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Abstract: Ontologies facilitate meaning between human and computational actors. On the one hand, the underlying 
technology can be considered mature. It has a standardized language, established tools for editing and sharing, 
and broad adoption in practice and research. On the other hand, we still know little about how these artifacts 
evolve over their lifetime, even though knowledge of the development process could influence quality control. 
It would enable us to give knowledge engineers better modeling or selection guidelines. This paper examines 
the evolution of computational ontologies using ontology metrics. First, we gathered hypotheses on the 
ontology development process. We assume that groups of ontologies follow a similar development pattern 
and that a stereotypical development process exists. Afterward, these hypotheses are tested against historical 
metric data from 7053 versions from 69 dormant ontologies. We will show that ontology development 
processes are highly heterogeneous. While the made hypotheses are partly true for a slight majority of 
ontologies, concluding the bigger picture of ontology development down to the individual ontologies is mostly 
not possible.

1 INTRODUCTION 

Change in software over time is inevitable and vital 
for successful applications. As customer 
requirements and needs change over time, so does the 
software. Computational ontologies are no different 
in this regard. Noy and Klein identified three main 
reasons for ontology evolution: (1) A change in the 
domain (in the world the ontology captures), (2) a 
change in the conceptualization, implying a changing 
view on the modeled domain, and (3) a change in the 
explicit specification, thus changes in the underlying 
ontology representation (Noy & Klein, 2004). 

The changes in the domain or the 
conceptualization occur regularly and force the 
development and evolution of the corresponding 
electronic representations. While the intensity of 
changes fluctuates, an ontology shall evolve to at least 
some degree. A dormant artifact most likely does not 
conform to the evolved requirements and can prevent 
progress in the domain (Malone & Stevens, 2013). 

Detecting the absence of development activity to 
notice dormant ontologies is reasonably simple by 
analyzing the publishing dates of new versions. While 
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identifying inactivity already helps, knowing the 
lifecycle stages prior to the end of life of an ontology 
could aid the knowledge engineers in making better 
development decisions and the developers that 
implement an ontology in selecting the correct artifact 
that fits their needs. Several papers proposed stages 
that shall occur in the lifecycle of an ontology, 
starting from the early development until the end of 
service. 

This work tests whether we can identify these 
stages using ontology metrics on OWL and RDF 
ontologies. We first formulate hypotheses based on 
proposed life cycle stages. At the center is the 
assumption that ontologies have a stereotypical 
development process. The assumptions are then 
numerically tested using large quantities of historical 
metric data. 

The work falls into a broader research project 
researching ontology quality based on evolutional 
data (Reiz, 2020). Our goal is to understand how 
ontologies evolve, to later guide developing and 
reusing decisions. Knowing in which phase an 
ontology currently is would allow us to recommend 
the next developing steps and support the knowledge 
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engineer in need of reusing an existing ontology in 
neither picking an initial, unstable, or dormant 
artifact. It would enable us to compare an ontology 
against the stereotypical development process and 
base quality control on comparing it to other, highly 
similar ontologies. In this regard, this research 
examines whether the assumption of a stereotypical 
development is supported by empirical evidence. 

This paper is structured as follows: The next 
section gathers the relevant state of the art in ontology 
evolution research. Afterward, we derive hypotheses 
for ontology evolution, followed by the presentation 
of the dataset and the applied preprocessing. Section 
5 then tests the hypotheses, followed by a discussion 
and conclusion of the research. 

2 RELATED WORK 

Ontology evolution is mainly understood as 
managing changes throughout the ontology's lifetime. 
In this regard, Stojanovic defines ontology evolution 
as the "…timely adaptation of an ontology to the 
arisen changes and the consistent propagation of 
these changes to dependent artifacts" (Stojanovic, 
2004). Many papers have considered the 
identification changes and their impacts using various 
methods and granularity levels. (Zablith et al., 2015)  
conducted an extensive literature review on the 
various views of ontology evolution and change, 
starting with detecting a need for change, followed by 
its implementation and assessment. 

