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Abstract: Currently, the number of scenarios for using AR (Augmented Reality) tools grows every year. Yet, there are 
still some open performance issues associated with this technology, related with the efficiency of the mobile 
device itself, including build-in components or the operation system. The purpose of this study was to 
investigate available augmented reality engines for mobile platforms. First, a review of current graphics and 
AR engines was conducted, based on which measurement aspects were selected taking into consideration the 
device performance. Next, we have performed a series of research studies, including different 3-dimensional 
AR modes and scenarios, both with and without a tag. The research was carried out using 4 mobile devices, 
with 3 of them running Android OS and 1 powered by iOS (with 2 different AR libraries). The performed 
tests and obtained results can aid any interested individual when choosing the right mobile device, as well as 
configuring the AR environment, for various UX (User Experiences). 

1 INTRODUCTION 

Augmented reality (AR) is a strongly growing 
technology. To confirm this claim, according to the 
International Data Corporation report (IDC, 2022),  
in 2016 the global AR market was valued at USD 200 
million, while four years later stood at USD 4.16 
billion. Moreover, by 2028 its size is expected to 
reach USD 97.76 billion, exhibiting an excellent 
compound annual growth rate (CAGR) of 48.6% 
during the forecast period. The great players of the 
mobile platforms market, including Google with  
its Android system and Apple with iOS,  
either individually or in cooperation with others,  
are actively developing AR solutions. 

Augmented reality can be defined as a system that 
performs three basic functions (Wu et al., 2013): 
 connecting the real world with the virtual 

world, 
 real-time interaction, 
 and registration of 3D virtual and real objects. 

 
a  https://orcid.org/0000-0003-1984-4740 
b  https://orcid.org/0000-0001-8920-6969 

AR simplifies our life by providing virtual 
information not only for the user’s immediate 
environment, but also for any view of the real world, 
like a live and on-line video broadcasting  
(Fuhrt, 2011). Augmented reality differs from virtual 
reality in that AR alters and expands perceptions of the 
real world, where virtual reality fully transforms the 
user’s world with the generated one (Steuert, 1992). 

In other words, AR technology extends reality by 
superimposing virtual objects in real-time. It outlines 
a superior way of presenting data, that is, hiding 
reality from the user (Azuma et al., 2001). Removing 
objects from the real world corresponds to covering 
objects consistent with the background as information 
to the human that the object is not here. Augmented 
reality has a wide range of applications, including 
medical visualization, advertising, maintenance, 
repair, and annotation. 
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2 AR SYSTEM ARCHITECTURE 

From an architectural point of view, the flow of 
information in an augmented reality-enabled 
application involves several independent modules,  
as shown in Figure 1: 
 The physical module of the RGB camera 

receives a stream of reflected light from the real 
world to record the environment. The output 
from this module is a video data stream. 

 This stream must be processed by a module that 
converts it into individual image frames. 

 A marker or point cloud (depending on how the 
environment is recorded) is extracted from a 
single image frame, which will allow another 
module to track that object. This module has 
defined transformation matrices for the 
coordinates of the world, the camera and the 
object to be tracked. Thus, it is able to calculate 
the expected values of the future 3D object. 

 The tracking module continuously transmits 
the calculated transformations and positions 
needed for rendering 3D objects. 

 The final step is to display on the screen of the 
smartphone the image from the camera 
connected to the generated virtual object. 

 

Figure 1: AR data flowchart. 

Augmented reality libraries usually implement 
only a module related to image processing,  
i.e., extraction of information about markers or the 
ambient point cloud, and a module responsible for 
updating this information in real-time. Developers 
strive to provide the best possible experience when 
using AR applications, so the other modules are also 
included in the code they provide. As an example,  

let us consider the Google’s Depth API (Android 
Developer, 2022), which uses spatial vision (depth 
sensor) in a growing number of smartphones to place 
virtual objects behind real things. 

