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Abstract: Pushed by the Industry 4.0 paradigm, the volume of data being captured from manufacturing lines is 
continuously increasing. To get a deeper insight of manufacturing processes, time series data from key 
variables of the processes has to be captured, monitored and visualized.  This implies that more data variables 
must be monitored and data must be captured at a higher frequency: from one value of a few key variables to 
values of several variables captured at frequencies of seconds. Traditional Manufacturing Execution Systems 
(MES) were not designed for this scenario and cannot cope with these requirements. Thus, new architectures 
and tools are required to merge Information Technology (IT) and Operation Technology (OT) fields. This 
paper proposes a lightweight architecture based on micro-services and time series data requirements to 
connect to manufacturing process controllers, and to capture, store, monitor and visualize relevant data about 
the process. Moreover, a reference implementation based on Open Source tools is presented and validated. 

1 INTRODUCTION 

Pushed by the Industry 4.0 paradigm, the volume of 
data being captured from manufacturing lines is 
continuously increasing. To get a deeper insight of 
manufacturing processes, more data variables are 
being monitored and data is captured at a higher 
frequency: from one value of a few key variables for 
a whole batch, to time series of several variables 
captured at frequencies of seconds. Traditional 
Manufacturing Execution Systems (MES) were not 
designed for this scenario.  

Thus, new architectures are required to integrate 
Information Technology (IT) and Operations 
Technology (OT) fields. This implies a myriad of IT 
and OT technologies, standards and specifications 
related to Industry 4.0. 

The complexity of this integration generates a 
knowledge barrier, as these IT technologies follow a 
completely different philosophy from the regular 
tools used by OT engineers. Thus, Small and 
Medium-sized Enterprises (SMEs), which generally 
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lack multidisciplinary teams with the required IT and 
OT knowledge and experience, face big difficulties to 
capture, monitor and visualize data from 
manufacturing processes. 

Standard reference architectures such as RAMI 
4.0 support advanced Industry 4.0 use cases, adding 
additional technological complexity, which does not 
add value for most SMEs starting to monitor time 
series data from their processes. 

Existing market solutions rely on external cloud 
servers to perform these tasks, adding a dependency 
on servers out of the control of manufacturing 
companies, which is not compatible with privacy and 
confidentiality requirements of several 
manufacturing companies.   

This paper tackles this complexity by proposing a 
containerized micro-service-based edge architecture 
to monitor and visualize manufacturing processes. 
The architecture connects to manufacturing 
controllers to acquire time series data about the 
processes, and then store it on a time series database 
to be monitored and visualized.  A reference 

Garcia, A., Oregui, X., Franco, J. and Arrieta, U.
Edge Containerized Architecture for Manufacturing Process Time Series Data Monitoring and Visualization.
DOI: 10.5220/0011574500003329
In Proceedings of the 3rd International Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL 2022), pages 145-152
ISBN: 978-989-758-612-5; ISSN: 2184-9285
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

145



implementation of the architecture based on Open-
Source tools is presented and validated with a 
simulated process. 

2 RELATED WORK 

The German government presented the Industrie 4.0 
term in 2011. The objective of the fourth industrial 
revolution is to work with a higher level of 
operational productivity and efficiency, connecting 
the physical to the virtual world. Industry 4.0, also 
known as Industrial Internet of Things (IIoT), is 
related to several technologies such as Internet of 
Things (IoT), Industrial Automation, Cybersecurity, 
Intelligent Robotics, or Augmented Reality (Alcácer 
& Cruz-Machado, 2019). 

The term cyber-physical systems (CPS) was 
coined in the USA in 2006 and has received several 
definitions (Fei et al., 2019). CPS is the merger of 
‘‘cyber” as electric and electronic systems with 
‘‘physical” things. The ‘‘cyber component” allows 
the ‘‘physical component” (such as mechanical 
systems) to interact with the physical world by 
creating a virtual copy of it. This virtual copy will 
include the ‘‘physical component” of the CPS (i.e., a 
cyberrepresentation) through the digitalization of 
data and information (Alcácer & Cruz-Machado, 
2019). 

In general, a CPS consists of two main functional 
components: (1) the advanced connectivity that 
ensures real-time data acquisition from the physical 
world and information feedback from the cyber 
space; and (2) intelligent data management, analytics 
and computational capability that constructs the cyber 
space (Lee et al., 2015). 