Our research is less interested in managing the 
fine granular modifications that occur regularly while 
developing ontologies but in the bigger picture of the 
ontology life cycle. We, thus, are especially interested 
in papers that research a (stereotypical) ontology 
evolution process from the formulation of the first 
axioms to reaching the end of the lifespan and 
becoming dormant.  

(Mihindukulasooriya et al., 2017) examined the 
evolution of the vocabularies FOAF, PROV-O, 
DBPedia, and Schema.org with a research focus on 
the numerical developments of classes and properties 
for every published version. Key takeaways are the 
increasing size of all the ontologies and the missing 
adherence to formal theoretical evolution 
frameworks.  

(Ashraf et al., 2015) proposed an analysis 
framework for measuring ontology usage (Table 1). 
His ontology development lifecycle includes the 
phases: Engineering, evaluation, population, 
evolution, and usage analysis. The stages evaluation, 
population, and evolution overlap and allow for 

reiteration. This paper primarily uses the 
development cycle to motivate their presented usage 
analysis.  

Table 1: The ontology development cycle according to 
(Ashraf et al., 2015). 

# Stage Description 
A.1 Engineering Ontology is developed from 

scratch according to the 
given requirements. 

A.2 Evaluation Assessment of how well the 
ontology fits the purpose.

A.3 Population Population of the ontology.

A.4 Evolution Adoption to changes. 

A.5 Usage 
Analysis

Ontology usage analysis.

(Malone & Stevens, 2013) assessed change 
activities in bio-ontologies. These change activities 
are measured through adding, deleting, or changing 
classes. They see the ontology lifecycle as a five-way 
step: initial, expanding, refining, optimizing/mature, 
and dormant. Based on an analysis of 43 ontologies, 
the authors derived recommendations for managing 
community-led development efforts. 

Table 2: Ontology lifecycle according to (Malone & 
Stevens, 2013). 

# Stage Description 
B.1 Initial State of flux. Hierarchy is not 

yet settled, coverage not yet 
sufficient. Many additions, 
changes, and deletions. 

B.2 Expanding Expanding of the domain of 
interest. Heavy adding of new 
classes, fairly high level of 
deletions. 

B.3 Refining Low levels of addition and 
deletion, high level of 
changes. 

B.4 Mature Very low or no level of 
deletion, some addition or 
changes. 

B.5 Dormant Little or no recent activity. 

One possible view of computational ontologies is 
to regard them as pieces of software. While ontology-
specific lifecycle research is scarce, the field of 
software evolution has seen much activity in the past 
years. Two papers had an especially significant 
impact: (Rajlich & Bennett, 2000) proposed the 
staged model for the software lifecycle, which is very 
close in its assumption to the one proposed by Malone 
and Stevens. It also has five stages with decreasing 
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change activity and rising maturity. A stark difference 
is the inclusion of a release cycle: New versions of the 
same software can trigger a new iteration of the 
lifecycle. 

Table 3: Staged model for software lifecycle by (Rajlich & 
Bennett, 2000). 

# Stage Description 
C.1 Initial First functional version.

C.2 Evolution Extend capabilities to meet 
users' needs.  

C.3 Servicing Simple functional changes 
and minor defect repairs.

C.4 Phaseout No more servicing, still 
generating revenue. 

C.5 Closedown Withdrawing the system from 
the market. 

Table 4: Lehman's laws of software evolution (newest 
version, from (Cook et al., 2006)). 

# Stage Description 
D.I Continuing change Systems must adapt 

continuously to remain 
satisfactory. 

D.II Increasing 
complexity 

As systems evolve, the 
complexity increases – 
unless work is done to 
maintain or reduce it. 

D.III Self-regulation The software evolution 
process is self-regulating 
regarding its attributes, with 
a distribution that is close to 
normal. 