Figure 2 shows a comparison of scenes where,  
in the left image, the virtual cat is simply placed  
in space, while in the right image, the cat is hidden 
behind a plush piece of furniture. 

 

Figure 2: AR scene without (left) and with (right) applied 
depth (Android Developer, 2022). 

Figure 3 indicates the heat map from the depth 
sensor, with red for a small distance from the camera, 
and blue for a large distance. 

 

Figure 3: Camera view using a RGB (left) and depth (right) 
sensor (Android Developer, 2022). 

3 METHODS FOR RECORDING 
THE ENVIRONMENT 

There are two ways of recording the environment, 
namely marker-based or marker-less. 

QQSS 2022 - Special Session on Quality of Service and Quality of Experience in Systems and Services

476



3.1 Marker-based 

Augmented reality can be classified by the type of 
real world scanning. The first class is AR (marker-
based) support, as shown in Figure 4. 

 

Figure 4: Exemplary AR markers. 

Markers are usually black and white due to the 
fact that such colors are more contrasting, allowing 
the camera to better register and later extract the 
marker from the image. This relieves the device of 
potential image post-production. This is not a 
requirement, however, and with proper lighting,  
color markers work without problems, but it can 
increase tag detection time. 

The example AR tags differ in appearance,  
and this is due to the use of other algorithms to detect 
the pattern on them. The form of the tags is limited 
only by the implemented way of detecting it in the 
registered images. 

When working with marker-based augmented 
reality, the tag must be “unpacked” by projection. 
Projection is a type of three-dimensional 
transformation, also known as perspectival 
transformation, or as homography operates on 
homogeneous coordinates. 
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where: 𝐻 is an arbitrary 3 x 3 homogeneous matrix, 
xci, yci, for i = 1, 2, 3, 4, are the coordinates read 
(marker), xmi, ymi, for i = 1, 2, 3, 4, are the expected 
coordinates (real world). 

After putting the resulting values and equating all 
sides of the equation, we get a transformation matrix, 
which we use to transform 3D objects to place it in 
real space. Projection is commonly used for scanning 
documents through smartphones or transforming 
photos where there are lens distortions. 

The tag has a specific layout (Gupta, 2019),  
as shown in Figure 5, to orient it in space. The tag-

recognizing algorithm contains the coordinates xmi, 
ymi for each feature point on the tag, comparing this 
with the coordinates read from the photo through 
homography, from which we receive the desired 
transformation. 

 

Figure 5: Layout of an exemplary tag. 

3.2 Marker-less 

The second class is marker-less operation.  
The advantage of this mode of operation is the ability 
to move the phone in space without having to aim  
the marker. Proper marker-less operation requires flat 
ambient surfaces, preferably distinguishable from the 
background. 

Surface recognition proceeds by mapping the 
environment. Depending on the algorithm 
implemented in a library, individual image frames are 
analyzed using feature extraction technology or 
simultaneous localization and mapping (SLAM) 
technology, among others, to search for correlations 
between frames. Once connections are detected on a 
certain number of frames, 3D points are defined based 
on a point cloud, also known from photogrammetry. 

SLAM’s purpose is to move through space, 
scanning it to create a digital map of the space for the 
user to refer to. Initially, the technology was used to 
help robots move without colliding with their 
surroundings, but it is now appearing in many other 
industries as well (Kolhatkar and Wagle, 2021). 
There are two types of SLAM: 
 visual SLAM (VSLAM), which is based on 

scanning through a camera, 
 and light detection ranging (LiDAR), which 

uses laser scanners to analyze the environment. 
Both types of SLAM often use inertial 

measurement unit (IMU) support, which can be a 
gyroscope, accelerometer, Hall sensor, etc.  
This makes it possible to achieve better maps.  
When the camera captures the surroundings, the IMU 
tracks the device’s movement, allowing it to measure 
the distance between any two images, improving the 
aspect ratio of the digital map. 
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4 GRAPHICS ENGINES 

To run augmented reality on any smartphone,  
one must first be able to display additional digital 
information on the screen. The software that 
communicates with the device’s graphics card 
through its drivers is responsible for handling the 
digital world. The simplest way to display custom 
objects is to use the graphics engine or more low-level 
API, which defacto is used in the graphics engine 
anyway. Examples of graphics APIs include: Vulkan, 
OpenGL, Direct3D or WebGL, which is an API for 
drawing in a web browser as part of a JavaScript 
extension. 

