that can per-
form the following tasks:

1. Identify simple sentences with no subordinate
clauses and complex sentences with subordinate
clauses.

2. Segment a complex sentence into simple sen-
tences for each clause.

3. Segment a sentence into a sequence of basic units,
where a basic unit could be a word, a phrase, or a
subordinate clause.

4. Assign each basic unit in a sentence with one or
more feature tags including, but not limited to,
POS, NER, SRL, and SEI (sentiment-indicator)
tags.

Existing NLP tools for the English language, for
example, provide a reasonable approximation to such
an oracle.

3.1 Definitions

Definition 1. Let k ≥ 2 be a number of tags that OL
can assign to a basic unit. A k-tag set is a set of k tags,
denoted by [t1/t2/ · · ·/tk] with a fixed order of tags: t1
is an SRL tag, t2 is a POS tag, t3 is an NER tag, and ti
(i > 3) represent the other tags or a special word such
as an interrogative pronoun.

Two consecutive tag sets A and B with A.1 = B.1
(i.e., they have the same SRL tag) and A is left to B
in a sentence may be merged to a new tag set C as
follows: (1) If A = B, then let C ← A. (2) Other-
wise, based on the underlying language L, either let
C.2← A.2 (i.e., use the POS tag on the left) or let
C.2← B.2. For the rest of the tags in C, select a cor-
responding tag in A or B according to L. We have the
following proposition: For any sequence of tag sets,
after merging, the new sequence of tag sets does not
have two consecutive tag sets with the same SRL tag.

Definition 2. A tag-set sequence is a sequence of in-
terrogative pronouns (if any) and tag sets such that
each SRL tag appears in at most one tag set.

Remark. To accommodate improper segmentation of
phrasal verbs in applications, we may modify this def-
inition of tag-set sequence by allowing a fixed number
of consecutive tag sets to have the same SRL tag.

Since OL can segment a complex sentence into
simple sentences for each clause, we treat such a sen-
tence as a set of simple sentences. If a clause itself is a
complex sentence, it can be further segmented as a set
of simple sentences. A declarative sentence consists
of at least three different SRL tags corresponding to
subject, object, and predicate.

3.2 Architecture

TSS-Learner learns tag-set sequences from a training
dataset, where each data entry consists of a simple
declarative sentence and a interrogative sentence. It
consists of two phases: the learning phase and the
generation phase. In the learning phase, TSS-Learner
learns tag-set sequence pairs from an initial train-
ing dataset to generate an initial TS-sequence pair
database (TSSP-DB). In the generation phase, it takes
a declarative sentence as input and generates QAPs
using TSSP-DB. Figure 1 depicts the architecture and
data flow of TSS-Learner, which consists of five com-
ponents: Preprocessor, TS-Sequence Generator, Du-
plicate Remover, TS-Sequence Matcher, and QAP
Generator (see Section 4 for detailed explanations of
these components in connection to an implementation
of TSS-Learner for the English language).

Figure 1: TSS-Learner architecture and data flow.

3.3 Learning Phase

The learn phase and the generation phase use the same
Preprocessor and TS-Sequence Generator. Preproces-
sor is responsible for creating tag sets for a given sen-
tence and segmenting complex sentences into a set
of simple sentences. TS-Sequence Generator is re-
sponsible for merging tag sets to form a tag-set se-
quence. Moreover, for an input sentence in the gen-
eration phase, it also maps each tag set after merging
to the underlying text to be used later for generating
QAPs.

The Duplicate Remover component checks if a
new pair of tag-set sequences generated by TS-
Sequence Generator, one for a declarative sentence
and the other the corresponding interrogative sen-
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tence, is already in TSSP-DB. If yes, ignore it. Other-
wise, deposit it in TSSP-DB.

3.4 Generation Phase

Let T be a tag-set sequence and T ′ the set of tag
sets contained in T . Denote by |T ′| the size of T ′.
Let Xs be the tag-set sequence for s generated by TS-
Sequence Generator, Recall that the text for each tag
set is stored in the TS-Text Map.

