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Abstract: One of the most significant public health issues in the world and a major factor in women's mortality is breast 
cancer (BC). Early diagnosis and detection can significantly improve the likelihood of survival. Therefore, 
this study suggests a deep end-to-end heterogeneous ensemble approach by using deep learning (DL) models 
for breast histological images classification tested on the BreakHis dataset. The proposed approach showed a 
significant increase of performances compared to their base learners. Thus, seven DL architectures (VGG16, 
VGG19, ResNet50, Inception_V3, Inception_ResNet_V2, Xception, and MobileNet) were trained using 5-
fold cross-validation. Thereafter, deep end-to-end heterogeneous ensembles of two up to seven base learners 
were constructed based on accuracy using majority and weighted voting. Results showed the effectiveness of 
deep end-to-end ensemble learning techniques for breast cancer images classification into malignant or 
benign. The ensembles designed with weighted voting method exceeded the others with an accuracy value 
reaching 93.8%, 93.4%, 93.3%, and 91.8% through the BreakHis dataset's four magnification factors: 40X, 
100X, 200X, and 400X respectively.

1 INTRODUCTION 

Cancer is considered among the most serious health 
issues in the world. In 2020, more than 19.3 million 
new cancer cases are diagnosed and nearly 10 million 
deaths are declared (Sung et al., 2021). By far the 
most eminent and leading cause of death in women 
worldwide is breast cancer (BC), with 2.3 million 
women affected by it in 2020 (Sung et al., 2021). 
Early detection and diagnosis of this disease are 
essential to minimise morbidity in women. Even 
though X-ray, MRI (Magnetic Resonance Imaging), 
ultrasound, and other imaging techniques have been 
used for more than 40 years to detect breast cancer 
(Stenkvist et al., 1978), biopsy techniques have 
always been the most commonly used method for 
correctly diagnosing breast cancer. The procedure 
entails collecting tissue samples, mounting them on 
microscopic glass slides, and staining them for 
visualization purposes (Mitko Veta, 2014). 
Pathologists then examine and diagnose the 
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histopathological images to affirm the diagnosis of 
breast cancer. (Mitko Veta, 2014). Manual 
examination of large-scale histological images, 
however, is a difficult process due to changes in 
appearance, structure, and textures(Li et al., 2019), it 
is time-consuming, and usually depends on human 
subjective interpretation since the level of experience 
of the pathologists involved may have an impact on 
the results of the analysis. Therefore, computer-aided 
(Aswathy and Jagannath, 2017) analysis of 
histological images are crucial in the diagnosis of 
breast cancer.  

Deep learning (DL) has recently outperformed a 
variety of machine learning (ML) models for the 
medical image analysis tasks, such as classification 
(Mardanisamani et al., 2019), detection (Herent et al., 
2019), and segmentation (Lateef and Ruichek, 2019). 
When compared to other types of ML classifiers, DL 
has the advantage of being able to achieve results that 
are similar or better than human performance. DL 
techniques have been used in computer vision (Xie et 
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al., 2018), biological science (Gulshan et al., 2016), 
and many other domains to solve problems of 
traditional feature extraction. More specifically the 
Deep convolutional neural networks (DCNNs) have 
been widely recognized as one of the most efficient 
tools for image classification since they provide 
numerous advantages over traditional solutions, 
including an end-to-end architecture that relieves 
users from hand-crafted feature extraction tasks. (Jia 
et al., 2020).  
Despite its popularity, a single DCNNs model can 
only extract a limited amount of discriminative 
features, resulting in suboptimal classification 
performance. To improve classification accuracy, 
ensembles of DCNN architectures have been 
designed to learn the representation of 
histopathological images from various perspectives. 
Since then, many researchers started investigating 
deep ensemble learning techniques to ameliorate the 
performances. For instance, the study (El Ouassif et 
al., 2021), proposed multiple heterogeneous 
ensembles for breast cancer classification on three 
datasets (WDBC, Wisconsin, WPBC). From seven 
classifiers (KNN, Decision Three, MLP, SVM, SVM-
PUK, SVM-RBF, S-LK, SVM-NP), the authors, 
selected and constructed ensembles based on two 
selection strategies: (1) selection by accuracy and 
diversity, and (2) selection by only accuracy. Then, 
the constructed ensembles were combined using the 
majority voting method. According to the findings of 
this study, investigating both accuracy and diversity 
to select ensemble members often resulted in better 
performance than designing and building ensembles 
without member selection. In (Vo et al., 2019), 
authors proposed an ensemble constructed with three 
DL models for breast cancer classification tested on 
the BreakHis and Bioimaging-205 datasets. 
Inception_ResNet_V2 was used to extract features 
and gradient boosting trees for classification. the 
classifiers were combined using the majority voting 
strategy to improve the performance. The accuracy 
values reached: 95.1%, 96.3%, 96.9%, 93.8% and 
86.75% for the magnification factors (MF) MFs of the 
BreakHis dataset and bioimaging dataset respectively. 
Some limitations have been revealed in the 
studies(Idri et al., 2020),(Vo et al., 2019): (1) the 
design of heterogenous ensemble using only one 
combination method, (2) except of the study (El 
Ouassif et al., 2021), a lack of statistical analysis to 
select the outperforming proposed model is 
noticeable.  

