
Study on AR Application Efficiency of Selected iOS and Android OS
Mobile Devices

Monika Zamłyńska1, Adrian Lasota2, Grzegorz Debita1 a and Przemysław Falkowski-Gilski2 b
1Faculty of Management, General Tadeusz Kosciuszko Military University of Land Forces,

Czajkowskiego 109, 51-147 Wroclaw, Poland
2Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,

Narutowicza 11/12, Gdansk, Poland

Keywords: Android OS, HCI (Human-Computer Interface), Mobile Devices, Multimedia Content, UX (User Experience).

Abstract: Currently, the number of scenarios for using AR (Augmented Reality) tools grows every year. Yet, there are
still some open performance issues associated with this technology, related with the efficiency of the mobile
device itself, including build-in components or the operation system. The purpose of this study was to
investigate available augmented reality engines for mobile platforms. First, a review of current graphics and
AR engines was conducted, based on which measurement aspects were selected taking into consideration the
device performance. Next, we have performed a series of research studies, including different 3-dimensional
AR modes and scenarios, both with and without a tag. The research was carried out using 4 mobile devices,
with 3 of them running Android OS and 1 powered by iOS (with 2 different AR libraries). The performed
tests and obtained results can aid any interested individual when choosing the right mobile device, as well as
configuring the AR environment, for various UX (User Experiences).

1 INTRODUCTION

Augmented reality (AR) is a strongly growing
technology. To confirm this claim, according to the
International Data Corporation report (IDC, 2022),
in 2016 the global AR market was valued at USD 200
million, while four years later stood at USD 4.16
billion. Moreover, by 2028 its size is expected to
reach USD 97.76 billion, exhibiting an excellent
compound annual growth rate (CAGR) of 48.6%
during the forecast period. The great players of the
mobile platforms market, including Google with
its Android system and Apple with iOS,
either individually or in cooperation with others,
are actively developing AR solutions.

Augmented reality can be defined as a system that
performs three basic functions (Wu et al., 2013):
 connecting the real world with the virtual

world,
 real-time interaction,
 and registration of 3D virtual and real objects.

a https://orcid.org/0000-0003-1984-4740
b https://orcid.org/0000-0001-8920-6969

AR simplifies our life by providing virtual
information not only for the user’s immediate
environment, but also for any view of the real world,
like a live and on-line video broadcasting
(Fuhrt, 2011). Augmented reality differs from virtual
reality in that AR alters and expands perceptions of the
real world, where virtual reality fully transforms the
user’s world with the generated one (Steuert, 1992).

In other words, AR technology extends reality by
superimposing virtual objects in real-time. It outlines
a superior way of presenting data, that is, hiding
reality from the user (Azuma et al., 2001). Removing
objects from the real world corresponds to covering
objects consistent with the background as information
to the human that the object is not here. Augmented
reality has a wide range of applications, including
medical visualization, advertising, maintenance,
repair, and annotation.

Zamłyńska, M., Lasota, A., Debita, G. and Falkowski-Gilski, P.
Study on AR Application Efficiency of Selected iOS and Android OS Mobile Devices.
DOI: 10.5220/0011574600003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 475-484
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

475

2 AR SYSTEM ARCHITECTURE

From an architectural point of view, the flow of
information in an augmented reality-enabled
application involves several independent modules,
as shown in Figure 1:
 The physical module of the RGB camera

receives a stream of reflected light from the real
world to record the environment. The output
from this module is a video data stream.

 This stream must be processed by a module that
converts it into individual image frames.

 A marker or point cloud (depending on how the
environment is recorded) is extracted from a
single image frame, which will allow another
module to track that object. This module has
defined transformation matrices for the
coordinates of the world, the camera and the
object to be tracked. Thus, it is able to calculate
the expected values of the future 3D object.

 The tracking module continuously transmits
the calculated transformations and positions
needed for rendering 3D objects.

 The final step is to display on the screen of the
smartphone the image from the camera
connected to the generated virtual object.

Figure 1: AR data flowchart.