D.IV Conversation and 
organiz. stability 

The average effective 
activity rate is invariant 
over the lifetime of the 
product. 

D.V Conservation of 
familiarity 

During the active life of a 
system, the average content 
remains invariant. 

D.VI Continuing growth The functional content must 
continually increase over 
the lifetime to maintain user 
satisfaction. 

D.VII Declining quality Unless rigorously adapted to 
changes in the operational 
environment, the quality will 
appear to be declining. 

D.VIII Feedback system Evolution is a multilevel, 
multiloop, multiagent 
feedback system. 

Lehmann probably had the most impact on this 
research area by formulating the laws of software 
evolution. First published in 1974 and continuously 

refined over the past years, it contains today eight 
fundamentals on the evolutionary behavior of 
software that depend or interact with the real world 
(Cook et al., 2006). 

The staged model and Lehmann's laws were 
developed along with sizeable commercial software 
projects. (Herraiz et al., 2013) collected nine studies 
regarding the validity of the laws for open source 
software and revealed controversy in the research 
community. While laws D.I and D.VI were 
confirmed, others were mainly invalidated, especially 
laws D.II and D.IV. The other laws fall in the middle, 
with some rejection and acceptance. 

3 HYPOTHESES ON ONTOLOGY 
EVOLUTION 

The previous section reviewed relevant research for 
ontology and software evolution. We gathered four 
research endeavors with assumptions on how 
software artifacts or ontologies evolve during their 
lifetime. As a next step, we now transfer these 
lifecycle assumptions to the hypotheses shown in 
Table 5 that we will test on our dataset. This step also 
includes the connection of hypotheses to ontology 
metrics.  

The first hypothesis (H1) states that ontologies 
grow during their lifetime. They tend to get bigger 
and incorporate a more detailed and broader view of 
the domain they capture. This relatively simple 
statement is measured through the development of the 
number of axioms. 

Hypothesis two (H2) states that the change 
activity decreases, the more mature an ontology gets. 
While it is supported by B, C, and also implicitly by 
A, it contradicts D.IV. We expect to see this change 
in activity in two measurements: At first, we measure 
the number of commits overall. Less activity should, 
thus, be visible in fewer commits at the end of the 
lifecycle. However, we will also consider the size of 
new versions, thus, how much change in these 
versions occurred. In this case, we measure change 
using the percental development of axioms. 

The third hypothesis (H3) is not concerned with 
the end of life in an ontology but with the beginning. 
It states that knowledge engineers first develop the 
ontology structure, measured through sub-classes and 
properties on classes, and afterward populate the 
classes (thus introducing individuals). 
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Table 5: Hypotheses on ontology evolution. 

# Hypothesis Supported 
by  

Measured 
By 

H1 Ontologies 
grow during 
their lifetime. 

B, C.2, 
D.VI 

Axioms

H2 The level of 
change 
decreases over 
time, 

(A), B.3-
5, C.3-5  

Commits, 
Axioms  

H3 The instances 
(or individuals) 
are introduced 
after the initial 
design. 

A.3 Subclasses, 
Individuals, 
Property 
Assertions 

H4 Ontology 
complexity 
increases with 
rising maturity. 

(B.III), 
D.II 

Complexity 
Measures, 
Relationship 
Diversity

H5 A stereotypical 
development 
lifecycle can be 
identified. 

A, B, C Diverse

Hypothesis four (H4) states that ontologies tend 
to get more complex. However, complexity from the 
viewpoint of ontologies is different to define: Yang et 
al. developed two complexity metrics for the gene 
ontology: The average relationships per concept and 
the average paths per concept. Here, we select the 
latter as the results are more widespread throughout 
the measured ontologies. However, the gene ontology 
is heavily built on hierarchical relationships, and 
Yang et al. only regard relationships as such that 
incorporate hierarchical meaning (Yang et al., 2006). 
We, thus, further consider the relationship diversity 
proposed by the OntoQA framework (Tartir & 
Arpinar, 2007), which measures the ratio of non-
inheritance and inheritance relationships. Arguably, 
there are still many more aspects that constitute 
complexity that one can measure, like general 
concept inclusions or object property characteristics 
(e.g., functional, symmetric). However, the focus on 
these more generalistic attributes should be visible in 
more repositories than other, more specific 
measurements that are only used by a smaller number 
of knowledge engineers. 