To elevate the burden of those limitations, this 
study proposes a deep end-to-end heterogenous 
ensemble technique (DEHtE) using seven end-to-end 
DL models as base learners for breast 

histopathological images classification over the 
BreakHis dataset. The proposed approach consists of 
combing seven DL techniques of two up to seven DL 
models as base learners, based on accuracy using two 
voting methods: majority voting by taking the mode 
of the distribution of predicted labels, and weighted 
voting by taking the average of predicted 
probabilities. The seven DL techniques were based on 
fine-tunned VGG16, VGG19, ResNet50, 
Inception_V3, Inception_ResNet_V2, Xception, and 
MobileNet, using a 5-fold cross-validation evaluation 
technique.  

The performance of the proposed approach was 
evaluated using four classification performance 
measures (Hosni et al., 2019; Zerouaoui and Idri, 
2021a) (accuracy, precision, recall, and F1-score), 
Scott Knott (SK) statistical test to group the proposed 
ensembles and identify the best cluster, and the Borda 
Count voting method to sort and identify the best 
performing ensemble. So far as we are 
knowledgeable, this study is the first to construct 
DEHtE of DL models as base learners based on 
accuracy and combined with two voting methods for 
histopathological BC classification. 

The current study focuses on two research 
questions. (RQs): 
- (RQ1): Does the deep end-to-end heterogenous 

ensembles using voting methods outperform 
their base learners? 

- (RQ2): What are the suitable number of base 
learners to design the deep end-to-end 
heterogenous ensembles and the suitable voting 
combination method used?  

The following are the study's main contributions: 
1. Assessing and comparing the performance of the 

seven fine-tunned DL end-to-end architectures 
over the BreakHis dataset. 

2. Constructing DEHtE using one selection criteria: 
selection by accuracy. 

3. Combining the constructed ensembles using 
majority and weighted voting methods. 

4. Assessing and comparing the performance of the 
designed DEHtE with their base learners over the 
BreakHis dataset. 

The remainder of this paper is structured as 
follows: Section 2 provides an overview of the deep 
learning models and ensemble learning techniques 
used to develop the proposed approach. Section 3 
presents data preparation process. Section 4 provides 
the details of the experiment configuration, the 
empirical methodology and the abbreviations 
followed in this empirical study. Section 5 reports and 
discusses the empirical results.  Section 6 covers the 
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threats of validity of this study. Lastly, Section 7 
Outlines the conclusion and ongoing work. 

2 BACKGROUND 

This section delves into some of the key principles 
used in this empirical study, starting with the concept 
underlying the experiment's various DCNN 
architectures, then discussing ensemble learning 
techniques. 

2.1 DCNNS Architectures  

This subsection introduces and defines the different 
DCNNs used in this proposal. 