Augmented reality libraries usually implement
only a module related to image processing,
i.e., extraction of information about markers or the
ambient point cloud, and a module responsible for
updating this information in real-time. Developers
strive to provide the best possible experience when
using AR applications, so the other modules are also
included in the code they provide. As an example,

let us consider the Google’s Depth API (Android
Developer, 2022), which uses spatial vision (depth
sensor) in a growing number of smartphones to place
virtual objects behind real things.

Figure 2 shows a comparison of scenes where,
in the left image, the virtual cat is simply placed
in space, while in the right image, the cat is hidden
behind a plush piece of furniture.

Figure 2: AR scene without (left) and with (right) applied
depth (Android Developer, 2022).

Figure 3 indicates the heat map from the depth
sensor, with red for a small distance from the camera,
and blue for a large distance.

Figure 3: Camera view using a RGB (left) and depth (right)
sensor (Android Developer, 2022).

3 METHODS FOR RECORDING
THE ENVIRONMENT

There are two ways of recording the environment,
namely marker-based or marker-less.

QQSS 2022 - Special Session on Quality of Service and Quality of Experience in Systems and Services

476

3.1 Marker-based

Augmented reality can be classified by the type of
real world scanning. The first class is AR (marker-
based) support, as shown in Figure 4.

Figure 4: Exemplary AR markers.

Markers are usually black and white due to the
fact that such colors are more contrasting, allowing
the camera to better register and later extract the
marker from the image. This relieves the device of
potential image post-production. This is not a
requirement, however, and with proper lighting,
color markers work without problems, but it can
increase tag detection time.

The example AR tags differ in appearance,
and this is due to the use of other algorithms to detect
the pattern on them. The form of the tags is limited
only by the implemented way of detecting it in the
registered images.

When working with marker-based augmented
reality, the tag must be “unpacked” by projection.
Projection is a type of three-dimensional
transformation, also known as perspectival
transformation, or as homography operates on
homogeneous coordinates.

൥
ℎ𝑥௖
ℎ𝑦௖
1
൩ ൌ 𝐻 ቈ

𝑥௠
𝑦௠
1
቉ ൌ ൥

𝑁ଵଵ 𝑁ଵଶ 𝑁ଵଷ
𝑁ଶଵ 𝑁ଶଶ 𝑁ଶଷ
𝑁ଷଵ 𝑁ଷଶ 1

൩ ቈ
𝑥௠
𝑦௠
1
቉ (1)

where: 𝐻 is an arbitrary 3 x 3 homogeneous matrix,
xci, yci, for i = 1, 2, 3, 4, are the coordinates read
(marker), xmi, ymi, for i = 1, 2, 3, 4, are the expected
coordinates (real world).

After putting the resulting values and equating all
sides of the equation, we get a transformation matrix,
which we use to transform 3D objects to place it in
real space. Projection is commonly used for scanning
documents through smartphones or transforming
photos where there are lens distortions.

The tag has a specific layout (Gupta, 2019),
as shown in Figure 5, to orient it in space. The tag-

recognizing algorithm contains the coordinates xmi,
ymi for each feature point on the tag, comparing this
with the coordinates read from the photo through
homography, from which we receive the desired
transformation.

Figure 5: Layout of an exemplary tag.

3.2 Marker-less

The second class is marker-less operation.
The advantage of this mode of operation is the ability
to move the phone in space without having to aim
the marker. Proper marker-less operation requires flat
ambient surfaces, preferably distinguishable from the
background.

Surface recognition proceeds by mapping the
environment. Depending on the algorithm
implemented in a library, individual image frames are
analyzed using feature extraction technology or
simultaneous localization and mapping (SLAM)
technology, among others, to search for correlations
between frames. Once connections are detected on a
certain number of frames, 3D points are defined based
on a point cloud, also known from photogrammetry.

