
Towards a Pattern-based Approach for Transforming Legacy COBOL
Applications Into RESTful Web Services

Christoph Gaudl1 and Philipp Brune2,1

1SQ Solutions GmbH, Platz der Einheit 2, 60327 Frankfurt / Main, Germany
2Neu-Ulm University of Applied Sciences, Wileystraße 1, 89231 Neu-Ulm, Germany

Keywords: Legacy Application Modernization, Microservices, Web Services, REST, Java, COBOL.

Abstract: Many aspects of modern life still depend on large-scale, monolithic legacy applications, e.g. in financial ser-
vices, transport or public administration. Typically, these applications are written in ancient programming
languages such as COBOL and use proprietary transaction processing monitors like CICS. While the modern-
ization or replacement of these legacy application has been discusses in literature and practice for decades, still
no universal solution exists. In many cases, an evolutionary modernization strategy has shown to be successful
in practice, allowing to modernize the software architecture as well, not only the program code. Therefore, in
this paper an analysis pattern is derived for transforming stateful, transactional COBOL programs into state-
less RESTful web services. This pattern is evaluated by analyzing and transforming an example COBOL
application to Java. While the approach shows to be useful in case of the example application, it needs to be
further investigated in a broader range of real-world scenarios.

1 INTRODUCTION

In recent years, it became more an more obvious that
not only legacy systems and COBOL applications still
form the backbone of a large part of mission-critical
enterprise IT, but also will continue to do so in the fu-
ture, as their replacement or modernization is a com-
plex and time-consuming task. E.g., in the United
States, 43 percent of banking systems are built on
COBOL, 80 percent of in-person transaction and 95
percent of ATM transactions rely on COBOL code
(Reuters, 2022).

In example, in 2020, during to the pandemic, the
case of the unemployment insurance in the US re-
ceived worldwide media attention, when suddenly a
large number of people tried to fill out their unem-
ployment forms and the system went down. The sys-
tems managing these forms had been developed in
COBOL and not updated for quiet some time (Mak-
ena, 2020). However, the main reason for this col-
lapse was not COBOL as a programming language,
but the fact that the systems where not updated and
the COBOL code was not modernized for quite some
time (Gregori, 2020). Also the neccessary invest-
ments for modernizing these appliactions had been
considered too high for many years (Allyn, 2020).

This is one example of software aging (Huang

et al., 1995): Not actively maintaining program code
for a longer period of time leads to code degeneration
and reduces its quality, until the code is considered
legacy. This not only applies to ancient programm
languages like COBOL or FORTRAN. but can also
hold true for more modern ones like Java or C++
(Sneed, 2006; Srinivas et al., 2016; Knoche and Has-
selbring, 2018).

Therefore, as most legacy systems are mission
critical (Sneed and Erdos, 1996), their moderniza-
tion remains an important and ongoing challenge
in practice.In this paper, we discuss an evolution-
ary approach focusing on breaking up monolithic,
transcational COBOL applications into web services
(Knoche and Hasselbring, 2018), which then could be
modernized and encapsulated. Today, various tech-
nological platforms exist for afterwards implement-
ing and hosting such web services, be it on or off the
mainframe platform (Sherill, 2015; Gohil et al., 2017;
Brune, 2018).

While most early approaches for modernizing a
legacy system nowadays could be considered legacy
systems themselves (Canfora et al., 2008; Sneed,
2006), more recent works discussing a manual trans-
formation into web services mainly focus on a
lift-and-shift approach for non-transactional servics
(Knoche and Hasselbring, 2018; De Lauretis, 2019),

Gaudl, C. and Brune, P.
Towards a Pattern-based Approach for Transforming Legacy COBOL Applications Into RESTful Web Services.
DOI: 10.5220/0011575300003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 159-165
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

159

moving the functionality off the mainframe com-
pletely.

Therefore, in this paper an analysis pattern for
transforming transactional COBOL programs written
for the IBM CICS transaction monitor into stateless
web services is proposed and evaluated by means of a
semi-realistic sample application. This approach is in
principle agnostic with respect to the objectives of the
modernization, be it a re-use of the existing COBOL
code as part of a web service or a re-write in another
language, and hosted on or off the legacy platform.

The rest of this paper is organized as follows: In
section 2 the related work and previous modernization
efforts are described in detail. Section 3 describes the
proposed analysis pattern, which is evaluated by ap-
plying it to a semi-realistic example in section 4. Sec-
tion 5 illustrates the actual re-implementation of the
web services in Java. We conclude with a summary
of our findings.