Step 1. Find a tag-set sequence X for a declara-
tive sentence in TSSP-DB with the best match of Xs,
meaning that the longest common substring of X and
Xs, denoted by Z = LCS(X ,Xs), is the longest among
all tag-set sequences in TSSP-DB. A substring is a
sub-sequence of consecutive tag sets. If Z contains
tag sets for, respectively, a subject, a verb, and an ob-
ject, then we say that it is a successful match. If fur-
thermore, Z = X = Xs, then we say that it is a perfect
match. If Z is missing a subject tag set, a verb tag set,
or an object tag set, then it is an unsuccessful match-
ing. If a match is successful, go to Step 2. If a match
is unsuccessful or successful but not perfect, then no-
tify the user that TSS-Learner needs to learn a new
pattern and ask for interrogative sentences for s from
the user. Go to Step 2.

Step 2. Recall that X is the best match with Xs
and there may be multiple pairs (X ,Y ) in TSSP-DB
because multiple interrogative sentences may be gen-
erated from the same declarative sentence. Generate
all possible interrogative sentences for s as follows:
For each pair of tag-set sequences (X ,Y )∈TSSP-DB,
generate a tag-set sequence Ys from Y with

Y ′s = [Y ′− (X ′∩Y ′−X ′s)]∪ (X ′s−Z′).

This means that Y ′s is obtained from Y ′ by remov-
ing tag sets that are in both tag-set sequences in the
matched pair (X ,Y ), but not in the input sentence,
and adding tag sets in the input sentence but not in
Z = LCS(X ,Xs). We have

X ′s−Z′ = X ′s−X ′.

Order tag sets in Y ′s to form Ys, which may require
localization according to the underlying language. If
a tag set in Y ′s has the corresponding text stored in
the TS-Text Map, then replace it with the text. If not,
then it would require localization to resolve it. This
generate an interrogative sentence Qs for s.

Step 3. For each interrogative sentence Qs gener-
ated in Step 2, the tag sets in A′s = X ′−Y ′ represent a
correct answer. Place tag sets in A′s in the same order
as in X ′s and replace each tag set with the correspond-
ing text in s to obtain an answer As for Qs.

4 TSS-LEARNER FOR ENGLISH

SRL, POS, and NER tags are used in this implemen-
tation. Existing NLP tools for generating these tags
are for words, not for phrases. Proper phrase seg-
mentation can resolve this by merging. In particular,
it is critical to obtain segmentation for phrasal verbs
for generating interrogative sentences. A phrasal verb
consists of a preposition or an adverb, or both. A
straightforward method to segment phrasal verbs is to
use an extensive list of phrasal verbs.

4.1 Essential NLP Tools

We use the following NLP tools to generate tags:
Semantic-Role Labeling (Shi and Lin, 2019) for SRL
tags, POS Tagging (Toutanova et al., 2003) for POS
tags, and Named-Entity Recognition (Peters et al.,
2017) for NER tags.

SRL tags are defined in PropBank1 (Bonial et al.,
2012; Martha et al., 2005), which consist of three
types: ArgN (arguments of predicates), ArgM (mod-
ifiers or adjuncts of the predicates) , and V (predi-
cates). ArgN consists of six tags: ARG0, ARG1, . . . ,
ARG5, and ArgM consist of multiple subtypes such
as LOC as location, EXT as extent, DIS as discourse
connectives, ADV as general purpose, NEG as nega-
tion, MOD as modal verb, CAU as cause, TMP as
time, PRP as purpose, MNR as manner, GOL as goal,
and DIR as direction.

POS tags 2 are defined in the Penn Treebank tagset
(Toutanova et al., 2003; Marcus et al., 1993). For
example, NNP is for singular proper noun, VBZ for
third-person-singular-present-tense verb, DT for de-
terminer, and IN for preposition or subordinating con-
junction.

NER tags include PER for persons, ORG for orga-
nization, LOC for locations, and numeric expressions
for time, date, money, and percentage.