SLAM’s purpose is to move through space,
scanning it to create a digital map of the space for the
user to refer to. Initially, the technology was used to
help robots move without colliding with their
surroundings, but it is now appearing in many other
industries as well (Kolhatkar and Wagle, 2021).
There are two types of SLAM:
 visual SLAM (VSLAM), which is based on

scanning through a camera,
 and light detection ranging (LiDAR), which

uses laser scanners to analyze the environment.
Both types of SLAM often use inertial

measurement unit (IMU) support, which can be a
gyroscope, accelerometer, Hall sensor, etc.
This makes it possible to achieve better maps.
When the camera captures the surroundings, the IMU
tracks the device’s movement, allowing it to measure
the distance between any two images, improving the
aspect ratio of the digital map.

Study on AR Application Efficiency of Selected iOS and Android OS Mobile Devices

477

4 GRAPHICS ENGINES

To run augmented reality on any smartphone,
one must first be able to display additional digital
information on the screen. The software that
communicates with the device’s graphics card
through its drivers is responsible for handling the
digital world. The simplest way to display custom
objects is to use the graphics engine or more low-level
API, which defacto is used in the graphics engine
anyway. Examples of graphics APIs include: Vulkan,
OpenGL, Direct3D or WebGL, which is an API for
drawing in a web browser as part of a JavaScript
extension.

A graphics engine is at a higher level of
abstraction than a graphics API. It uses the API to
render an image, but provides all the tools needed to
create, e.g., a computer game. The list of tools
includes, among others, an engine that simulates
physics or performs collision detection and
accompanying mechanisms, support for sound,
scripting, animation, memory management, network
support and more. The list of available graphics
engines is large, as most companies on the global
game market have proprietary engines, such as:
CryEngine from Crytek, id Tech from id Software,
or REDEngine from CD Projekt RED. Not all of them
are compatible with mobile devices. On smartphones,
the main ones used are: Libgdx, Godot, ShiVa3d,
Marmalade SDK and CocoonJS, but none of them
support augmented reality. Engines with AR support
include Unity and Unreal Engine.

4.1 Unreal Engine

Unreal Engine written in C++ is produced by
Epic Games, the engine received its fifth release in
2022. This language is also used to write scripts
since version 4, previously it was the proprietary
UnityScript language. A parallel way of writing
scripts is Blueprints, a visual language based on
blocks and flows. It is used to handle level events,
control the behavior of actors and for complex
animations through a highly realistic character
system. Examples of the use of games using this
engine are: Fortnite, the Gears of War series or
Mass Effect 3.

The engine is widely used not only in video games
but also in film productions, as exemplified by
Project Spotlight. One of the presentation parts of the
project was a demonstration of the engine’s
capabilities within real-time technology. Epic Games,
together with Lux Machina, Magnopus, Profile
Studios, Quixel, ARRI and DP Matt Workman,

demonstrated how LED walls can provide not only
virtual environments but also lighting for real-world
elements. This allows quick modification of scenes,
time of day and lighting. Control is done via virtual
reality workstations, tablets or APIs (Epic Games,
2022).

4.2 Unity

Unity has existed since 2005 as a product of Unity
Software Inc. (business-wise Unity Technologies).
The engine is written in C++, while the scripting
language is C#. Additional extensions allow scripts
to be written visually, similar to Unreal Engine.
Productions based on Unity are: League of Legends,
Cuphead or Ori. Unity has native support for AR
libraries (Unity, 2021).

The support provides common interfeatures using
the various libraries underneath. This allows for
unified production on Android and iOS. In 2020,
Unity Technologies released a studio that builds on
MARS augmented reality from the ground up.
This introduces, among other things, axes reflecting
the real world (centimeters instead of pixels),
determining conditions based on distance or viewing
angles. The program provides a smartphone
application for dynamic programming, a simulation
of the real environment, along with a device
simulation and a hypothetical process for mapping
the environment.

5 AR LIBRARY

The AR library is a collection of tools needed to
support augmented reality. This includes tracking the
movement of the device, recognizing the environment
(detecting the size and location of any type of surface,
vertical, horizontal and angled) and estimating
illumination from the environment.

The most popular libraries for AR are Google’s
ARCore and Apple’s ARKit, so these are the focus.
Both libraries have plugins to support usage in the
aforementioned graphics engines. A strongly
developing library is Vuforia Engine, while it
requires a paid license for commercial purposes.