A graphics engine is at a higher level of 
abstraction than a graphics API. It uses the API to 
render an image, but provides all the tools needed to 
create, e.g., a computer game. The list of tools 
includes, among others, an engine that simulates 
physics or performs collision detection and 
accompanying mechanisms, support for sound, 
scripting, animation, memory management, network 
support and more. The list of available graphics 
engines is large, as most companies on the global 
game market have proprietary engines, such as: 
CryEngine from Crytek, id Tech from id Software,  
or REDEngine from CD Projekt RED. Not all of them 
are compatible with mobile devices. On smartphones, 
the main ones used are: Libgdx, Godot, ShiVa3d, 
Marmalade SDK and CocoonJS, but none of them 
support augmented reality. Engines with AR support 
include Unity and Unreal Engine. 

4.1 Unreal Engine 

Unreal Engine written in C++ is produced by  
Epic Games, the engine received its fifth release in 
2022. This language is also used to write scripts  
since version 4, previously it was the proprietary 
UnityScript language. A parallel way of writing 
scripts is Blueprints, a visual language based on 
blocks and flows. It is used to handle level events, 
control the behavior of actors and for complex 
animations through a highly realistic character 
system. Examples of the use of games using this 
engine are: Fortnite, the Gears of War series or  
Mass Effect 3. 

The engine is widely used not only in video games 
but also in film productions, as exemplified by  
Project Spotlight. One of the presentation parts of the 
project was a demonstration of the engine’s 
capabilities within real-time technology. Epic Games, 
together with Lux Machina, Magnopus, Profile 
Studios, Quixel, ARRI and DP Matt Workman, 

demonstrated how LED walls can provide not only 
virtual environments but also lighting for real-world 
elements. This allows quick modification of scenes, 
time of day and lighting. Control is done via virtual 
reality workstations, tablets or APIs (Epic Games, 
2022). 

4.2 Unity 

Unity has existed since 2005 as a product of Unity 
Software Inc. (business-wise Unity Technologies). 
The engine is written in C++, while the scripting 
language is C#. Additional extensions allow scripts  
to be written visually, similar to Unreal Engine. 
Productions based on Unity are: League of Legends, 
Cuphead or Ori. Unity has native support for AR 
libraries (Unity, 2021). 

The support provides common interfeatures using 
the various libraries underneath. This allows for 
unified production on Android and iOS. In 2020, 
Unity Technologies released a studio that builds on 
MARS augmented reality from the ground up.  
This introduces, among other things, axes reflecting 
the real world (centimeters instead of pixels), 
determining conditions based on distance or viewing 
angles. The program provides a smartphone 
application for dynamic programming, a simulation 
of the real environment, along with a device 
simulation and a hypothetical process for mapping  
the environment. 

5 AR LIBRARY 

The AR library is a collection of tools needed to 
support augmented reality. This includes tracking the 
movement of the device, recognizing the environment 
(detecting the size and location of any type of surface, 
vertical, horizontal and angled) and estimating 
illumination from the environment. 

The most popular libraries for AR are Google’s 
ARCore and Apple’s ARKit, so these are the focus. 
Both libraries have plugins to support usage in the 
aforementioned graphics engines. A strongly 
developing library is Vuforia Engine, while it 
requires a paid license for commercial purposes. 