First attempts to integrate advances services from 
Industry 4.0 on manufacturing environments were 
based on cloud computing. Cloud computing 
paradigm relies on remote servers with a storage and 
computing power magnitudes beyond local servers. 
However, cloud computing presents four main 
disadvantages for manufacturing scenarios: latency, 
security, privacy, and cost. 

Edge computing is a paradigm where data are 
analyzed and stored close to the devices generating 
and consuming them, facing previous disadvantages 
and making them attractive for manufacturing 
scenarios (Alam et al., 2018; Qiu et al., 2020). 

The main objective of edge computing is to 
exploit computational resources of interconnected 
devices to increase their independence and to get data 
analysis and exploitation closer to where data is 
generated. This paradigm optimizes cloud computing 

paradigms moving data processing task (or part of 
them), to the edge of the network. This philosophy is 
especially relevant for manufacturing scenarios. 

Edge computing devices have increasingly 
powerful computation functionalities. This, combines 
with advanced connectivity technologies such as 5G, 
which offers a fast, robust, and massive connectivity, 
is paving the way for a new type of intelligent devices 
and services based on Artificial Intelligence. 

Recently, various attempts have been made to 
transform manufacturing systems into interoperable, 
connected and digitalized elements. However, the 
main challenges of the Industry 4.0, including 
cybersecurity, and standardized data interchange 
between devices, machines and services, are still 
opened (Lu, 2017). In (Qiu et al., 2020), a review of 
the application of edge computing paradigm into 
manufacturing scenarios is provided, identifying 
architectures, advances and open challenges. 

Existing international reference architectures for 
manufacturing scenarios, such as RAMI 4.0 or IIRA, 
propose reference models difficult to implement 
(Szántó et al., 2021). Moreover, architectures 
proposed by other authors target a lot of complex 
functionalities related to the Industry 4.0 
(Azarmipour et al., 2020; Omar et al., 2019; Yang et 
al., 2020). 

Thus, their implementation is time and cost 
consuming, out of the reach of small and medium 
manufacturing companies.  

The architecture proposed in this paper is focused 
on an specific case: monitor and visualize time series 
data from manufacturing processes. However, the 
architecture is flexible enough to be extended with 
new future services (for example to integrate 
Artificial Intelligence services), increase its 
performance, or integrate new communication and 
security mechanisms. 

3 ARCHITECTURE 

The architecture is composed by the following 
components: client, message queue, writer, time 
series database, visualizer, and monitor (Figure 1). 

The manufacturing equipment is the asset being 
monitored. Data from the equipment is captured from 
the manufacturing controller, which publishes it using 
standard communication specifications such as OPC-
UA or MQTT. 

The Open Platform Communications Unified 
Architecture (OPC-UA), has become the 
interoperability standard for the secure and reliable 
exchange of data in the industrial domain, easing the 
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Figure 1: General architecture. 

tasks of capturing and exporting data. In the most 
common OPC UA communication paradigm, the 
manufacturing equipment has an OPC UA server that 
allows to read/write variables values and to invoke 
custom methods. Clients connect to the server to 
read/write values of the variables, to call remote 
methods, and to subscribe to receive changes on their 
values. 

MQTT is a robust and trustworthy protocol, with 
implementations with very low computation 
requirements and available for most of the current 
hardware and software platforms. 

MQTT is based on a queue manager (broker), 
where different clients send messages (publish). Each 
message is sent with a certain subject (topic) and may 
contain data (payload). Other clients can show their 
interest in certain topics to the que manager 
(subscribe). When the queue manager receives a 
message with some of these topics, it sends the 
message to the subscribed clients.  

This communication paradigm based on 
publishing messages and subscribing to topics to 
receive them, has proved to be a robust, efficient, and 
low latency technology. Currently, it is one of the 
most used protocols for Internet of Things domain. 

Although the proposed architecture does not 
impose the use of a communication protocol, authors 
recommend the use of OPC-UA or MQTT. Most 
modern Programable Logic Controllers (PLCs) 
already include OPC-UA or MQTT functionalities, 
and there are several specialized gateways on the 
market translating other industrial protocols to OPC-
UA or MQTT. 

However, if this option is not available for some 
manufacturing scenario, it would be always possible 
to develop a custom communication module inside 
the client to get data from the manufacturing 
controller. 