5.1 ARKit

In 2017, Apple released a collection of tools working
with virtual and augmented reality. The library was
one of the components of the demonstration of the
new iOS 11 system presented at WorldWide
Developers Conference WWDC’17 (Apple, 2017).

QQSS 2022 - Special Session on Quality of Service and Quality of Experience in Systems and Services

478

The library’s main functionalities are: enhanced face
tracking, placing objects in specific geometric
locations, detailed recognition of the environment
(walls, windows, doors, seats), capturing the
movement of people (bones and joints), penetrating
through people, and simultaneous operation on the
front and rear cameras (Apple Developer, 2022).

5.2 ARCore

The first work on Google’s AR library began in 2012
with the emergence of the Tango project, advertised
as “technology that gives devices the ability to
interact with the real world as we do as humans”.
In 2018, Google announced the extinction of the
project in favor of ARCore, which is a continuation
of AR development (Kastrenakes, 2017).
The functionalities are very similar compared to
ARKit. The advantage of the library is support for
the competitor’s operating system, namely iOS.
ARCore is supported by both Android and Apple
devices.

6 RESEARCH PROBLEM

Since the two libraries, that is ARKit and ARCore,
have similar functionalities, the main aim was to
evaluate the effectiveness of both solutions in a
similar test scenario.

6.1 Utilized Hardware and Software

To prepare the testbed, a PC with the following
specification was used:
 8-core 16-thread Intel Core i9-9900k processor

clocked at 4.68 GHz, 16 GB of DDR3 RAM
clocked at 3 200 MHz and a SATA SSD,
Windows 10 Education 20H2 operating
system,

and a second PC with:
 6-core 12-thread Intel Core i7-8700B processor

clocked at 3.6 GHz, 16 GB of DDR3 RAM
clocked at 3 200 MHz, and a SATA SSD,
macOS Big Sur 11.5 operating system.

This information is necessary in case of investigation
of the application compilation time.

The chosen graphics engine was Unity version
2020.3.3f1, due to having more experience in this
ecosystem. The C# programming environment used
(for scripting) was JetBrains Rider 2020.

The tested mobile devices included:
 Samsung S9+ smartphone with Android 10,
 Samsung A10 smartphone with Android 9,
 Lenovo Tab M10 Plus tablet with Android 9,
 Apple iPhone X smartphone with iOS 14.

Principle technical specification of each
smartphone and tablet are described in Table 1.

Table 1: Technical specification of tested mobile devices.

Device Component and description

Samsung
S9+

8-core 2.9 GHz CPU,
Mali-G72 MP18 GPU,

6 GB RAM,
6.2 inch 1440x2960

super AMOLED display,
3500 mAh battery

Samsung
A10

8-core 1.6 GHz CPU,
Mali-G71 MP2 GPU,

2 GB RAM,
6.2 inch 720x1520 IPS TFT display,

3400 mAh battery

Lenovo Tab
M10 Plus

8-core 2.3 GHz CPU,
PowerVR GE8320 GPU,

4 GB RAM,
10.3 inch 1200x1920 IPS TFT display,

5000 mAh battery

Apple
iPhone X

6-core 2.39 GHz CPU,
Apple GPU,
3 GB RAM,

5.8 inch 1125x2436 OLED display,
2716 mAh battery

As shown, they came from different
manufacturers and include both operating systems,
namely Android and iOS, with Android available
in version 9 and 10.

6.2 Research Method

The research began with an analysis of indicators to
draw conclusions. There are numerous studies on
benchmarking in many industries (Dai and Berleant,
2019) and many characteristics of these studies can
be applied to mobile devices (Kim and Kim, 2012;
Patton and McGuinness, 2014; Hirsch et al., 2021).
The study on gaming performance index presents 5
groups of measurement aspects (Dar et al., 2019):
 Visual fluidity.
 Temperature.
 Battery life.
 Responsiveness.
 Graphics.

All of them were taken into account in our
experiments.