VGGNet (2014): VGGNet finished first in the 
2014 ImageNet Challenge (Simonyan and Zisserman, 
2015). There is a total of six VGGNet architectures. 
The most common are VGG-16 and VGG-19. The 
VGG architectures are made up of convolutional 
layers with the ReLU, one max pooling layer, and 
multiple fully connected layers. 

ResNet (2015): Resnet was designed to avoid the 
vanishing gradient problem that previous deep 
learning models had. (He and Sun, 2016). ResNet is 
built with a variety of layer counts: 34, 50, 101, 152, 
and 1202. ResNet50. The most popular ResNet have 
49 convolution layers and one fully connected layer 
at the end. 

Inception_V3: Inception V3 is a member of the 
Inception deep architectures, has the same 
architecture as InceptionV1 and InceptionV2 with a 
few changes. Inception V3 has 42 layers anwithd a 
fixed input size of 299x299 by default (Szegedy et al., 
2014). It has a parallel convolutional layer block with 
three different filter sizes (1x1, 3x3, 5x5). 

Inception_ResNet_V2: Inception ResNet V2 is a 
convolutional neural network with 164 layers and an 
input size of 299x299. It is based on a combination of 
the Inception architecture and the Residual 
connection. Multiple convolutional filters are 
combined with residual connections in this 
architecture(Szegedy et al., n.d.). 

MobileNet_V2: As a source of non-linearity, 
MobileNet V2 filters features using lightweight 
depthwise convolution layers. It begins with a fully 
convolutional layer with 32 filters, then proceeds to 
19 residual bottleneck layers(Sandler et al., 2018). 

Xception: Xception is an architecture with 36 
convolutional layers that serve as the network's 
feature extraction foundation. It consists of a linear 
stack of separable depth-wise convolution layers with 
residual connections. This makes it very simple to 
define and modify the architecture. Xception has a 

total of 22.8 million trainable parameters. (Chollet, 
2017). 

2.2 Ensemble Learning  

In 1965, Ensemble Learning was proposed for 
classification tasks(Nilsson, 1965). It is based on the 
concept of training several base learners as ensemble 
members and combining their predictions into a 
single output that should outperform any other 
ensemble member with uncorrelated error on the 
target dataset on average(Zhou, 2012). An ensemble 
is composed of several base learners. A base learning 
algorithm, which can be a decision tree, a neural 
network, or another type of learning algorithm, is 
typically used to generate base learners from training 
data. Learners of the same type, leads to 
homogeneous ensembles, and learner of different 
algorithms are leading to heterogenous ensembles. 
An ensemble's generalization ability is commonly 
much higher than that of base learners.  
The current study uses heterogenous ensembles with 
majority and weighted voting methods to combine 
predictions of the DL base learners. Every classifier 
vote for one class label in majority voting, and the 
final output class label is the one that receives more 
than half of the votes. Weighted voting, on the other 
hand, takes into account the probabilities thrown by 
each classifier; these probabilities are weighted and 
averaged, and the winning class is the one with the 
highest weighted and averaged probability. (Zhou, 
2012) 