The first element of the architecture is the client. 
Its main task is to connect to the manufacturing 
equipment to obtain the values of the manufacturing 
process. The client has to perform data cleaning and 

validation tasks to ensure the quality of the data, 
including the check of the timestamps. Moreover, 
when required, data has to be transformed to a proper 
format to be stored, for example to update numeric 
values to labels or Booleans, or to generate synthetic 
data from variables. Once data is ready, it is sent to 
the writer using a message queue.  

The message queue decouples the client from the 
writer. It could be based on any technology, such as 
MQTT, as long as it satisfies the load requirements of 
each scenario. 

The main task of the writer is to receive data from 
the message queue and to transform it into a proper 
format to be sent directly to the time series database 
to be stored.  

The time series database manages data storage 
and retrieval operations. This database should have 
advanced functionalities to ease querying time series, 
and to aggregate data to optimize disk space 
utilization. 

The visualizer is responsible to generate 
dashboards of the manufacturing processes, and to 
allow final users (operators, engineers…) to visualize 
and manually analyse data. 

The last element, the monitor, is focused on the 
generation of alarms and notifications when data of 
the manufacturing process is out of its regular range 
or some conditions are fulfilled. 

The architecture is based on decoupled micro-
services designed to be deployed as containers. The 
objective is (i) to ease the deployment at the edge, and 
(ii) to allow individual changes or upgrades of each 
micro-service without having to update and validate 
the rest of the micro-services. 

4 REFERENCE 
IMPLEMENTATION 

This section presents a reference implementation of 
the general architecture based on Open-Source tools. 
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Each micro-service has been designed as a Docker 
container, and the architecture has been orchestrated 
with the docker compose tool. 

The client has been implemented as a Python 
micro-service. OPC-UA and MQTT support has been 
based on the FreeOpcUa library and the MQTT Paho 
library from the Eclipse Foundation. The client sends 
values of the variables to the message queue with a 
JSON payload with and object format. Each element 
of the object has three element: timestamp of the 
value, identifier of the equipment, and an object of 
data with variables name and value pairs. Thus, each 
message can include value for one or more variables. 

The message queue has been implemented with 
RabbitMQ, a lightweight and widely deployed Open-
Source message broker. Although it requires more 
computing resources than MQTT, RabbitMQ 
supports several messaging protocols and paradigms, 
and has better security and reliability features. 
Moreover, RabbitMQ includes internal buffers to 
avoid losing messages if the writer is temporarily 
overloaded and mechanisms to easily integrate new 
writer containers if several clients are sending data to 
the queue. 

The writer has been implemented as a Python 
micro-service. It receives messages from the queue, 
and transforms data into INSERT queries for the 
database. This insert queries have to be formatted to 
fulfil the format expected by the SQL dialect of the 
database. 

TimescaleDB has been selected as the time series 
database engine over other alternatives such as 
InfluxDB due to its advanced functionalities, SQL 
language compatibility, and the rich PostgreSQL 
based tooling ecosystem. TimescaleDB is an Open-
Source database designed to make SQL scalable for 
time-series data. It is engineered up from PostgreSQL 
and packaged as a PostgreSQL extension. 

Traditional relational databases, such as MySQL 
or SQL Server, are not suited for the storage of time 
series data, as their performance decrease greatly as 
the data volume of the time series increases. NoSQL 
databases, such as MongoDB, have recently include 
support for time series data, but the functionalities 
they offer to work with time series data is still not 
comparable to the ones offered by TimescaleDB or 
InfluxDB. 

Finally, both the visualizer and the monitor 
components have been deployed based on Grafana. 
Grafana is a popular multi-platform Open Source 
analytics and interactive visualization web 
application. Grafana is agnostic of the underlying 
database and has an intuitive user interface both to 
customize charts and dashboards, and to generate 

alerts and notifications based on advanced rules and 
notification channels. 

All the micro-services have been deployed as 
docker containers within the same docker network. 
The Web access port from Grafana has been exposed 
within the client host to be accessible from a Web 
Client. Port 5432 from TimescaleDB has also been 
exposed to allow the use of PostgreSQL desktop tools 
such as pgadmin from the host machine. Information 
to automatically connect micro-services and to 
manage data persistence of each container has been 
included inside the docker compose definition.  