5.1 ARKit 

In 2017, Apple released a collection of tools working 
with virtual and augmented reality. The library was 
one of the components of the demonstration of the 
new iOS 11 system presented at WorldWide 
Developers Conference WWDC’17 (Apple, 2017). 
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The library’s main functionalities are: enhanced face 
tracking, placing objects in specific geometric 
locations, detailed recognition of the environment 
(walls, windows, doors, seats), capturing the 
movement of people (bones and joints), penetrating 
through people, and simultaneous operation on the 
front and rear cameras (Apple Developer, 2022). 

5.2 ARCore 

The first work on Google’s AR library began in 2012 
with the emergence of the Tango project, advertised 
as “technology that gives devices the ability to 
interact with the real world as we do as humans”.  
In 2018, Google announced the extinction of the 
project in favor of ARCore, which is a continuation 
of AR development (Kastrenakes, 2017).  
The functionalities are very similar compared to 
ARKit. The advantage of the library is support for  
the competitor’s operating system, namely iOS. 
ARCore is supported by both Android and Apple 
devices. 

6 RESEARCH PROBLEM 

Since the two libraries, that is ARKit and ARCore, 
have similar functionalities, the main aim was to 
evaluate the effectiveness of both solutions in a 
similar test scenario. 

6.1 Utilized Hardware and Software 

To prepare the testbed, a PC with the following 
specification was used: 
 8-core 16-thread Intel Core i9-9900k processor 

clocked at 4.68 GHz, 16 GB of DDR3 RAM 
clocked at 3 200 MHz and a SATA SSD, 
Windows 10 Education 20H2 operating 
system, 

and a second PC with: 
 6-core 12-thread Intel Core i7-8700B processor 

clocked at 3.6 GHz, 16 GB of DDR3 RAM 
clocked at 3 200 MHz, and a SATA SSD, 
macOS Big Sur 11.5 operating system. 

This information is necessary in case of investigation 
of the application compilation time. 

The chosen graphics engine was Unity version 
2020.3.3f1, due to having more experience in this 
ecosystem. The C# programming environment used 
(for scripting) was JetBrains Rider 2020. 

 
 
 

The tested mobile devices included: 
 Samsung S9+ smartphone with Android 10, 
 Samsung A10 smartphone with Android 9, 
 Lenovo Tab M10 Plus tablet with Android 9, 
 Apple iPhone X smartphone with iOS 14. 

Principle technical specification of each 
smartphone and tablet are described in Table 1. 

Table 1: Technical specification of tested mobile devices. 

Device Component and description

Samsung 
S9+ 

8-core 2.9 GHz CPU,  
Mali-G72 MP18 GPU,  

6 GB RAM,  
6.2 inch 1440x2960  

super AMOLED display,  
3500 mAh battery 

Samsung 
A10 

8-core 1.6 GHz CPU,  
Mali-G71 MP2 GPU,  

2 GB RAM,  
6.2 inch 720x1520 IPS TFT display,  

3400 mAh battery 

Lenovo Tab 
M10 Plus 

8-core 2.3 GHz CPU,  
PowerVR GE8320 GPU,  

4 GB RAM,  
10.3 inch 1200x1920 IPS TFT display, 

5000 mAh battery 

Apple 
iPhone X 

6-core 2.39 GHz CPU,  
Apple GPU,  
3 GB RAM,  

5.8 inch 1125x2436 OLED display,  
2716 mAh battery 

As shown, they came from different 
manufacturers and include both operating systems, 
namely Android and iOS, with Android available  
in version 9 and 10. 

6.2 Research Method 

The research began with an analysis of indicators to 
draw conclusions. There are numerous studies on 
benchmarking in many industries (Dai and Berleant, 
2019) and many characteristics of these studies can 
be applied to mobile devices (Kim and Kim, 2012; 
Patton and McGuinness, 2014; Hirsch et al., 2021). 
The study on gaming performance index presents 5 
groups of measurement aspects (Dar et al., 2019): 
 Visual fluidity. 
 Temperature. 
 Battery life. 
 Responsiveness. 
 Graphics. 