All the hypotheses assume a standard 
development process for ontologies and thus a 
stereotypical development behavior. The last 
hypothesis (H5) now tests whether we can identify a 
joint development over time in an ontology or group 
of ontologies. So while the former hypothesis 
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generates assumptions out of the lifecycle, H5 
generalizes the findings and looks at the bigger 
picture. It takes a variety of data into account, which 
is described in the corresponding section 5.5 

4 DATASET PREPARATION AND 
ANALYSIS 

The metric data for this analysis originates from the 
NEOntometrics application3, developed by the same 
authors as this paper. It allows the analysis of 
ontology evolvement using git-based ontology 
repositories and measures several structural 
attributes. They include simple ones, like the depth of 
the graph, the number of classes, or the count of 
disjoint object properties. However, we also 
implemented various metrics based on frameworks 
proposed in the literature. Examples are the OntoQA 
framework by (Tartir et al., 2005) or the OQual 
measurements by (Gangemi et al., 2005), which are 
also used in this paper. The application webpage 
provides further reads on the capabilities and 
architecture of the metric calculation software. 

Figure 1 depicts the data pipeline. It begins with 
the metric data access using the GraphQL endpoint of 
NEOntometrics (1), followed by an initial check for 
validity. Ontologies without logical axioms were not 
further considered (2). That filtered out empty 
ontologies, as well as such that merely contained 
annotations or a fully custom vocabulary. 

The query and validity check resulted in 159 git-
based ontology repositories containing 6,764 
ontology files and  56,263 ontology commits (thus, 
ontology versions).  

In the next step, we applied several filters, starting 
with conditions for our specific research questions 
(3). As we are especially interested in the 
development process of ontologies over the whole 
lifetime, we need artifacts at the end of their lifecycle. 
We considered ontologies without activity in the last 
200 days as dormant (result: 6,016 ontology files, 
31,439 versions). 

Further, as this research focuses on the evolutional 
aspects of ontology development, only such with a 
rich history can be considered relevant. In this regard, 
we set the threshold value for the minimum number 
of versions to 40 (result: 77 ontology files, 11,998 
versions). 

Further not relevant are isolated or "toy" 
ontologies that do not have a significant user base. 
Here, we considered only ontologies that have at least 
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two authors (result: 69 ontology files, 10,810 
versions). 

The last step of filtering is the removal of reversed 
commits (4). At times, the data show that metrics are 
being reversed (changeOfCommit0 == 
changeOfCommit 1 + changeOfCommit2 AND 
changeOfCommit0 = changeOfCommit2). For 
instance, these can occur if one reverses the new 
commit and recommits the old one. However, this 
kind of behavior also occurs during merging 
operations. After this last filter (4), the resulting data 
set ready for analysis consisted of 69 ontologies with 
7053 versions out of 30 repositories. 

 

Figure 1: Data preparation and processing pipeline. 

The actual dates of the ontology commits differ 
widely. While some have been developed just 
recently, others are older, without activity for some 
years. To align the varying time frames, we 
normalized the dates (5.) to a numerical value from 0 
(first commit) to 1 (the last commit of the ontology).  

At last, two of the analysis use the number of 
commits and the commit time during the ontology 
lifetime (H2, H3). To prevent the disproportionate 
presence of ontologies with rich version history, we 
proportionally thinned the commit times to around 40 
for these hypotheses to ensure all ontologies are 
represented equally (6.). 