2 RELATED WORK

Legacy modernization has been discussed in the lit-
erature for a long time. Nevertheless, it remains an
ongoing challenge for research and practice.

(Chiang and Bayrak, 2006) describe a process for
extracting and reusing business rules from a given
program. In this approach, program slicing is used.
To find which components could be reused, the pro-
gram code is divided into smaller parts. These parts
are used to look into specific operation categories of
the application. The first category is the user inter-
face, the second category are database operations and
the third is the business logic. The program point to
slice must be the last statement for the respective cat-
egory.

In (Comella-Dorda et al., 2000), the need for mod-
ernization is motivated by the goal of avoiding redun-
dant code, and its adaptability to changing business
requirements. System evolution can be achieved by
maintenance, modernization and replacement of soft-
ware components. Modernization is in between main-
tenance and replacement. It is used, when bigger
changes to the software are needed, such as system
restructuring, important functional enhancements or
adding new software attributes. But in contrast to a
replacement, by modernization major business values
are preserved.

(Canfora et al., 2008) differentiate between three
methods for modernization: redevelopment, wrap-
ping and migration. Unlike (Comella-Dorda et al.,
2000), redevelopment here is considered a form of
modernization, defined as re-build of a software from

scratch, on new hardware and with a modern archi-
tecture. Migration is defined as the process of moving
the system to a new platform, while retaining the orig-
inal data and functionalities. Wrapping refers to the
encapsulation of existing data, programs, applications
and interfaces with new interfaces.

For modernization on the mainframe platform it-
self, IBM earlier introduced e.g. the CICS Asyn-
chronous API (Gohil et al., 2017). The basic principle
of the asynchronous API is the parent-child model.
A parent task can run multiple child tasks to execute
logic asynchronously from the parent. Therefore, the
logic executed by the children must be independent
from the other children. Because all the parent and
child tasks are CICS transaction themselves, the lack
of transactional guarantees as mentioned in (Knoche
and Hasselbring, 2018) is no problem here. The trans-
actional guarantees are provided by CICS.

However, nowadays microservices are the state-
of-the-art in application architecture. According to
(Dragoni et al., 2017), a microservice is a cohe-
sive and independent process, which is interacting
via messages. In (Newman, 2021), a microservice
is defined as a small and autonomous service, which
works together with other microservices. Such ser-
vices are the next step in softwae development, re-
placing the earlier after SOA paradigm. Therefore,
in recent years predominantly the transformation of
monolithic legacy applications into microservice ar-
chitectures is discussed by many authors.

(Wolfart et al., 2021) give an overview by
analysing multiple studies to derive a roadmap for
modernizing legacy systems with microservices. The
proposed roadmap consists of eight steps, grouped
into four major phases: initiation, planing, execution
and monitoring of the developed microservices.

Another approach was proposed by (De Lauretis,
2019). Here, the proposed strategy is based on five
steps to go from the monolithic to the microservice
architecture. The first step is the function analysis
of the existing architecture. In the second step Busi-
ness functionalities are identified and analysed in the
third step. In the following fourth step the business
functionalities are theoretically assigned to new mi-
croservices, and in the last step the microservices are
implemented.

(Knoche and Hasselbring, 2018) also propose a
five step modernization process: In the first step, an
External Service Facade is defined, so microservices
can have entry points to the system. In the second
step, these External Service Facade are adapted to
the existing application. In a third step, the clients
is connected to the new Service Facade. In the fourth
step, an Internal Service Facade is developed. This

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

160

step could also be completed parallel to the first three
steps.

The authors chose not to do this, because of the
lack of resources and the high risk to failure. In the
last step, the old services can be replaced by microser-
vices, which still are based on COBOL but are only
accessed through well defined interfaces. These steps
where all done manually and took almost four years
to complete. With this method, so far mainly read-
only operations where converted, because of the lack
transactional guarantees microservices can provide.

The analysis of the related work revealed a major
difference between older (> 5 years) and newer re-
search: While in the older work the focus was more
on the development of an explicit solutions for mod-
ernization of a given application, in the newer papers
the focus is on developing patterns for modernization
in general.

Therefore, in this paper the question is addressed,
how these approaches could be combined to modern-
ize a given application with the use of microservices,
using a generic pattern while still preserving transac-
tional guarantees, such that read and write functional-
ities could be implemented.