3 DATA PREPARATION 

In this section, we will present the process to prepare 
the histological BreakHis dataset consisting of five 
steps: data acquisition, data pre-processing using 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE), intensity normalization and data 
augmentation. Since the same process was followed 
in the studies (Zerouaoui et al., 2021; Zerouaoui and 
Idri, 2022), we therefore summarize it as described 
below.  
The BreakHis dataset contains haematoxylin-eosin-
stained breast histological slides which refer to 
microscopic examination of a biopsy to study the 
appearances of the cancer. It is constituted of 7,909 
breast histopathological images collected from 82 
patients at different magnification factors (MF) such 
as 40X, 100X, 200X, and 400X with effective pixel 
sizes of 0.49 m, 0.20 m, 0.10 m, and 0.05 m All 
images are stored in TrueColor (24-bit colour depth, 
8 bits per colour channel) three channel format 
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(RGB). A pathologist examined the images and 
identified the most relevant region of interest, 
excluding out-of-focus images and images with 
undesirable areas such as black borders or text 
annotations. Each image's final size is 700x460 pixels 
in PNG format (Gandomkar et al., 2018)(Spanhol et 
al., 2016). The dataset is divided into benign tumor 
(adenosis, fibroadenoma, phyllodes tumor, and 
tubular adenoma) and malignant tumor (ductal 
carcinoma, lobular carcinoma, mucinous carcinoma, 
and papillary carcinoma) (Zhu et al., 2019). One of 
the benefits of the BreakHis dataset is the use of four 
magnification factors, which allows for the detection 
of various cancer types and subtypes (Alom et al., 
2019).  
We used intensity normalization and CLAHE 
(Zerouaoui and Idri, 2021b, 2022) to improve the 
image quality. The data augmentation was used to 
deal with the imbalanced data by incorporating 
geometric transformations (Jiang et al., 2019)(Hosni 
et al., 2019) since the number of images in each 
category non-cancerous (2480 images) and cancerous 
(5429 images) are imbalanced with 70% of the 
images represent the malignant class.   

4 EMPIRICAL DESIGN  

In this section, the empirical design proposed to build 
the DEHtE is provided, starting with the process 
tailed to construct and evaluate the designed proposed 
approach including the experiment configuration and 
the statistical tests such as Scott Knott (SK) and borda 
count voting method (Bhering et al., 2008; Black, 
1976). Next, the abbreviations employed to refer to 
the designed ensembles and their base learners are 
given. At last, a framework of the experiment and the 
empirical design will be described.  

4.1 Experiment Configuration  

After preprocessing, the data is divided into two sets 
(train and test sets) with partitions of (80%, 20%), 
respectively. Then, using transfer learning for fine-
tunning, seven DL techniques (VGG16, VGG19, 
ResNet50, Inception V3, Inception ResNet V2, 
Xception, and MobileNet) were trained for each MF 
of the BreakHis dataset (Nguyen et al., 2020). The 
models were trained on the train set and tested on the 
test set using stratified K-fold cross validation with 
k=5. 
The seven DL techniques were trained using the 
following configurations: 

1. The histological images were resized to 224x224 
pixels for all DL architectures except for both 
Inception_V3 and Inception-ResNet_V2 that 
was resized to 299x299 pixels. 

2. The transfer learning technique for fine tuning 
was used for the training of the seven DL models. 
The pre-trained architecture's top convolutional 
layers were frozen (ImageNet weights were used) 
and the extracted features were fed to an 
Artificial neural network (ANN) classifier. 

3.  The ANN classifier used is built with a fully 
connected layer of 256 neurons with RELU 
activation function. To avoid overfitting, we 
added a dropout layer with rate set to 50%, a 
dense layer of two neurons with SoftMax 
activation function, and a dense layer of two 
neurons with SoftMax activation function. The 
batch size was set to 32 and the number of epochs 
to 200. As for the optimization, we used the 
Adam optimizer with a learning rate of 0.0001 
that decreases during training. Finally, we added 
L2 regularization to penalize large weight values 
and reducing model overfitting. 

The end-to-end architectures of this experiment are 
trained and tested in Python using the Keras and 
Tensorflow deep learning frameworks and run on a 
TPU processing unit with 8 cores, 35 GB of RAM, 
and a Linux-based OS provided by Google in Colab 
Notebook. The training process of the seven DL 
models is depicted in Figure 1. 

 
Figure 1: Training process of the seven DL techniques. 

4.2 Statistical Tests 

Scott Knott (SK) is a hierarchical clustering algorithm 
proposed by Scott and Knott in 1974 (Idri et al., 
2018).  It is a quick and efficient way to perform 
multiple comparisons with no ambiguity (Bhering et 
al., 2008). Because of its simplicity and robustness, 
the SK test is the most commonly used hierarchical 
clustering algorithm when compared to other 
statistical tests (Spanhol et al., 2016)(Hamza and 
Larocque, 2005). The SK test was used in this study 
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to cluster the base learners and DEHtE techniques 
based on accuracy to see if there was a significant 
difference between them. 
 