 
4 https://doi.org/10.5281/zenodo.7084705 

With this last data preparation step, the data 
preprocessing is completed for the answering of H1 – 
H4. The processing steps for H5 are depicted in the 
corresponding subsection 5.5. The analysis is based 
on Jupyter notebooks. The corresponding source code 
and ontology metric data are available online for 
further investigation4. 

The data used in this analysis covers manifold 
application domains. Dormant ontologies from the 
biomedical domain like the cell ontology or 
obophenotype are included, as well as the food 
ontology, ontologies about agriculture, Italian 
cultural heritage or an information processing 
ontology for robots. 

5 EMPIRICAL ASSESSMENT OF 
HYPOTHESES 

Based on the hypotheses and the associated metrics 
formulated in section three, we will now look at the 
ontology metric data and assess whether the stated 
assumptions can be empirically confirmed. 

5.1 Ontologies Grow during Their 
Lifetime (H1) 

The first hypothesis states that ontologies get larger 
over time. Our data supports this statement for a 
majority of the ontologies. When comparing the 
median of the first half of the ontologies' life to the 
second half, 86,9 % have become larger and 13 % 
smaller. 

 

Figure 2: Distribution of correlation of axioms and time 
(Pearson) of the ontology files. 

The boxplot in Figure 2 shows the distribution of 
measured correlation of the ontology axioms with the 
normalized commit time. Half of the ontologies have 
a strong positive correlation between axiom growth 
and time. For the second half, however, this 
correlation is less prominent. Three of the ontologies 
even have strong negative growth. 

As a result, we cannot confirm H1 to the full 
extent. While most ontologies support the assumption 
and consistently grow during their lifespan, 30,4 % of 
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the ontologies have a Pearson correlation value of 
below 0.5. While most ontologies get more extensive 
as a rule of thumb, this is not a generally applicable 
rule. 

5.2 The Level of Change Decreases 
over Time (H2) 

The statement (H2) assumes that rising ontology 
maturity is associated with a decreasing change 
activity. This assumption is tested by analyzing the 
timely occurrence of commits and their commit size. 

 

Figure 3: Development of axioms over the ontology 
lifetime in percentage (log scale). 

The violin plot at the top of Figure 3 displays the 
change activity. The width of the violin graph 
indicates the number of commits at a given lifecycle 
stage. As the plot shows, most commits occur at the 
beginning of the ontology lifecycle. Inside the violin 
plot is a little boxplot. It indicates that more than half 
of the ontology changes occur before 40 % of their 
lifetime. 

However, the size of the changes does not vary as 
greatly. Underneath the boxplot is a bivariate 
histogram plot. The darker the color, the more 
commits occurred with the given percentage of axiom 
increase or decrease. The graph shows first that the 
size of changes varies widely, and secondly, that there 
is not much difference in the size of the changes 
throughout the ontology lifetime. 

A closer look at the ontology files reveals that the 
data is too heterogenous to validate the hypothesis as 
a general rule. Of the 69 measured ontologies, 34 
have more changes in the last third of their lifetime 
compared to the first or second third. Applying the 
same comparison to the mean change, 48 ontologies 
have larger changes in the last third than in the first or 
second third.  

As a result, like with H1, we cannot confirm H2 
to the full extent. While the data indeed shows that 
the most and the most extensive changes occur during 
the beginning of the ontology development process, 
the rest of their lifetime is less distinguishable. 

5.3 The Instances are Introduced after 
the Initial Design (H3) 

The third hypothesis (H3) makes assumptions 
specifically for the development process. It states that 
the structure of the ontology is developed first, and 
instances are introduced later. 

 
Figure 4: Change activity of ontology metrics over time. 

Figure 4 shows the number of change activities 
(not the intensity of the change) regarding sub-
classes and the addition or deletion of object 
properties on classes and individuals. At first, it is 
evident that the hypothesis of different phases of 
adding structure and instances is not valid. It is quite 
the opposite: At the beginning, there is a lot of 
change activity and instability overall, with many 
additions and deletions for all metrics, including the 
individuals. However, after the first phase of 
instability, the activity regarding instances decreases 
overall. With increasing maturity, more commits 
populate the ontology, and the deletions of 
individuals decrease. The little boxplot inside the 
violin graph shows that the median of commits 
concerning individuals comes shortly after the 
median of the other structural metrics; the difference, 
however, is relatively small. 