Study on AR Application Efficiency of Selected iOS and Android OS Mobile Devices

479

6.3 Measurement Apparatus

Visual smoothness refers to the number of frames per
second of an application. Poor smoothness is referred
to by users in a number of ways, including: laggy,
not smooth, with significant delay, etc. When the
frame rate is too low, the illusion of smooth animation
movements disappears and the user notices individual
images. An unstable frame rate can cause abnormal
response and action movements by the user.
A standard set of smoothness parameters are:
average frame rate, percentile score and frame
stability.

Temperature is a major issue for limited
performance. Compared to PCs, where typically the
graphics card and processor operate at the highest
frequency at a constant temperature (higher cooling
efficiency), smartphones are more prone to
temperature increases due to the scale (small form
factor). High device temperature directly affects the
comfort of handling the device, so it also influences
the time of use without interruption. Therefore,
temperature is a key measurement component.

Currently on the market, smartphones have larger
and larger batteries. However, when,
e.g., continuously processing demanding audio-
visual data, it settles at an average of 7 hours,
so the amount of power consumed by the application
is very important. The battery indicator can be broken
down into the degree of charging and discharging of
the device during use.

Libraries have different implementations of
ambient recognition, which affects the time it takes to
display 3D objects. Responsiveness is the time it
takes to act based on user decisions, e.g., changing the
displayed objects. When using 3D graphics, we were
able to evaluate the performance of the same game
engine on two operating systems. Subjective
evaluation will be given to the quality of textures,
shadows, smoothing, and quality of effects.

6.4 Method of Measurement

In Unity, thanks to appropriate extensions for the
component responsible for testing, called Unity Test
Runner, it was possible to carry out performance tests
(Unity, 2022). The extension API has several groups
of methods:
 Measure.Method – executes the indicated

method measuring performance.
 Measure.Frames – allows to record metrics

based on individual frames.
 Measure.Scope(...) – allows to record metrics

within a specified range (e.g., 3D object).

 Measure.FrameTimes(...) – captures metrics
based on frame time (milliseconds).

 Measure.ProfilerMarkers(...) – records metrics
for specific markers (time-based or marked in
script code).

 Measure.Custom(...) – allows to record metrics
based on other reference points than methods,
frames, and frame time.

Parameters that Unity is unable to provide,
such as battery level and device temperature,
will be read out using an application, namely Sensors
Multitool, which will register individual sensors in
the background. After testing, the logs will be
processed, analyzed and compared for all devices.

7 AR APPLICATION

For the purpose of this study, we have developed our
own custom-build AR mobile application.

7.1 Configuration

Two scenes implementing the use of both marker-
based and marker-less approaches were prepared for
the analysis. To start working with augmented reality
in Unity, one needs to activate or install the AR
Foundation package (Unity, 2021), which allows to
work on multiple platforms (including Android and
iOS) at once. Subsystems are included in other
packages: ARKit XR Plugin and ARCore XR Plugin.
All packages are available within the Unity Package
Manager. After installing the package, it was
necessary to set the part that manages the interaction
with the world, i.e., XR Management.

The core component of the scene is the AR
Session component, which controls the lifecycle of
the AR experience by enabling and disabling
augmented reality on the device. This component is
configured globally, so by defining a session multiple
times, it will manage the shared session.
One configurable option is “Attempt Update”,
attempting to install the required AR software on the
device if necessary and possible.

The second component is the AR Session Origin.
It stores the camera object and all objects noticed
in the detection process (markers or point clouds).
The component converts the transformation
parameters (position, orientation and scale) of the
found elements to the correct values for the final
Unity space.

The camera object is a regular camera used in
Unity with AR scripts attached to it. The most
important of these is the AR Pose Driver that controls

QQSS 2022 - Special Session on Quality of Service and Quality of Experience in Systems and Services

480

the position and orientation of the parent object
(in this case, the camera object) with respect to
information from the device. Another element
bundled with the camera is the AR Camera Manager
enabling AR functions, such as light estimation from
the real environment with texture control.