4.2 Preprocessor and TS-Sequence
Generator

On top of what is described in Section 3, Preprocessor
first replaces contractions and slangs with complete
words or phrases to help improve tagging accuracy.
For example, contractions ’m, ’s, ’re, ’ve, n’t, e.g.,
i.e., a.k.a. are replaced by, respectively, am, is, are,
have, not, for example, that is, also known as. Slangs

1https://verbs.colorado.edu/ mpalmer/projects/ace/EPB-
annotation-guidelines.pdf

2https://www.cs.upc.edu/ nlp/SVMTool/PennTreebank.
html
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Abraham [ARG1/NNP/PER/] Lincoln [ARG1/NNP/PER/] was [V/VBZ//] the [ARG2/DT//] 16th [ARG2/JJ//]
president [ARG2/NN//] of [ARG2/IN//] the [ARG2/DT//] United [ARG2/NNP/LOC/]

Figure 2: An example of a sentence and tag sets, where the tag set for each word is listed right after the word.

gonna, wanna, gotta, gimme, lemme, ya are replaced
by, respectively, going to, want to, got to, give me, let
me, you. It then segments sentences and tags words in
sentences using SRL, POS Tagging, and NER for the
training dataset and later for input sentences for gen-
erating QAPs. It also uses SRL to segment a complex
sentence into a set of simple sentences and discards
all simple sentences with a subject or an object miss-
ing. Moreover, for each sentence, it removes all the
words with a CC (coordinating conjunction) as POS
tag before its subject, including and, but, for, or, plus,
so, therefore, because.

TS-Sequence Generator merges the tag sets for
words in each basic unit as follows: (1) If the unit
contains a V-tag set (i.e., a tag set with V as the SRL
tag), then use this V-tag set for the entire unit. (2) If
the unit contains no V-tag set, then it must contain a
noun; use the right most tag set that contains a noun
POS tag.

It then merges the remaining tag sets if two con-
secutive tag sets are identical. If they are not identi-
cal but have the same SRL tag, then use this SRL tag
in the merged tag set, and the POS tag in the from
the rightmost tag set. Moreover, the NER tag in the
merged tag set is null if both tag sets contain no NER
tags; otherwise, use the rightmost non-empty NER
tag.

4.3 TS-Sequence Matcher

This component takes a tag-set sequence Xs of a sen-
tence s as input and executes Step 1 in the gener-
ation phase described in Section 3.4. The Suffix-
Tree algorithm (Ukkonen, 1985) is used to compute
a longest common substring of two tag-set sequences,
which runs in linear time. The POS tags NN, NNP,
NNS, and NNPS for various types of nouns are treated
equal. The POS tags VBP and VBZ for third-person-
singular-present verbs are treated equal.

Each tag set is in the form of [t1/t2/t3/t4], where
t1, t2, t3, t4 represent an SRL tag, a POS tag, an NER
tag, and an interrogative pronoun, and the latter two
tags could possibly be null. Fig. 2 displays the sen-
tence “Abraham Lincoln was the 16th president of the
United States” and the tag set for each word.

The resulting tag-set sequence for this sentence,
after merging, is the following:
[ARG1/NNP/PER/] [V/VBZ//] [ARG2/NNP/LOC/].

4.4 QAP Generator

QAP Generator executes Steps 2–3 in the genera-
tion phase described in Section 3. Recall that Z =
LCS(X ,Xs) is the longest match among all (X ,Y ) ∈
TSSP-DB. After Y ′s is generated, we form Ys as fol-
lows:

Case 1: Z = Xs. Then Ys = Y .
Case 2: Z is a proper substring of Xs. Then each

tag set in X ′s − Z appears either before Z or after Z.
Let Yb and Ya denote, respectively, the the tag set that
appear before and after Z in the same order as they
appear in Xs. Let

Ys = [Y − (X ′∩Y ′−X ′s)]YaYb,

where Y − (X ′∩Y ′−X ′s) means to remove from Y the
tag sets in X ′∩Y ′−X ′s .