In conclusion, we cannot confirm H3 for ontology 
development. Even though the end of the ontology 
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lifecycle comes with an increase of instances, the 
development of structure and instances does not 
happen separately but jointly. 

5.4 Ontology Complexity Increases 
with Rising Maturity (H4) 

Hypothesis four (H4) states that, with rising maturity, 
ontologies get more interconnected and complex. 
This paper considers complexity as the average paths 
per concept (thus assessing how many multi-
inheritance relationships are in the ontology) and the 
ratio of inheritance and non-inheritance relationships. 
Both variables are plotted in their development over 
time in Figure 5, where every line represents one 
ontology. 

This first visualization for H4 (Figure 5) 
incorporates several findings: At first, some 
ontologies fluctuate widely in their structural 
complexity, while others remain relatively consistent. 
This fluctuation is especially evident in the bottom 
graph: Many ontologies show significant variations 
of their inheritance to non-inheritance relation ratios. 
While there is a slight tendency for rising complexity 
(a rise of average paths and relationship diversity) 
visible, it cannot be derived as a general rule. Instead 
of constant metrics change, the measures seem to 
progress rather volatile, and many ontologies show 
heavy swings in their measured complexity in both 
directions.  

The second diagram visualizes the Pearson 
correlation of the complexity measures and time for 
the analyzed ontologies. It, thus, analyses whether the 
ontologies rise steadily in their complexity. 

In this case, its distribution looks somewhat 
similar to the analysis of H1. Most ontology files 
show a positive correlation, thus getting more 
complex over time. However, a common rule cannot 
be established, as there is too much heterogeneity in 
the data, including ontologies with no apparent 
correlation or even a stringent complexity decrease. 

The result of H4 is similar to the previously tested 
hypothesis. While there are indicators that the 
majority of ontologies indeed get more complex with 
rising maturity, there is still too much contradictory 
evidence for acceptance of the hypothesis. 

5.5 A Stereotypical Development 
Lifecycle Can Be Identified (H5) 

The last hypothesis is not concerned with the 
development of isolated aspects of ontologies  
 

 

Figure 5: Ontology complexity development over time. 

 

Figure 6: Distribution of the ontology complexity in 
correlation with their lifetime. 

but consolidates the findings into a generalized 
hypothesis. Central is the question of whether there is 
something   like  a  joint,  stereotypical  development 
process for ontologies. The assessment of this 
hypothesis is now not based merely on a single metric 
but takes into account eleven compositional measures  
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Figure 7: Clustering based on principal component analysis (PCA) for the ontologies. 

proposed in the OQual5 (Gangemi et al., 2005) and 
OntoQA 6  (Tartir et al., 2005) framework. The 
compositional values set metrics in relation to each 
other. Thus, they allow a better comparison of 
ontologies with varying sizes as count-related 
measurements like the number of axioms or classes. 
However, eleven metrics are still too numerous for 
efficient visual comprehension. A principal 
component analysis (PCA) based on the normalized 
metric values (0:1) allows the reduction to four 
principal components (PCs), which explain 86.2% 
variance in the data. Figure 8 shows how the PCs 
explain the variance of the given metrics. 

 
5  Anonymous classes ratio, average Sibling fan outness, 

axiom class ratio, class relation ratio, inverse relations ratio 

The selected measurements are much more specific 
than the metrics used for the previous analysis. Thus, 
we do not expect to see a commonly accepted 
development process applicable to all kinds of 
ontologies. However, we argue that if there is 
something like a stereotypical development process, we 
shall expect groups of ontologies that develop similarly.  