7.2 Surface Recognition

The component responsible for object recognition is
called Trackable Manager. Thanks to it, it is possible
to detect various types of objects. AR Foundation
supports recognition of various elements:
 ARPlaneManager – detects flat surfaces,
 ARPointCloudManager – detects key points in

the form of a cloud,
 ARAnchorManager – manages nodes, allows

to add and remove custom points in space,
 ARTrackedImageManager – detects and tracks

2D images,
 AREnvironmentProbeManager – a technique

that allows to capture the environment as a
texture, e.g., to represent realistic reflections on
an AR object,

 ARFaceManager – detects and tracks human
faces,

 ARTrackedObjectManager – detects 3D
objects,

 ARParticipantManager – detects other users in
case of group operations.

In the described research, we will focus on 2D
image tracking (markers) and surface detection
(marker-less).

7.3 AR Tracked Image Manager

The mechanism of operation of image recognition
is to detect predefined data and track it, it forces to
prepare images to serve as AR tags. A library
available from the AR Foundation, called Reference
Image Library, can help with this.

Completing the library is done by adding a new
image and filling in the required fields. One of them
is a link to an image file in a Unity-compatible format.
This file can be digitally prepared, then printed,
or as a product of transferring a physical object into
digital space through a scan or photo. It is possible to
define the name of the image, and set the physical size
of the marker to help with later transformation.
Then, after defining the library, one can point to it
in the tracking manager as Serialized Library.

At this point, there are several ways to place AR
objects in reality, one of which is to indicate a 3D
object as a Tracked Image Prefab, by which Unity,

upon detecting one of the images from our library,
will automatically add the object in question
as pinned to the tracked image.

Another option is to do it in a script using the
“ScheduleAddImageWithValidationJob” method
called on our library. The method takes the same
parameters as the definition in the manager,
but this allows to dynamically change the images,
i.e., through user interaction.

7.4 AR Plane Manager

Plane manager deals with storing and modifying
found groups of points defined as a plane. One of the
arguments it takes is Plane Prefab, the object that will
represent the found area. The available default object
is a black line that is the outline of the surface and a
slightly transparent brown fill for this space, as shown
in Figure 6.

Figure 6: Example of a found area on a desk next to a
computer keyboard.

Once the surface is registered, it is possible to
place 3D objects on it. One way to do this is by
raycasting in the direction of the surface. If such a
surface consists of polygons (and not lines), the point
of intersection of the ray with the surface becomes the
point of attachment of the 3D object (with the
appropriate transformation relative to the surface).
The above process is done with a custom script.

7.5 Evaluated 3D Models

In order to test several measurement scenarios,
a collection of 3D models with varying levels of detail
was prepared. The collection includes models of
passenger cars:

Study on AR Application Efficiency of Selected iOS and Android OS Mobile Devices

481

 Auto number 1 – 20 200 triangles and 35 500
vertices, 2048x2048 pixels (see Figure 7),

Figure 7: Car model no. 1.

 Auto number 2 – 23 627 triangles and 14 499
vertices, 512x512 pixels (see Figure 8),

Figure 8: Car model no. 2.

 Auto number 3 – 137 300 triangles and 74 800
vertices, 4096x4096 pixels (see Figure 9),

Figure 9: Car model no. 3.

 Auto number 4 – 1 200 000 triangles and
632 000 vertices, 2048x2048 pixels (see
Figure 10).

The cars were placed on both scenes, i.e., a scene
using markers and a scene using surface detection.
Two tests were performed for the scenarios:
displaying a single model and changing to the next

Figure 10: Car model no. 4.

one, and rendering all models gradually increasing
the number of models, thus testing the speed of model
swapping and the load degree.

8 RESULTS

The scenarios were prepared to eliminate the human
factor that could affect measurements. Automatically,
after the application starts, the time of detection of the
marker or first plane is measured. Then, at 5-second
intervals, the 3D model is changed to the next one.
When the last model is swapped, the application
stops, and the performance testing procedure ends.

The first measurement, as shown in Figure 11,
is the marker search time. The values shown represent
averaged results from 5 measurements.

Figure 11: Results for marker search time.