The main customization of the reference 
implementation to be deployed in a new scenario is 
related to OPC UA or MQTT, and the structure of the 
data and the database. For example, different OPC 
UA servers may send data either as an object, or as a 
several individual variables. Regarding MQTT, each 
controller may use different topic and payload 
definition to send data.  

The design of the database is also specific of each 
scenario. In a general scenario, a table with these 
columns would be enough to store data: 

• Time: to store the timestamp of the value 
• Id: to store the identifier of the equipment 
• Variable: To store the name of the variable  
• Value: To store the value of the variable. It 

should be a string to allow storing different data 
types 

However, this design may present performance 
drawbacks to retrieve data from the database, and to 
visualize and monitor it, as each value has to be 
parsed. Thus, it is recommended that each scenario 
designs its database table to store time series data. 

For OPC-UA servers, a config file with the URL, 
and optionally the username and password, has to be 
updated. Moreover, a list of the identifier of each 
OPC UA node variable has to be filled, including the 
name and type of each variable. For MQTT, server 
connection data (URL, username and password) and 
the topic name have to be defined. Moreover, as 
MQTT payload is not standardized, code changes 
may be required on the client to read variable names 
and values from the MQTT messages.  

5 VALIDATION 

The architecture has been validated with a simulator 
of a manufacturing basic boiling process. The 
simulator is provided by the Open Source OPC-UA 
PLC server implementation from Microsoft. The 
simulated boiler has three variables (temperature, 
pressure and heater state) and two methods to turn the 
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heater on or off. When the heater is on, the bottom 
temperature increases by 1 degree per second, the top 
temperature is always 5 degrees less than the bottom 
one. Pressure is calculated as 100000 plus bottom 
temperature. 

The client has subscribed to these variables to 
receive their values and sent them to the message 
queue. However, instead of publishing one node for 
each variable, the OPC Server publishes one node of 
type BoylerDataType. This data type includes three 
variables:  

• HeaderState: Boolean representing whether the 
boiler is on or off 

• Pressure 
• Temperature: IT is an object with two 

variables: 
o Top 
o Bottom 

In order to get the identifier of the boiler node, we 
have used a regular OPC UA client GUI, UaExpert 
from Unified Automation. The identifier is 
“ns=3;i=15013”. 

The client subscribes to these node, and receives 
updates of the values. Each time an update is 
received, the object is parsed. When the boiler is off, 
there is no data about the temperatures or the 
pressure. Thus, the client set their value as “-1” to 
mark them as unknown. 

Once data is ready, the client send it to a 
RabbitMQ queue named “boiler”. The next code 
shows an example payload of the message: 
{ 
    "data": { 
        "temperature": { 
            "top": 23, 

            "bottom": 28 
        }, 
        "pressure": 100028, 
        "heaterState": 1 
    }, 
    "time": "2022-08-12T10:15:18.784Z", 
    "id": "boiler01" 
} 
The writer receives these updates and send them to 
the TimescaleDB database. A table has been created 
for the boiler with the following columns: 

• Time: to store the timestamp of the value 
• Id: to store the identifier of the boiler and to 

allow to store data from more than one boiler in 
the future 

• Top: To store the temperature of the top of the 
boiler 

• Bottom: To store the temperature of the bottom 
of the boiler 

• Pressure: To store the pressure 
• HeaderState: To store whether the boiler is off 

(0) or on (1) 
The writer receives each message and generates the 
following SQL query to insert data. The database 
receives the query and stores data on the table (Figure 
2). 
INSERT INTO boiler("time", top, bottom, pressure, 
"heaterState","boilerId") VALUES ('2022-08-
12T10:18:03.779Z', 30, 35, 100193, 1,'boiler01'); 
The notifier has been configured to raise alarms each 
time some of these conditions are met: 

• Temperature is out of the 15-300 range 
• Pressure is above 101500 
• Temperature is above 200 and pressure is 

above 100500 

 
Figure 2: Screenshot of a select query of the data. 
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Figure 3: Example of a complex rule generation. 

 
Figure 4: Example of a Grafana dashboard. 

The alarms are easily configured using the 
Grafana GUI (Figure 3). For each alert rule, after 
selecting the datasource and the related table and 
column, several conditions can be applied to decide 
whether an alert should be raised. 