The calculated PCs are the input for an 
unsupervised machine learning algorithm. Our goal is 
to identify similar ontologies using the clustering 
algorithm KMeans. While (as the previous analysis 
has shown) a universal development process seems 
unrealistic, clustering has the potential to reveal 

6 Cohesion, relationship richness, relationship diversity, class 
inheritance richness, attribute richness, schema deepness 
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hidden relations between the ontologies and find 
typical development processes. The input data are 
weighted for the PC's explained variance and the 
number of input versions. The latter ensures that all 
ontologies have the same impact on the clustering, 
regardless of the number of available versions. 

 

Figure 8: Explained variance of PCs. 

The number of clusters is a required input 
parameter for the algorithm. To identify the ideal 
number of clusters, we ran multiple iterations of the 
algorithm and evaluated the results using the 
silhouette coefficient (Rousseeuw, 1987). The 
coefficient rates the quality of the clusters from -1 
(wrong clusters) to 1 (perfect clusters). Values around 
0 indicate overlapping. For the ontology dataset, the 
coefficient indicated four as the recommended 
number of clusters with a silhouette coefficient of 
0.381. However, it has to be noted that the clustering 
is somewhat unstable and varies in each run. 
Afterward, the ontologies are assigned with the 
cluster calculated most throughout their versions. 
These four clusters now represent groups of 
ontologies where we assume a similar development 
process.  

Figure 7 reveals minimal evidence that groups of 
ontologies share a typical development over their 
lifetime. Conversely, ontologies that show a shared 
modeling behavior, like in cluster 0, mostly have just 
little overall activity. Additionally, the graphs 
seldomly show gradual changes as we would expect 
from progressively improving, evolving ontologies. 
In this way, it supports the findings made by the 
previous subsections: The data does not seem to show 
a stereotypical development process that ontologies 
in general or groups of ontologies share. This 
heterogeneity in the data is also a possible 
explanation for the unstable clusters overall. 

Another conspicuousness visible in the graphs is 
the spikes that indicate heavy restructuring, similar to 
the spikes of H4. Instead of gradual development, the 
ontologies often remain relatively constant for a long 

time and then change drastically. These spikes are 
present in all clusters and further hinder the grouping 
of ontologies.  

6 CONCLUSION 

It is intriguing to think of ontologies as computational 
artifacts that follow stereotypical development 
processes. Such developing cycles could help to 
advise the knowledge engineers on subsequent 
recommended development steps and enable the 
developers that need to select an ontology for 
integration to make better-informed decisions. In this 
regard, we set up five hypotheses on how ontologies 
evolve during their lifecycle, grounded in knowledge 
and software engineering research, and tested them 
against a large body of metric ontology data. 

The data does not support the existence of 
standard ontology development processes. While 
there are indeed indications for some hypotheses, like 
the increase in size (H1), complexity (H4), or the 
decrease in development activity (H2), too many 
ontologies contradict the given assumptions. We 
further found no conclusive evidence for hypothesis 
two (H2), that the ontology population follows 
schema development, or the last hypothesis and 
analysis (H5), which looked at the bigger picture and 
examined whether common development processes 
between groups of ontologies exist. 

While we found no support for the given 
hypotheses in the data, particularly H4 and H5 
revealed an exciting finding: Often, the ontologies 
have few heavy change events during their lifetime 
and otherwise stay relatively consistent. While these 
disruptive commits hinder the identification of the 
stereotypical development process, they are an 
essential finding and are worth investigating further. 
Thus our following research will consider these 
change events: Their origins, their implications for 
the ontology development process, and the selection 
of ontologies in general.  

Rule-based artificial intelligence is developed and 
used in various communities with different 
backgrounds, needs, and application scenarios. As we 
have shown, the resulting ontologies reflect this 
heterogeneity. While they all use the same underlying 
technology, their way of developing these artifacts 
differs widely. As a result, commonly existing rules 
for ontology development, like they are prevalent in 
software engineering, seem not to fit the knowledge 
engineering context.  
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