3 A PATTERN FOR LEGACY
COBOL CODE ANALYSIS

The first step in modernizing any legacy system is the
analysis of the given application. This analysis is nec-
essary to identify the business logic of the given code.
After the business logic of the code is analysed, the
code sections could be identified, which could be used
for creating a microservice-like structure.

For CICS COBOL programs, these sections can
be identified by using the embedded EXEC CICS
statements. These statements define the different
types of functions executed in the transaction. There
are a variety of possible functions used in transac-
tions. Depending on the functions different mod-
ernization options are possible. To get away from a
monolithic application, in a first step user interface
and data operations need to be separated. This is
needed to implement a client-server structure. Here,
the server should become stateless, so that the process
state is only implemented in the client and the server
only handles the data operations. The communication
between server and client then works with web APIs.

To achieve this, the following sequence of three
generic steps is proposed:

1. Analyze the user interface maps or mask defini-
tions (UI screens), so that the user interface can be

implemented in the client. If the application, like
the one used in this paper, depends on user inputs,
the fields in the map can be mapped to input fields
in a web form.

2. Identify the so called interface commands. These
are given by the EXEC CICS RECEIVE and
EXEC CICS SEND functions (see figure 1 for an
example). These functions are used to take data
from the mask or send data to the mask. For the
client server structure, these mark the communi-
cation points between server and client.

3. Analyze the other EXEC CICS statements, so the
possible services can be identified. This step is
highly individual for each given application. But
in this work, a roadmap on how to analyse a given
application is presented in the following.

4 EVALUATION

The evaluation was performed by transforming a
semi-realistic sample CICS COBOL application pro-
vided by SimoTime Technologies for educational pur-
poses (Simotime, 2022). As this is one of the few
available non-trivial CICS example applications on
the web, it is has been used also in other papers as
well (Brune, 2018). It consist of three top-level pro-
grams, which were analyzed in this study.

The COBOL fragment in figure 1 as taken from
the customer inquiry program, one of these three sam-
ple programs. In the following, this is analyzed as an
example. A similar analysis was performed for all
three programs.

The code in figure 1 shows the typical use of a UI
map or mask, which allows the user to view any ex-
isting customer VSAM datasets by inserting the cus-
tomer number. Like in many other COBOL and CICS
implementations, the UI and the programming logic
are not separated between host and client. So the first
part of the PROCEDURE DIVISION is used to man-
age the masks and get back to a mask higher up in
the hierarchy. This section of the code, which only
contains UI logic, in a modern application would be
implemented in the client, so the server would remain
stateless.

The next section of the code gets the customer in-
formations for a given customer number and arranges
it so the information can be displayed by the mask.
Afterwards, the program reads the information en-
tered by the users into the mask. This can be identified
by the EXEC CICS RECEIVE statement. This is the
point where the user input is checked, if it applies to
all the rules for a customer number. The fact that this

Towards a Pattern-based Approach for Transforming Legacy COBOL Applications Into RESTful Web Services

161

END−OF−PROGRAM−12.

EXEC CICS SEND
FROM (EOJ−MESSAGE)
LENGTH (5 0)
ERASE
END−EXEC

EXEC CICS SEND
CONTROL FREEKB
END−EXEC

EXEC CICS RETURN
END−EXEC

e x i t .

GET−CUSTOMER−INFORMATION .

pe r fo rm GET−CUSTOMER−NUMBER
per fo rm GET−CUSTOMER−RECORD
per fo rm POSSIBLE−SPECIAL−HANDLING
per fo rm SEND−INQUIRY−SCREEN

* Should n e v e r g e t t o h e r e . . .
e x i t .

GET−CUSTOMER−NUMBER.

EXEC CICS RECEIVE
MAP (’ CU2INQ1 ’)
MAPSET (’ CU2INQ1 ’)
RESP (WS−RESPONSE)
RESP2 (WS−REASON−CODE)
END−EXEC .

i f REQNUMBL > ZERO
move REQNUMBI t o Z−WORK−12
pe r fo rm Z−RIGHT−ADJUST−Z−WORK−12
move Z−WORK−12 t o REQNUMBI
move REQNUMBI t o LS−CUSTNO

e l s e
move ’ P l e a s e e n t e r a 12 d i g i t c u s t o m e r number . . . 3 ’

t o MSG−LINES
per fo rm RECOVERY−ROUTINE

end− i f .
e x i t .