For each tag set in Ys, if a corresponding text can
be found in the TS-Text Map, then replace it with the
text. A tag set that does not have a matched text in the
TS-Text Map is the extra helping verbs added to the
interrogative sentence that generates Y . There are five
POS tags for verbs: VBG for gerund or present par-
ticiple, VBD for past tense, VBN for past participle,
VBP for non-third-person singular present, and VBZ
for third-person singular present. Present participle,
past participle, and the negative forms of past tense
and present tense come with helping verbs. Thus,
only positive forms of the past tense VBD and the
present tense VBP and VBZ do not come with helping
verbs.

Suppose that there are two V-tag sets in Y , then
the first V-tag set is for a help verb. If it does not
have a matching text in TS-Text Map, then it is an
added helping word. In this case, check the POS tag
in the ARG0-tag set and determine if it is singular or
plural. Then check the POS tag in the first V-tag set
in Y to determine the tense. Use the information of
these POS tags to determine the correct form of the
helping verb, and replace the second V-tag set with
the matched verb in the TS-Text MAP in its original
form.

For example, suppose that the following declara-
tive sentence “John traveled to Boston last week” and
its interrogative sentence about location “Where did
John travel to last week” are in the training dataset.
They have the following tag sets before merging:

“John [ARG0/NNP/PER/] traveled [V/VBD//]
to [ARG1/IN//] Boston [ARG1/NNP/LOC/] last
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[TMP/NN//] week [TMP/NN//]”, and “Where
[///where] did [V/VBD//] John [ARG0/NNP/PER/]
travel [V/VB//] to [ARG1/IN//] last [TMP/NN//]
week [TMP/NN//]”.

With proper phrase segmentation we know that
“travel to” is a phrasal verb. Thus, after merg-
ing, we have “John [ARG0/NNP/PER/] traveled to
[V/VBD//] Boston [ARG1/NNP/LOC/] last week
[TMP/NN//]”, and “Where [///Where] did [V/VBD//]
John [ARG0/NNP/PER/] travel to [V/VB//] last week
[TMP/NN//]”.

After merging, the pair of tag-set sequences
(X ,Y ) is deposited in TSSP-DB, where X =
“[ARG0/NNP/PER/] [V/VBD//] [ARG1/NNP/LOC/]
[TMP/NN//]”, and Y = “[///where] [V/VBD//]
[ARG0/NNP/PER/] [V/VB//] [TMP/NN//]”.

Suppose that we are given a sentence s =
“Mary flew to London last month.” Its tag-set
sequence Xs is exactly the same as X , with
[ARG0/NNP/PER/] for “Mary”, [V/VBD//] for
“flew to”, [ARG1/NNP/LOC/] for “London”, and
[TMP/NN//] for “last month”, which are stored in the
TS-Text Map. Thus, Ys = Y . We can see that the
tag set of [V/VB//] in Y is not in the TS-Text Map
and so cannot be matched. To resolve this, check the
POS tag in the ARG0-tag set, which is NNP, indi-
cating a singular noun. The POS tag in the first V-
tag set is VBD, indicating past tense. Thus, the cor-
rect form of the helping verb is “did”. The text for
[V/VBD//] is “flew to” in the TS-Text Map. The orig-
inal form of the verb is “fly”. Thus, the second V-tag
set is replaced by “fly”. This generates the following
interrogative sentence: “Where did Mary fly to last
month?” The tag set for the answer is X ′−Y ′, which
is [ARG1/NNP/LOC/], corresponding to “London” in
the TS-Text Map.

5 EVALUATIONS

5.1 Training Dataset

We construct an initial training dataset by compos-
ing 112 pairs of declarative sentences and the cor-
responding interrogative sentences to cover the com-
mon tense, participles, voice, modal verbs, and some
common phrasal verbs such as “be going to” and “be
about to” for the following six interrogative pronouns:
Where, Who, What, When, Why, How many. A to-
tal of 112 tag-set-sequence pairs are learned and de-
posited in the initial TSSP-DB.

Note that SQuAD (Rajpurkar et al., 2016) is a
dataset commonly used for training and evaluating
generative methods for QG. However, a certain num-

ber of QAPs in SQuAD are formed improperly or lack
correct answers. There are also about 20% of ques-
tions in the dataset that require paragraph-level infor-
mation. Thus, SQuAD is unsuitable to train a TSS-
Learner model.