Despite the fact that ARKit was released a year
earlier than ARCore, the library from Google
performs better on similar hardware compared to the
library from Apple. On the other hand, hardware that
is less powerful, namely the Lenovo Tab M10 Plus
and Samsung A10, performs worse than iPhone.

The level of battery consumption was not
achievable on most devices, and if it was available,
it was meaningless, as the values were extremely
different when inactive.

QQSS 2022 - Special Session on Quality of Service and Quality of Experience in Systems and Services

482

Another measurement, shown in Figure 12,
was the loading time of the largest model,
namely model no. 4. The average number of frames
during this scenario is shown in Figure 13.

Figure 12: Results for rendering time.

Figure 13: Results for FPS.

Currently, ARCore is limited to 30 frames per
second. This shows the advantage of ARKit over
Google. However, this library is only available for the
Apple’s iPhone and iPad. ARCore performs a little
worse on the same device, due to worse optimization
on the competitor’s platform. For all devices,
the score percentile was as high as the average,
which means that frame stability was maintained.

The quality of 3D models was the same on all
devices, due to the same settings for edge smoothing
and shadow quality. In contrast, the effect of the AR
function differed significantly. The estimated light
for ARKit looked much better and behaved more
dynamically relative to the prevailing conditions.
Illuminating the scene with an additional light source
natively also illuminated the model, where in ARCore
the system took 2 seconds to calculate the generated
light.

The next tested factor was the temperature of the
device, shown in Figure 14, after running the
measurement scenario 5 times.

Figure 14: Results for temperature.

The lowest temperature increase was registered
for the iPhone X device with the native library,
while the highest for the Samsung A10. Hence, it can
be concluded that ARCore is more demanding than
ARKit.

9 SUMMARY

After analyzing the presented results, it can be
concluded that ARKit proved to be a better library for
AR than ARCore. One of the key reasons for this state
of performance may be better optimization for a given
pool of devices. Apple offers a smaller number of
devices under its brand, while Android is available on
more than 70% of devices worldwide (Statcounter,
2022). It is simply easier for Apple to fine-tune
the library for its hardware. ARCore, on the other
hand, is released under the Apache 2.0 license,
i.e., with open source code, allowing any user to
contribute to developing the library.

Future studies may and should include a wider
group of devices, particularly other smartphones and
tablets both from Apple and various Android-
powered manufacturers. It would be also interesting
to collect other common functionalities of the
libraries, such as face tracking, and prepare additional
scenarios for them. This would point out the pros and
cons from a broader point of view.

When it comes to analyzing the temperature of
tested devices, it would be surely interesting to use a
thermal imaging camera. The described libraries
introduce new functionalities depending on the
processor, so the next step would be to analyze the
behavior of both libraries on flagship Android and
iOS devices. Additional source of inspiration may be
found in (Xia et al., 2019; Falkowski-Gilski, 2020;
Falkowski-Gilski and Uhl, 2020; Jacob et al., 2021;
Lee et al., 2021).

Study on AR Application Efficiency of Selected iOS and Android OS Mobile Devices

483

REFERENCES

Android Developer. (2022). https://developers.google.
com/ar/develop/depth (access: 21.07.2022).

Apple. (2017). Highlights from WWDC 2017.
https://www.apple.com/pl/newsroom/2017/06/highligh
ts-from-wwdc-2017/ (access: 21.07.2022).

Apple Developer. (2022). ARKit. https://developer.apple.
com/augmented-reality/arkit/ (access: 21.07.2022).

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S.,
MacIntyre, B. (2001). Recent advances in augmented
reality. IEEE Computer Graphics and Applications,
21(6), 34-47.

Dai, W., Berleant, D. (2019). Benchmarking contemporary
deep learning hardware and frameworks: a survey of
qualitative metrics. In CogMI’19, 2019 IEEE First
International Conference on Cognitive Machine. IEEE.

Dar, H., Kwan, J., Liu, Y., Pantazis, O., Sharp, R. (2019).
The game performance index for mobile phones. arXiv
preprint arXiv:1910.13872.