Borda count is a single-winner election method in 
which candidates are assigned points in descending 
order based on their ranking. The point values for all 
ranks and votes are added up, and the candidate with 
the most points is declared the winner (Emerson, 
2013). The Borda count method was used in this 
study to find the best performing DEHtE based on 
four classification performance measures with equal 
weights (accuracy, precision, recall, and f1-score). 

4.3 Abbreviation 

To help the reader and abbreviate the names of the 
various techniques used in this research, we shorten 
the names of each DL technique as described in Table 
1: 

Table 1: The abbreviation of the DL architectures 
 

DL architecture Abbreviations 
Xception XCEP 
ResNet50 RES50 
MobileNet MOBN 
Inception_ResNet_V2 INRESV2 
Inception_V3 INV3 

 
As for the DEHtE names the following abbreviations 
were chosen: 
EnHVA: Ensemble of size n combined with hard 
voting method and constructed with selection by 
accuracy strategy. 
EnWVA: Ensemble of size n combined with 
weighted voting method and constructed with 
selection by accuracy strategy. 
Exemple: Ensemble of 6 base learners using weighted 
voting with the selection by accuracy strategy is 
E6WVA 

4.4 Empirical Design 

This subsection describes the methodology followed 
for the DEHtE method. This experiment consists of 
the following seven steps: 
• Step 1: evaluating the performance of the seven 

deep learning techniques based on accuracy. 
• Step 2: Constructing for each MF, DEHtE of 2 

up to 7 DL models used as base learners 
(combinations of 2, 3, 4, 5, 6, and 7) following 
the selection by accuracy strategy which consists 
of ranking the seven DL techniques with Borda 
count in terms of accuracy, precision, recall and 
f1-score, then from top to down constructing 

combinations of two, four, five, six and seven. At 
the end of this step, we obtain 6 DEHtE for each 
MF.  

• Step 3: For each MF, apply the majority and 
weighted voting methods on all combinations 
obtained in step 2, to obtain then, 12 ensembles 
for each MF (6 DL end-to-end architecture x 2 
voting methods). Then, evaluate their 
performance in term of accuracy. 

• Step 4: For each MF, apply the SK test on each 
12-ensemble obtained in step 3 with the seven 
DL end-to-end architectures based on accuracy. 

• Step 5: This step entails using Borda count to 
rank the variants of the best clusters (obtained in 
step 4) based on accuracy, precision, recall, and 
F1-score. 

Figure 2 describes the process to design the 
DEHtE, it consists of three main steps: 1) data 
preprocessing, 2) DL models training for both feature 
extraction and classification and 3) combining the 
DEHtE using the selection by accuracy strategy and 
using the two com bination rules: majority (Idri et al., 
2020) and weighted voting . 

 
Figure 2: The main steps to design the deep ent-to-end 
heterogenous ensemble. 

5 RESULTS AND DISCUSSION 

This section describes and compares the performance 
of the DEHtE designed using the selection by 
accuracy strategy and their base learners over the four 
MFs of the BreakHis dataset (40X, 100X, 200X and 
400X) and defines the suitable number of base 
learners and voting combination methods. To do so, 
(1) the performances were analyzed and compared 
based on accuracy of all DEHtE, then (2) the 
difference of performances was observed using SK 
statistical test, (3) the best clusters obtained using SK 
test were ranked using Borda count voting method. 
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5.1 Performance of Deep End-to-End 
Heterogenous Ensembles  