Listing 1: COBOL code fragment from (Simotime, 2022) illustrating the use of EXEC CICS statements.

check appears similar in two programs makes this sec-
tion a good part to be implemented as a microservice,
as it is small in size and used multiple times.

The next routine which follows is GET-
CUSTOMER-RECORD. In this routine the customer
dataset is first read form the dataset of customers and
then mapped to the fields on the mask of the UI. The
first part if reading from the dataset is identified by
the EXEC CICS read statement. In a microservice
architecture this can be represented by sending a
message with the customer number to a microservice,
which searches a database or dataset and then returns
the dataobject.

The second part of this routine assigns the re-
ceived data to the equivalent positions on the mask.
This part could be solved on the client site in a mod-
ernized approach, because this assignment only is
used for display purposes. The keywords to identify
such a functionality is the ‘MOVE [..] TO‘ combina-
tion.

The following routine SEND-INQUIRY-
SCREEN is also a routine to display the output
onto the screen. This part of the code could also be
handled on the client side of a modern architecture,
e.g. with a JavaScript client.

The two routines Z-RIGHT-ADJUST-Z-WORK-

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

162

12 and Z-GET-DATE-AND-TIME also exists in all
three of the programs analyzed in this work, so an
approach to design them as a microservice is obvi-
ous. The first of these two routines takes the user
input of the customer number and adjusts it so that
the length is always 12 characters. The second rou-
tine is used to set the current time onto the screen for
the user. The last routine Z-GET-DATE-AND-TIME-
CICS uses the build in CICS method ASKTIME to
update the time to the current time and not the initial
time, when the task started.

After a deeper look into the code fragments, en-
try points for microservices were identified. The first
pattern which should be looked for are the EXEC
CICS SEND and RECEIVE statements. Between
these parts of the code, normally operations on data
are executed. This is a typical task for the server and
not the client.

Another pattern to look for are the ‘MOVE [...]
TO‘ statements. These statements normally are used
when data is assigned to different variables, either for
operative purpose or displaying purpose. In a mi-
croservice architecture these are the communication
points. Here the client sends the information via mes-
sage to the server and the corresponding microservice,
so the specific operation can be executed.

This analysis demonstrates, how complex even
such small projects are, when implemented as a
monolithic application. The disadvantages of the
monolithic approach can also be seen in the doubling
of the routine to adjust a customer number to 12 digits
and the routine to get the current time.

In an approach using microservices, these routines
would be only implemented once and then can be
used by other applications that needs this function-
ality.

5 TRANSFORMATION OF THE
APPLICATION

To demonstrate a possible microservice implemen-
tation, the identified services were implemented as
RESTful services with Java and JAX-RS, using the
OpenLiberty application server1.

The OpenLiberty server was chosen, because this
application server could also be run on a mainframe
under z/OS. For the purpose of this work, the func-
tionality only was tested on a local machine.

In the first step, an OpenLiberty application server
was set up on a local machine using version 22.0.0.5
with the Eclipse IDE version 2022-03(4.23.0). For

1https://openliberty.io

the client, a simple JavaScript web client was imple-
mented. The underlying database is an ObjectDB
database. ObjectDB is an open source Object-
Oriented Database Management System implement-
ing the Java Persistence API (JPA)2.

The first Java class to be implemented is the cus-
tomer record. This class was build after the template
of the respective COBOL copybook. So all required
values from the customer files in the CICS application
could be accessed in this application and saved into a
database. For JPA, this class is used as the JPA entity.

After the customer class, the services needed be
implemented. To replicate the given CICS code, the
services to find and create a customer must be imple-
mented. For each of this services, an extra method
was written. Figure 2 shows the respective Java code
fragment for this service class, built using JAX-RS.

The first service is the createCustomer method.
The service can be accessed from the client by send-
ing a POST request over the given API. With this call
all the needed customer informations are sent from
the client to the server, by the use of the service API.
Then in the function it is checked if the customer al-
ready exists. If not then the newly created customer
is saved to the ObjectDB database using the Entity-
Manger. After that the created customer is sent back
to the client so it can be displayed for the user.

The second service is the findCustomer method.
This service can be accessed by a GET request over
the given API. The client sends the Id to the server
over the API. The function then uses the EntityMan-
ager to find the wanted Customer using the Id. If the
customer is found it is returned to the client so it can
be displayed for the user.