All of them were taken into account in our 
experiments. 
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6.3 Measurement Apparatus 

Visual smoothness refers to the number of frames per 
second of an application. Poor smoothness is referred 
to by users in a number of ways, including: laggy,  
not smooth, with significant delay, etc. When the 
frame rate is too low, the illusion of smooth animation 
movements disappears and the user notices individual 
images. An unstable frame rate can cause abnormal 
response and action movements by the user.  
A standard set of smoothness parameters are:  
average frame rate, percentile score and frame 
stability. 

Temperature is a major issue for limited 
performance. Compared to PCs, where typically the 
graphics card and processor operate at the highest 
frequency at a constant temperature (higher cooling 
efficiency), smartphones are more prone to 
temperature increases due to the scale (small form 
factor). High device temperature directly affects the 
comfort of handling the device, so it also influences 
the time of use without interruption. Therefore, 
temperature is a key measurement component. 

Currently on the market, smartphones have larger 
and larger batteries. However, when,  
e.g., continuously processing demanding audio-
visual data, it settles at an average of 7 hours,  
so the amount of power consumed by the application 
is very important. The battery indicator can be broken 
down into the degree of charging and discharging of 
the device during use. 

Libraries have different implementations of 
ambient recognition, which affects the time it takes to 
display 3D objects. Responsiveness is the time it 
takes to act based on user decisions, e.g., changing the 
displayed objects. When using 3D graphics, we were 
able to evaluate the performance of the same game 
engine on two operating systems. Subjective 
evaluation will be given to the quality of textures, 
shadows, smoothing, and quality of effects. 

6.4 Method of Measurement 

In Unity, thanks to appropriate extensions for the 
component responsible for testing, called Unity Test 
Runner, it was possible to carry out performance tests 
(Unity, 2022). The extension API has several groups 
of methods: 
 Measure.Method – executes the indicated 

method measuring performance. 
 Measure.Frames – allows to record metrics 

based on individual frames. 
 Measure.Scope(...) – allows to record metrics 

within a specified range (e.g., 3D object). 

 Measure.FrameTimes(...) – captures metrics 
based on frame time (milliseconds). 

 Measure.ProfilerMarkers(...) – records metrics 
for specific markers (time-based or marked in 
script code). 

 Measure.Custom(...) – allows to record metrics 
based on other reference points than methods, 
frames, and frame time. 

Parameters that Unity is unable to provide,  
such as battery level and device temperature,  
will be read out using an application, namely Sensors 
Multitool, which will register individual sensors in 
the background. After testing, the logs will be 
processed, analyzed and compared for all devices. 

7 AR APPLICATION 

For the purpose of this study, we have developed our 
own custom-build AR mobile application. 

7.1 Configuration 

Two scenes implementing the use of both marker-
based and marker-less approaches were prepared for 
the analysis. To start working with augmented reality 
in Unity, one needs to activate or install the AR 
Foundation package (Unity, 2021), which allows to 
work on multiple platforms (including Android and 
iOS) at once. Subsystems are included in other 
packages: ARKit XR Plugin and ARCore XR Plugin. 
All packages are available within the Unity Package 
Manager. After installing the package, it was 
necessary to set the part that manages the interaction 
with the world, i.e., XR Management. 

The core component of the scene is the AR 
Session component, which controls the lifecycle of 
the AR experience by enabling and disabling 
augmented reality on the device. This component is 
configured globally, so by defining a session multiple 
times, it will manage the shared session.  
One configurable option is “Attempt Update”, 
attempting to install the required AR software on the 
device if necessary and possible. 

The second component is the AR Session Origin. 
It stores the camera object and all objects noticed  
in the detection process (markers or point clouds).  
The component converts the transformation 
parameters (position, orientation and scale) of the 
found elements to the correct values for the final 
Unity space. 