In a previous study (Alaoui et al., 2022), the seven 
DL architectures including VGG16, VGG19, 
ResNet50, Inception_V3, Inception_ResNet_V2, 
Xception, and MobileNet were evaluated and 
compared using the BreakHis dataset. The main 
results have showed that the DL end-to-end 
architecture XCEP achieved the highest accuracy 
using the 40X MF with a value of 90.91 %, the DL 
end-to-end architecture VGG16 achieved 90.43 % on 
100X MF, and the DL end-to-end architecture 
MOBN performed best on 200X and 400X with 
accuracy values of 90.90 % and 89.91 %, 
respectively. Furthermore, it is noticeable that the DL 
model RES50 underperformed compared to the other 
architectures regardless the MF used.  
To assess and compare the performances of DEHtE 
constructed based on the selection by accuracy 
strategy and combined using two voting techniques 
(majority and weighted voting), we first rank the 
seven DL architectures based on accuracy and then 
combine them using majority and weighted voting 
following the ranking presented in Table 2. As results 
we obtained DEHtE of 2, 3, 4, 5, 6 and 7 DL models 
as base learners. 

Table 2: The ranking of the seven DL models to design the 
DEHtE based on the selection by accuracy strategy. 

Rank 40X 100X 200X 400X 
1 XCEP VGG16 MOBN MOBN 
2 MOBN MOBN XCEP INRES 

3 INRES XCEP VGG16 VGG16 

4 VGG16 INV3 VGG19 XCEP 

5 INV3 INRES INRES INV3 

6 VGG19 VGG19 INV3 VGG19 

7 RES50 RES50 RES50 RES50 

 
Table 3 indicates the accuracy values of the DEHtE 
selected by accuracy using majority and weighted 
voting methods over the BreakHis dataset four MFs. 
It is revealed that: 
- For 40X MF, the best accuracy value obtained 

using majority voting was 93.5% reached by 
ensemble of size six, and the best accuracy 
obtained using weighted voting was 93.8% 
reached by ensembles of size six and seven. 
Moreover, ensemble of size two shows the worst 
accuracy value in both voting methods: majority 
and weighted voting with values: 90.9% and 92%, 
respectively. 

- For 100X MF, the best accuracy value obtained 
using majority voting was 92.8% reached by 
ensemble of size six, and the best accuracy value 
obtained using weighted voting was 93.4% 
reached by ensemble of size four. Moreover, the 
worst accuracy value obtained using majority 
voting was 90.4% reached by ensemble of size 
two, and the worst accuracy value obtained using 
weighted voting was 92.5% reached by ensemble 
of size three. 

- For 200X MF, ensemble of size seven shows the 
best accuracy value in both voting methods: 
majority and weighted voting with values: 93.1% 
and 93.3%, respectively. Moreover, ensemble of 
size two shows the worst accuracy value in both 
voting methods: majority and weighted voting 
with values: 90.9% and 92.3%, respectively. 

- For 400X MF, the best accuracy value obtained 
using majority voting was 91.5% reached by 
ensemble of size six, and the best accuracy 
obtained using weighted voting was 91.8% 
reached by ensembles of size four and seven. 
Moreover, ensemble of size two shows the worst 
accuracy value in both voting methods: majority 
and weighted voting with values: 89.9% and 
90.9%, respectively. 

Table 3: Results based on accuracy of DEHtE selected by 
accuracy over the BreakHis dataset. 

40X 100X 200X 400X 
E2HVA 90.90 % 90.40% 90.90% 89.90% 
E3HVA 93.20% 92.50% 92.80% 91.30% 
E4HVA 93.30% 92.50% 92.70% 91.40% 
E5HVA 93.40% 91.80% 93.00% 91.30% 
E6HVA 93.50% 92.80% 93.00% 91.50% 
E7HVA 93.00% 92.10% 93.10% 91.40% 
E2WVA 92.00% 93.00% 92.30% 90.90% 
E3WVA 93.20% 92.70% 92.90% 91.50% 
E4WVA 93.50% 93.40% 93.00% 91.80% 
E5WVA 93.70% 92.90% 93.20% 91.40% 
E6WVA 93.80% 93.00% 93.20% 91.60% 
E7WVA 93.80% 93.10% 93.30% 91.80% 

 
In order to determine whether the DEHtE outperform 
their singles, we clustered the constructed ensembles 
following the selection by accuracy strategy and 
using two voting methods (majority and weighted 
voting) with their seven DL models used as base 
learners. Figure 3 illustrates the outcomes of the SK 
statistical test on the BreakHis dataset. It is observed 
that: 
- For 40X MF, 6 SK clusters were obtained. The 

best cluster includes 10 ensembles out of 12 (all 
ensembles except E2WVA which belongs to the 
second cluster, and E2HVA which belongs to the 
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third cluster with the DL model XCEP). The 
fourth cluster contains VGG16, INRES, MOBN 
and INV3. Moreover, the fifth and the last 
clusters contain VGG19 and ResNe50, 
respectively. 