Grafana has a powerful alert customization and 
notification mechanism able to suit most of the 
regular requirements to monitor manufacturing 
equipment. Once rules have been defined, labels can 
be attached to them to ease their management. Then, 
a notification policy is applied where several filters 
regarding time, labels, severities… allow to decide 

whether the alert has to be redirected to any of the 
available notification channels. There are several 
notification channels (email, slack, PagerDuty…) 
available, and custom ones can also be defined. 

Finally, a dashboard showing the values of the 
temperature, pressure and status of the boiler has been 
generated in Grafana (Figure 4).  

Definition of each graph is easily customized 
using the available query builder (Figure 5). Using the 
GUI a general SQL query is generated, and it is also 
possible to insert manual SQL queries to directly 
integrate advanced functions from TimescaleDB such 
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Figure 5: Query builder from Grafana. 

as time buckets. Time buckets allow to get uniformly 
distributed data points within a range, for example 
one value with the average of the values from the 
database each 10 minutes. 

The whole system has been defined as docker 
containers orchestrated within a docker compose file. 
This docker compose file can be used as a template to 
be deployed in new scenarios, after updating the 
points mentioned in the previous section. 

6 CONCLUSIONS 

Industry 4.0 requires data to get insights of the 
manufacturing processes. Thus, requirements to 
capture more data variables and at a higher frequency 
arises: from one value of a few key variables for a 
whole batch, to time series of several variables 
captured at frequencies of seconds. Traditional 
Manufacturing Execution Systems (MES) were not 
designed for this scenario composed by a high 
volume of time series data of manufacturing 
processes. 

Thus, new architectures are required to integrate 
Information Technology (IT) and Operations 
Technology (OT) fields. This implies a myriad of IT 
and OT technologies, standards and specifications 
related to Industry 4.0, with a high complexity level. 
SMEs are not ready to cope with this complexity 
level. 

This paper tackles this complexity by proposing a 
containerized micro-service-based edge architecture 
to monitor and visualize manufacturing processes. 
The architecture connects to manufacturing 
controllers to acquire time series data about the 
processes, and then store it on a time series database 
to be monitored and visualized.  A reference 
implementation of the architecture based on Open-
Source tools has been presented and validated with a 
simulated process. 

The architecture is based on decoupled containers 
to be easily deployed at the edge. It has four main 
elements. 

The client connects to the manufacturing 
equipment to obtain the values of the manufacturing 
process. Once data is ready, it is sent to the writer 
using a message queue.  

The main task of the writer is to receive data from 
the message queue and to transform it into a proper 
format to be sent directly to the time series database 
to be stored. The time series database manages data 
storage and retrieval operations.  

The visualizer is responsible to generate 
dashboards of the manufacturing processes, and to 
allow final users (operators, engineers…) to visualize 
and manually analyse data. 

The last element, the monitor, is focused on the 
generation of alarms and notifications when data of 
the manufacturing process is out of its regular range, 
or some conditions are fulfilled. 
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A reference implementation based on the following 
Open Source has also been provided: 

• Custom Python scripts for the client and the 
writer 

• RabbitMQ message queue to connect the client 
and the writer 

• TimescaleDB to store time series data 
• Grafana to deploy and customize the visualizer 

and the monitor 
This implementation has been validated using a 

simulator of a boiler from Microsoft which includes 
and OPC UA Server to subscribe to its values. Data 
from the boiler has been captured, adapted and stored 
at the database. A Grafana dashboard has been 
created to visualize data from the boiler, and three 
rules have been successfully generated to create alerts 
when undesirable conditions are fulfilled. 

The proposed architecture greatly decreases the 
technological barrier required to monitor and 
visualize data from manufacturing processes. 
Moreover, as data is already properly stored at the 
database, it serves as a foundation for future services, 
for example integrating Artificial Intelligence 
algorithms to provide predictive maintenance 
functionalities. 

Future work starts with a validation at a real 
manufacturing scenario for a relevant period of time 
to test the resilience and scalability of the 
implementation. Moreover, advances functionalities 
from TimescaleDB to manage data retention and 
aggregation policies should also be validated. 
Performance of the solution in a real scenario 
customized with rules and alarms related to a real 
manufacturing use case should also be tackled during 
the validation.  

One last point to further decrease the 
technological barrier consists of the integration of no-
code tools, such as node-red. Node-red is a popular 
graphical tool where non-expert users interact with 
simple blocks to customize the functionalities of a 
system using an interactive interface. 
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