5.2 Comparisons with TP3

Recall that TP3 (Zhang et al., 2022) takes a declara-
tive sentence with a specified answer key contained in
it and the surrounding declarative sentences as input,
TP3 generates QAPs with better qualities then previ-
ous methods, but it also generates silly QAPs for cer-
tain chunks of text. It would be interesting to know
whether TSS-Learner may be used to complement
TP3. For this purpose we use the same dataset used
to evaluate TP3, and we show that the trained TSS-
Learner model with the small initial training dataset
can indeed generate adequate QAPs for certain texts
that TP3 does poorly. Table 1 depicts some of these
results.

5.3 Human Evaluation

Computed metrics such as BLUE (Papineni et al.,
2002), ROUGE (Lin, 2004), and Meteor (Lavie and
Denkowski, 2009) are commonly used to evalu-
ate summarization and machine translation against
benchmark datasets, which have also been used to
evaluate the qualities of machine generated QAPs.
These metrics, however, do not evaluate grammatical
correctness, and so human judgments are needed

We asked three human judges to evaluate the qual-
ities of the QAPs on a shared document based on the
following criteria: For questions: Check both gram-
mar and semantics: (1) correct; (2) acceptable (i.e.,
a minor fix would make it correct); (3) unacceptable.
For answers: (1) correct; (2) acceptable; (3) unaccept-
able. If judges have discrepancies on an item, they re-
solved it through discussions. In so doing, they jointly
produced one final evaluation result for each QAP.

We use the official SAT practice reading tests 3

for evaluating TSS-Learner. These tests provide a
large number of different patterns of declarative sen-
tences in the underlying passages. There are a to-
tal of eight SAT practice reading tests, where each
test consists of five articles and each article consists
of around 25 sentences. There are 40 articles and
1,136 sentences. After removing interrogative sen-
tences and other non-declarative sentences, there are
1,025 declarative sentences. Using the initial train-
ing dataset of 112 pairs of declarative and interroga-

3https://collegereadiness.collegeboard.org/sat/practice
/full-length-practice-tests
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Table 1: Examples that TSS-Learner does well but TP3 does not, where Q-by-TP3 and Q-by-TSSL stand for, respectively,
“Question generated by TP3” and “Question generated by TSS-Learner”. Note that in Example 3, in the input context, Eudora
Welty took a couple of friends to a restaurant and an unknown woman came and joined them.

Example 1
Input text: “However, on September 12, 1933, physicist Leo Szilard invented the neutron-chain reaction.”
Q-by-TP3: “When did the 11th of September happen?”
Q-by-TSSL: “When did physicist Leo Szilard invent the neutron-induced nuclear chain reaction?”
Answer: “on September 12, 1933”

Example 2
Input text: “My mother bought the beautiful basket and put it safely in some hiding place I couldn’t find.”
Q-by-TP3: “What did my mother say I needed?”
Q-by-TSSL: “What did my mother buy?”
Answer: “the beautiful basket”

Example 3
Input text: “Without a second thought, the woman joined the Welty party.”
Q-by-TP3: “What party did Eudora Welty join without thinking about it?”
Q-by-TSSL: “What did the woman join?”
Answer: “the Welty party”

Table 2: Human evaluation results on the SAT practice reading tests.

Where Who What When Why How Total
TSSP-DB entry pairs 18 45 23 22 6 8 122
QAPs generated 26 216 466 51 15 22 796
All correct 21 208 458 51 15 20 773
Syntactically acceptable 4 4 3 0 0 2 13
Semantically acceptable 1 2 5 0 0 0 8
Unacceptable 0 2 0 0 0 0 2

tive sentences, TSS-Learner generates a total of 796
QAPs. Table 2 depicts the evaluation summaries with
detailed breakdowns in each interrogative pronoun,
where “all correct” means that the question in the
QAP is both grammatically and semantically correct,
conforms to what native speakers would say, and the
answer is correct; “syntactically acceptable” means
that either the question or the answer has a minor
grammar error, and a small effort such as changing,
removing, or adding one word will fix the problem;
“semantically acceptable” means that either the ques-
tion or the answer is problematic in semantics, but
a minor effort will fix problem; and “unacceptable”
means that either the question or the answer is unac-
ceptable grammatically or semantically.