The camera object is a regular camera used in 
Unity with AR scripts attached to it. The most 
important of these is the AR Pose Driver that controls 
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the position and orientation of the parent object  
(in this case, the camera object) with respect to 
information from the device. Another element 
bundled with the camera is the AR Camera Manager 
enabling AR functions, such as light estimation from 
the real environment with texture control. 

7.2 Surface Recognition 

The component responsible for object recognition is 
called Trackable Manager. Thanks to it, it is possible 
to detect various types of objects. AR Foundation 
supports recognition of various elements: 
 ARPlaneManager – detects flat surfaces, 
 ARPointCloudManager – detects key points in 

the form of a cloud, 
 ARAnchorManager – manages nodes, allows 

to add and remove custom points in space, 
 ARTrackedImageManager – detects and tracks 

2D images, 
 AREnvironmentProbeManager – a technique 

that allows to capture the environment as a 
texture, e.g., to represent realistic reflections on 
an AR object, 

 ARFaceManager – detects and tracks human 
faces, 

 ARTrackedObjectManager – detects 3D 
objects, 

 ARParticipantManager – detects other users in 
case of group operations. 

In the described research, we will focus on 2D 
image tracking (markers) and surface detection 
(marker-less). 

7.3 AR Tracked Image Manager 

The mechanism of operation of image recognition  
is to detect predefined data and track it, it forces to 
prepare images to serve as AR tags. A library 
available from the AR Foundation, called Reference 
Image Library, can help with this. 

Completing the library is done by adding a new 
image and filling in the required fields. One of them 
is a link to an image file in a Unity-compatible format. 
This file can be digitally prepared, then printed,  
or as a product of transferring a physical object into 
digital space through a scan or photo. It is possible to 
define the name of the image, and set the physical size 
of the marker to help with later transformation.  
Then, after defining the library, one can point to it  
in the tracking manager as Serialized Library. 

At this point, there are several ways to place AR 
objects in reality, one of which is to indicate a 3D 
object as a Tracked Image Prefab, by which Unity, 

upon detecting one of the images from our library, 
will automatically add the object in question  
as pinned to the tracked image. 

Another option is to do it in a script using the 
“ScheduleAddImageWithValidationJob” method 
called on our library. The method takes the same 
parameters as the definition in the manager,  
but this allows to dynamically change the images,  
i.e., through user interaction. 

7.4 AR Plane Manager 

Plane manager deals with storing and modifying 
found groups of points defined as a plane. One of the 
arguments it takes is Plane Prefab, the object that will 
represent the found area. The available default object 
is a black line that is the outline of the surface and a 
slightly transparent brown fill for this space, as shown 
in Figure 6. 

 

Figure 6: Example of a found area on a desk next to a 
computer keyboard. 

Once the surface is registered, it is possible to 
place 3D objects on it. One way to do this is by 
raycasting in the direction of the surface. If such a 
surface consists of polygons (and not lines), the point 
of intersection of the ray with the surface becomes the 
point of attachment of the 3D object (with the 
appropriate transformation relative to the surface). 
The above process is done with a custom script. 

7.5 Evaluated 3D Models 

In order to test several measurement scenarios,  
a collection of 3D models with varying levels of detail 
was prepared. The collection includes models of 
passenger cars: 

Study on AR Application Efficiency of Selected iOS and Android OS Mobile Devices

481



 Auto number 1 – 20 200 triangles and 35 500 
vertices, 2048x2048 pixels (see Figure 7), 

 

Figure 7: Car model no. 1. 

 Auto number 2 – 23 627 triangles and 14 499 
vertices, 512x512 pixels (see Figure 8), 

 

Figure 8: Car model no. 2. 

 Auto number 3 – 137 300 triangles and 74 800 
vertices, 4096x4096 pixels (see Figure 9), 

 

Figure 9: Car model no. 3. 

 Auto number 4 – 1 200 000 triangles and 
632 000 vertices, 2048x2048 pixels (see  
Figure 10). 