Epic Games. (2022). Unreal Engine. https://www.
unrealengine.com/en-US/ (access: 21.07.2022).

Falkowski-Gilski, P. (2020). On the consumption of
multimedia content using mobile devices: a year to year
user case study. Archives of Acoustics, 45(2), 321-328.

Falkowski-Gilski, P., Uhl, T. (2020). Current trends in
consumption of multimedia content using online
streaming platforms: a user-centric survey.
Computer Science Review, 37, 100268.

Furht, B. (2011) Handbook of Augmented Reality, Springer.
New York.

Gupta, S. (2019). Custom AR tag detection, tracking and
manipulation. https://medium.com/lifeandtech/custom-
ar-tag-detection-tracking-manipulation-d7543b8569ea
(access: 21.07.2022).

Hirsch, M., Mateos, C., Zunino, A., Toloza, J. (2021).
A platform for automating battery-driven batch
benchmarking and profiling of Android-based mobile
devices. Simulation Modelling Practice and Theory,
109, 102266.

International Data Corporation. (2022). Press Releases.
https://www.idc.com/ (access: 21.07.2022).

Jacob, I. J., Shanmugam, S. K., Piramuthu, S., Falkowski-
Gilski, P. (eds.). (2021). Data Intelligence and
Cognitive Informatics. Proceedings of ICDICI 2020,
Springer. Singapore.

Kastrenakes, J. (2017). Google’s Project Tango is shutting
down because ARCore is already here.
https://www.theverge.com/2017/12/15/16782556/proj
ect-tango-google-shutting-down-arcore-augmented-
reality (access: 21.07.2022).

Kim, J. M., Kim, J. S. (2012). AndroBench: Benchmarking
the storage performance of Android-based mobile
devices. In Sambath, S., Zhu, E. (eds) Frontiers in
Computer Education, Springer, Berlin, 667-674.

Kolhatkar, C., Wagle, K. (2021). Review of SLAM
algorithms for indoor mobile robot with LIDAR and
RGB-D camera technology. In Favorskaya, M. N.,
Mekhilef, S., Pandey, R. K., Singh, N. (eds).

Innovations in Electrical and Electronic Engineering,
Springer, Singapore, 397-409.

Lee, J., Wang, P., Xu, R., Dasari, V., Weston, N., Li, Y.,
Bagchi, S., Chaterji, S. (2021). Benchmarking video
object detection systems on embedded devices under
resource contention. In EMDL’21, 5th International
Workshop on Embedded and Mobile Deep Learning.
ACM.

Patton, E. W., McGuinness, D. L. (2014). A power
consumption benchmark for reasoners on mobile
devices. In Mika, P., Tudorache, T., Bernstein, A.,
Welty, C., Knoblock, C., Vrandecic, D., Noy, N.,
Groth, P., Janowicz, K., Goble, C. (eds.).
The Semantic Web – ISWC 2014, Springer, Cham,
409-424.

Statcounter (2022). Mobile operating system market share
worldwide. https://gs.statcounter.com/os-market-
share/mobile/worldwide (access: 21.07.2022).

Steuer, J. (1992). Defining virtual reality: Dimensions
determining telepresence. Journal of Communication,
42(4), 73-93.

Unity. (2021). About AR Foundation. https://docs.
unity3d.com/Packages/com.unity.xr.arfoundation@5.0
/manual/index.html (access: 21.07.2022).

Unity. (2022). Performance testing extension for Unity test
runner. https://docs.unity3d.com/Packages/com.unity.
test-framework.performance@0.1/manual/index.html
(access: 21.07.2022).

Wu, H. K., Lee, S. W. Y., Chang, H. Y., Liang, J. C. (2013).
Current status, opportunities and challenges of
augmented reality in education. Computers &
Education, 62, 41-49.

Xia, C., Zhao, J., Cui, H., Feng, X., Xue, J. (2019).
Dnntune: automatic benchmarking DNN models for
mobile-cloud computing. ACM Transactions on
Architecture and Code Optimization, 16(4), 1-26.

QQSS 2022 - Special Session on Quality of Service and Quality of Experience in Systems and Services

484