The percentage of generated questions that are
both syntactically and semantically correct is 97%.
We noticed that there is a strong correlation between
the correctness of the questions and their answers. In
particular, when a generated question is all correct,
its answer is also all correct. When a question is ac-
ceptable, its answer may be all correct or acceptable.
Only when a question is unacceptable, its answer is
also unacceptable.

The 13 syntactically acceptable questions are
mostly due to some minor issues in segmenting a
complex sentence into simple sentences, where a bet-
ter handling of sentence segmentation is expected to
correct these issues. Two questions whose interrog-
ative pronoun should be “how much” are mistakenly
using “how many”. Further refinement of POS tag-
ging that distinguish uncountable nouns from count-
able nouns would solve this problem. The eight se-
mantically acceptable questions are all due to NER
tags that cannot distinguish between persons, loca-
tion, and things. Further refinement of NER tagging
will solve this problem. The two unacceptable ques-
tions are due to serious errors induced when segment-
ing complex sentences. This suggests that we may
need to find a better way to deal with complex sen-
tences. Using a recursive list to represent complex
sentences might be useful in this direction.

There are 589 sentences for which no matched
tag-set sequences are found from the initial training
dataset. By learning new tag-set sequences from user
inputs, 535 of these sentences found perfect matching,
which generate QAPs that are both syntactically and
semantically correct. For the remaining 84 sentences,
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it is hard to segment them into a set of simple sen-
tences and so no appropriate tag-set sequences were
learned. This suggests that we should look into bet-
ter sentence segmentation methods or explore tag-set
trees as recursive lists of tag-set sequences to repre-
sent complex sentences as a whole for future studies.

5.4 Efficiency

Finally, we evaluate the running time for our trained
TSS-Learner to generate QAPs over 100 sentences on
a desktop computer with an Intel Core I5 2.6 Ghz
CPU and 16 GB RAM. The average running time
is 0.55 seconds for each input sentence, which is
deemed satisfactory for online applications. For a
given article, assuming that it would take the reader
several minutes to read. By then all the QAPs for
MCQs would have been generated.

6 CONCLUSIONS

Tag-set sequence learning is a novel attempt for gen-
erating adequate QAPs. It can generate adequate
QAPs that text-to-text transformers fail to gener-
ate. Numerical analysis shows that this approach
is promising. It achieves satisfactory results for the
English language using existing NLP tools on SRL,
POS, and NER tagging. Further improvement of NER
tagging may be able to eliminate a small number of
semantic errors we encountered.

Tag-set sequence learning is a text-to-rule learning
mechanism and a text-to-text model via explicit rules.
These explicit rules are automatically learned with
moderate human involvement – users are expected
to write and provide to the system an interrogative
sentence when a declarative sentence has a unseen
tag-set sequence. This procedure continues to enrich
the collection of tag-set sequence pairs in TSSP-DB,
When almost all possible patterns of declarative sen-
tences and the corresponding interrogative sentences
are learned (there are only finitely many of them to be
learned), TSS-Learner is expected to perform well on
generating adequate QAPs from declarative sentences
that can be segmented appropriately into simple sen-
tences.

However, not all complex sentences can be seg-
mented using existing tools. In particular, about 7.4%
of the declarative sentences in the official SAT prac-
tice reading tests are in this category. This calls for,
as mentioned near the end of Section 5, a better NLP
method to dissect complex sentences.

Applying TSS-Learner to a logographic language
would require robust and accurate segmentation at all

levels of words, phrases, and sentences, semantic la-
beling, POS tagging, and named-entity recognition
for the underlying languages. It would also require
appropriate localization for merging tag sets. It is in-
teresting to explore how well TSS-Learner performs
on a language other than English. It is also interest-
ing to investigate whether other NLP tools that bet-
ter represent the structures of sentences, such as de-
pendency trees and constituency trees, can be com-
bined with tag-set sequences to generate QAPs with a
higher quality.
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