The routine Z-RIGHT-ADJUST-Z-WORK-12 in
the program in figure 1 can be replaced by the min-
length and maxlength option on the input label in the
HTML5 frontend. This options only allows inputs
that are exactly 12 digits long. So the user cannot
input an ID which not complies with the length of 12.

In this way, the application was re-implemented
completely in Jakarta EE with the use of an OpenLib-
erty server. This makes the application more open for
future changes to the application. For example, to add
the functionality of updating customers, now only an
extra service needs to be added into the existing ap-
plication. Then the client needs to be adjusted so the
new service can be accessed. After that the User can
access the service over the client and not need to ac-
cess an other sub program like in the CICS version.

2https://www.objectdb.com

Towards a Pattern-based Approach for Transforming Legacy COBOL Applications Into RESTful Web Services

163

@ S t a t e l e s s
@Path (” s e r v e r ”)
@Consumes (MediaType . APPLICATION JSON)
p u b l i c c l a s s ServerEJB {

@ P e r s i s t e n c e C o n t e x t (unitName =” CustomerDB ”)
p r i v a t e E n t i t y M a n a g e r em ;

p r i v a t e s t a t i c f i n a l J sonb j s o n b = J s o n b B u i l d e r . c r e a t e () ;

@POST
@Path (” c r e a t e /{ i d } /{ fn } /{mn} /{ l n } /{ a1 } /{ a2 } /{ c } /{ s } /{ pc } /{ ph } /{pw} /{ pce }”)
@Produces (MediaType . APPLICATION JSON)
p u b l i c Customer c r e a t e C u s t o m e r (

@PathParam (” i d ”) Long cusnumber ,
@PathParam (” fn ”) S t r i n g f i r s t n a m e ,
@PathParam (”mn”) S t r i n g midname ,
@PathParam (” l n ”) S t r i n g l a s tname ,
@PathParam (” a1 ”) S t r i n g a d d r e s s 1 ,
@PathParam (” a2 ”) S t r i n g a d d r e s s 2 ,
@PathParam (” c ”) S t r i n g c i t y ,
@PathParam (” s ”) S t r i n g s t a t e ,
@PathParam (” pc ”) S t r i n g p o s t a l c o d e ,
@PathParam (” ph ”) S t r i n g phone home ,
@PathParam (” pw ”) S t r i n g phone work ,
@PathParam (” pce ”) S t r i n g p h o n e c e l l) {

Customer c u s t o m e r = new Customer (cusnumber , f i r s t n a m e ,
midname , l a s tnam e , a d d r e s s 1 , a d d r e s s 2 , c i t y , s t a t e ,
p o s t a l c o d e , phone home , phone work , p h o n e c e l l) ;

Customer t e s t c u s t o m e r ;
t e s t c u s t o m e r = em . f i n d (Customer . c l a s s , cusnumber) ;
i f (t e s t c u s t o m e r == n u l l) {

em . p e r s i s t (c u s t o m e r) ;
}

r e t u r n c u s t o m e r ;
}

@GET
@Path (” f i n d /{ cusnumber }”)
@Produces (MediaType . APPLICATION JSON)
p u b l i c Customer f i n d C u s t o m e r (@PathParam (” cusnumber ”) long cusnumber) {

Customer c = em . f i n d (Customer . c l a s s , cusnumber) ;
r e t u r n c ;

}

}
Listing 2: Java code fragment of the new implemenation of the customer service.

6 CONCLUSION

In conclusion, in this paper a pattern to transform
monolithic transactional COBOL applications into
stateless web services was proposed. It was evalu-
ated by breaking down the given code of an existing
semi-realistic sample application into pieces, which

later where used to implement a modern application.
This method could be used for any CICS application.

After the explanation on how to break down and
find the modernization points in an application, a
methodolgy to modernize the application was shown.
In this case, a new Java application was developed,
with the OpenLiberty server taking over the part of

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

164

the CICS transaction monitor. To retain the full func-
tionality of the original application, also a web client
was implemented, which uses the services provided
by the server. This client took over the functionality
of the maps in the old application.

With this implementation, a microservice-based
client-server architecture was achieved. Because of
the use of microservices, new functionalities only
need to add an API so that the client can access them,
and the data required by the client must be defined.
Then the client can be adopted to the new services. So
the development of the logic, which is handled by the
client, and the operations on the data are separated,
and the server becomes stateless.