- For 100X MF, 6 SK clusters were obtained. The 
best cluster involves 7 ensembles out of 12 
(E7WVA, E6WVA, E5WVA, E4WVA, 
E3WVA, E2WVA, E6HVA). The second cluster 
contains 4 ensembles (E7HVA, E5HVA, 
E4HVA, and E3HVA). E2HVA belongs to the 
third cluster with VGG16 and MOBN, the fourth 
cluster contains XCEP and INV3. Moreover, 
INRES and VGG19 belong to the fifth cluster, 
and the last cluster contains RES50. 

- For 200X MF, 5 SK clusters were obtained. The 
best SK cluster groups 11 ensembles out of 12 
(all ensembles except E2HVA which was shown 
in the second cluster with MOBN and XCEP). 
The third cluster contains VGG16. The fourth 
cluster contains VGG19, INRES and INV3. 
Lately, RES50 was presented in the last cluster. 

- For 400X MF, 6 SK clusters were obtained. The 
best SK cluster comprises 11 ensembles out of 12 
(all ensembles except E2HVA which was shown 
in the second cluster with MOBN). The third 
cluster contains INRES. The fourth cluster 
contains VGG16, XCEP and INV3. The fifth and 
the last clusters contain VGG19 and ResNe50, 
respectively. 

 

 

A) 40X 

 

B) 100X 

 

C) 200X 

 

D) 400X 

Figure 3: The SK test of ensembles selected by accuracy 
over BreakHis dataset. 

To sum up the obtained results, the SK test showed 
that: 
- For 40X, 10 out of 12 ensembles gave significant 

results compared to their base learners (all 
ensembles except E2HVA and E2WVA). 

- For 100X, 7 out 12 ensembles gave significant 
results compared to their base learners (E7WVA, 
E6WVA, E5WVA, E6HVA, E4WVA, E3WVA, 
E2WVA). 

- For 200X and 400X MFs, all ensembles except 
E2HVA gave significant results compared to 
singles. 

The analysis above proves that the designed DEHtE 
significantly outperformed their base learners since 
they almost always belong to the best or second-best 
SK cluster. As results it is recommended to use the 
proposed approach to ameliorate the performances.  

5.2 Number of Base Learners and 
Combination Rule to Use  

This subsection is to determine the suitable number 
of base learners and combination rule to use in the 
design of the DEHtE. To do so, Borda Count voting 
method was applied on the basis of the four 
performance measures to rank the ensembles 
belonging to the best SK cluster. Table 4 displays the 
ranking results for the BreakHis dataset.  
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Table 4: Borda Count Ranking of Ensembles Selected by 
Accuracy on Breakhis. 

Ensembles 40X 100X 200X 400X 
E7WVA 1 2 1 1 
E6WVA 2 3 2 3 
E5WVA 3 5 3 6 
E6HVA 4 6 4 5 
E4WVA 4 1 5 2 
E4HVA 5 --- 8 7 
E5HVA 6 --- 5 10 
E7HVA 7 --- 4 8 
E3WVA 7 7 6 4 
E3HVA 8 --- 7 9 
E2WVA --- 4 9 11 