The cars were placed on both scenes, i.e., a scene 
using markers and a scene using surface detection. 
Two tests were performed for the scenarios: 
displaying a single  model  and  changing  to  the  next 

 

Figure 10: Car model no. 4. 

one, and rendering all models gradually increasing 
the number of models, thus testing the speed of model 
swapping and the load degree. 

8 RESULTS 

The scenarios were prepared to eliminate the human 
factor that could affect measurements. Automatically, 
after the application starts, the time of detection of the 
marker or first plane is measured. Then, at 5-second 
intervals, the 3D model is changed to the next one. 
When the last model is swapped, the application 
stops, and the performance testing procedure ends. 

The first measurement, as shown in Figure 11,  
is the marker search time. The values shown represent 
averaged results from 5 measurements. 

 

Figure 11: Results for marker search time. 

Despite the fact that ARKit was released a year 
earlier than ARCore, the library from Google 
performs better on similar hardware compared to the 
library from Apple. On the other hand, hardware that 
is less powerful, namely the Lenovo Tab M10 Plus 
and Samsung A10, performs worse than iPhone. 

The level of battery consumption was not 
achievable on most devices, and if it was available,  
it was meaningless, as the values were extremely 
different when inactive. 
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Another measurement, shown in Figure 12,  
was the loading time of the largest model,  
namely model no. 4. The average number of frames 
during this scenario is shown in Figure 13. 

 

Figure 12: Results for rendering time. 

 

Figure 13: Results for FPS. 

Currently, ARCore is limited to 30 frames per 
second. This shows the advantage of ARKit over 
Google. However, this library is only available for the 
Apple’s iPhone and iPad. ARCore performs a little 
worse on the same device, due to worse optimization 
on the competitor’s platform. For all devices,  
the score percentile was as high as the average,  
which means that frame stability was maintained. 

The quality of 3D models was the same on all 
devices, due to the same settings for edge smoothing 
and shadow quality. In contrast, the effect of the AR 
function differed significantly. The estimated light  
for ARKit looked much better and behaved more 
dynamically relative to the prevailing conditions. 
Illuminating the scene with an additional light source 
natively also illuminated the model, where in ARCore 
the system took 2 seconds to calculate the generated 
light. 

The next tested factor was the temperature of the 
device, shown in Figure 14, after running the 
measurement scenario 5 times. 

 

Figure 14: Results for temperature. 

The lowest temperature increase was registered 
for the iPhone X device with the native library,  
while the highest for the Samsung A10. Hence, it can 
be concluded that ARCore is more demanding than 
ARKit. 

9 SUMMARY 

After analyzing the presented results, it can be 
concluded that ARKit proved to be a better library for 
AR than ARCore. One of the key reasons for this state 
of performance may be better optimization for a given 
pool of devices. Apple offers a smaller number of 
devices under its brand, while Android is available on 
more than 70% of devices worldwide (Statcounter, 
2022). It is simply easier for Apple to fine-tune  
the library for its hardware. ARCore, on the other 
hand, is released under the Apache 2.0 license,  
i.e., with open source code, allowing any user to 
contribute to developing the library. 

Future studies may and should include a wider 
group of devices, particularly other smartphones and 
tablets both from Apple and various Android-
powered manufacturers. It would be also interesting 
to collect other common functionalities of the 
libraries, such as face tracking, and prepare additional 
scenarios for them. This would point out the pros and 
cons from a broader point of view. 

When it comes to analyzing the temperature of 
tested devices, it would be surely interesting to use a 
thermal imaging camera. The described libraries 
introduce new functionalities depending on the 
processor, so the next step would be to analyze the 
behavior of both libraries on flagship Android and 
iOS devices. Additional source of inspiration may be 
found in (Xia et al., 2019; Falkowski-Gilski, 2020; 
Falkowski-Gilski and Uhl, 2020; Jacob et al., 2021; 
Lee et al., 2021). 
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