The next step for this application should be an in-
tegration of the CICS with the Liberty Server itself, so
it can be shown that a modernization can be possible
with reusing the underlying COBOL and CICS code.

Another promising possibility could be the de-
velopment of an automated pattern recognition algo-
rithm, following the pattern presented in this work,
which could make use of machine learning techniques
to further automate legacy modernization.

REFERENCES

Allyn, B. (2020). ’cobol cowboys’ aim to rescue sluggish
state unemployment systems. https://www.npr.org/
2020/04/22/841682627/cobol-cowboys-aim-to-resc
ue-sluggish-state-unemployment-systems. visited:
07/06/2022.

Brune, P. (2018). An open source approach for moderniz-
ing message-processing and transactional cobol appli-
cations by integration in java ee application servers. In
International Conference on Web Information Systems
and Technologies, pages 244–261. Springer.

Canfora, G., Fasolino, A. R., Frattolillo, G., and Tramon-
tana, P. (2008). A wrapping approach for migrating
legacy system interactive functionalities to service ori-
ented architectures. Journal of Systems and Software,
81(4):463–480.

Chiang, C.-C. and Bayrak, C. (2006). Legacy software
modernization. In 2006 IEEE international confer-
ence on systems, man and cybernetics, volume 2,
pages 1304–1309. IEEE.

Comella-Dorda, S., Wallnau, K. C., Seacord, R. C., and
Robert, J. E. (2000). A survey of black-box modern-
ization approaches for information systems. In icsm,
pages 173–183.

De Lauretis, L. (2019). From monolithic architecture to
microservices architecture. In 2019 IEEE Interna-
tional Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 93–96. IEEE.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2017). Mi-

croservices: yesterday, today, and tomorrow. Present
and ulterior software engineering, pages 195–216.

Gohil, P., Horn, J., He, J., Papageorgiou, A., Poole, C., et al.
(2017). IBM CICS Asynchronous API: Concurrent
Processing Made Simple. IBM Redbooks.

Gregori, S. (2020). Cobol isn’t the issue: A misinterpreted
crisis. https://hackaday.com/2020/04/20/cobol-isnt-th
e-issue-a-misinterpreted-crisis/. visited: 07/06/2022.

Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D.
(1995). Software rejuvenation: Analysis, module and
applications. In Twenty-fifth international symposium
on fault-tolerant computing. Digest of papers, pages
381–390. IEEE.

Knoche, H. and Hasselbring, W. (2018). Using microser-
vices for legacy software modernization. IEEE Soft-
ware, 35(3):44–49.

Makena, K. (2020). Unemployment checks are being held
up by a coding language almost nobody knows. https:
//www.theverge.com/2020/4/14/21219561/coronavi
rus-pandemic-unemployment-systems-cobol-legacy-
software-infrastructure. visited: 07/06/2022.

Newman, S. (2021). Building microservices. ” O’Reilly
Media, Inc.”.

Reuters (2022). Cobol blues. http://fingfx.thomsonreuters
.com/gfx/rngs/USA-BANKS-COBOL/010040KH18
J/index.html. visited: 07/06/2022.

Sherill, S. (2015). Building an api bridge to your ibm z
systems applications and data.

Simotime (2022). Cics cobol example application. http:
//www.simotime.com/sim4home.htm. visited:
16/05/2022.

Sneed, H. M. (2006). Integrating legacy software into a ser-
vice oriented architecture. In Conference on Software
Maintenance and Reengineering (CSMR’06), pages
11–pp. IEEE.

Sneed, H. M. and Erdos, K. (1996). Extracting business
rules from source code. In WPC’96. 4th Workshop on
Program Comprehension, pages 240–247. IEEE.

Srinivas, M., Ramakrishna, G., Rao, K. R., and Babu, E. S.
(2016). Analysis of legacy system in software appli-
cation development: A comparative survey. Interna-
tional Journal of Electrical & Computer Engineering
(2088-8708), 6(1).

Wolfart, D., Assunção, W. K., da Silva, I. F., Domingos,
D. C., Schmeing, E., Villaca, G. L. D., and Paza, D.
d. N. (2021). Modernizing legacy systems with mi-
croservices: A roadmap. In Evaluation and Assess-
ment in Software Engineering, pages 149–159.

Towards a Pattern-based Approach for Transforming Legacy COBOL Applications Into RESTful Web Services

165