 
As a summary, the Borda count voting method 
showed that E7WVA outperformed all other DEHtE 
over the BreakHis dataset MFs, since it was ranked 
top one on the three dataset MF (40X, 200X, and 
400X) and ranked second for the 100X MF. As results 
this study has shown the importance of designing 
DEHtE to ameliorate the performances of the 
histopathological classification for BC diagnosis 
compared to the 7 DL models used as base learners. 
Furthermore, it showed that the number of base 
learners to design DEHtE plays a significant role 
since the ensemble of 7 base learners outperformed 
the others, and the ensembles of two base learners 
underperformed compared to the others.  
 Finally, the best combination rule to design the 
DEHtE is the weighted voting since the ensemble 
E7WVA outperformed the others and achieved an 
accuracy of 93.8%, 93.3%, 93.1%, and 91.8% over 
the MFS values 40X, 100X, 200X and 400X, 
respectively of the BreakHis dataset. 

6 THREATS OF VALIDITY 

Internal Validity: This study applied a 5-fold cross 
validation evaluation technique, which is commonly 
used in machine learning to assess a model's ability to 
predict new data points(Hosni et al., 2019). Another 
internal threat is the use of transfer learning for fine 
tuning, which involves freezing all convolutional 
base layers with ImageNet weights. Freezing or 
tuning some convolutional layers may affect the 
performance of classifiers.  
External Validity: The external threat's aim is to see 
if the study's findings are applicable to other 
contexts(Idri et al., 2016). Since this study used only 
one dataset of histological images with four 
magnification factors, we cannot generalize the 
results to all datasets of the same image type. As a 
consequence, it is essential to test this study on other 

public or private datasets in order to confirm or refute 
the study's findings. 
Construct Validity: The construct validity seeks to 
provide an answer to the measurement validity 
question(Hosni et al., 2018), or, more precisely, the 
reliability of the measurements chosen to assess the 
performance of the proposed techniques. As a result, 
this study employs four performance measures 
(accuracy, precision, recall, and F1-score), the SK test 
to cluster statistically indifferent models and the 
Borda count voting technique, which takes into 
account the four-evaluation metrics, ensures that no 
performance metric is favored over another. 

7 CONCLUSION 

This paper addresses the problem of breast 
histopathological images binary classification over 
the BreakHis dataset. It designed and proposed a deep 
end-to-end heterogenous ensemble learning approach 
based on seven DL models using fine-tuned VGG16, 
VGG19, RES50, INV3, INRESV2, XCEP, and 
MOBN. The proposed approach consists of using two 
voting methods (majority and weighted voting) and 
constructing DEHtE of two up to seven models based 
on the selection by accuracy strategy. The following 
evaluation techniques were used to assess and rank 
the proposed ensembles over the BreakHis dataset: 
four classification performance criteria (accuracy, 
precision, recall, and F1-score), SK statistical test, 
and Borda Count. The following are the study's main 
findings: 
(RQ1): Does the heterogenous ensembles using 
voting methods outperform the singles? 
The deep end-to-end heterogeneous ensembles 
outperformed the DL base learners in all dataset MFs, 
with the accuracy value increasing from 90.91 % (the 
best accuracy value achieved on 40X by XCEP) to 
93.8 % when using weighted voting. For 100X MF, 
the accuracy value increased by 3.07% (from 90.43% 
to 93.5% achieved by ensemble of six when using 
weighted voting). For 200X and 400X MFs, the 
accuracy value increased from 90.9%, 89.91% to 
93.3%, 91.8%, respectively. As a result, the DEHtE 
outperformed their base learners significantly. 
(RQ2): What are the suitable number of base 
learners to design the deep end-to-end heterogenous 
ensembles and the suitable voting combination 
method used?  
The results have proved that the deep end-to-end 
heterogenous ensemble designed using the weighted 
voting combination rule outperformed the ones with 
majority voting. In addition to that, the increase of 
number of base learners to design the DEHtE plays an 
important role in the amelioration of the 
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performances since the best performing designed 
DEHtE is the E7WVA across the BreakHis Mf 
values.  
Ongoing works will focus on proposing DEHtE 
techniques using different selection strategies such as 
selection by diversity and selection by both accuracy 
and diversity, in order to determine the best criteria to 
select the base learners in order to propose the most 
performing DEHtE. 
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