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Abstract: The CAPRI project is a H2020 project that develops Cognitive Solutions (CS) to the Process Industry and a 

Cognitive Automation Platform (CAP) towards the Digital Transformation of process industries. CAPRI 

enables cognitive tools to provide to the existing process industries flexibility of operation, improving the 

performance and quality control of its products and flows. The project is developing and testing different CS’s 

at each automation level, from sensors to planning. The content of this paper is focused on the CAPRI asphalt 

production applying different CS’s for the sensors and control levels. Specifically the paper discusses a 

cognitive sensor for measuring filler quantity to the filter at drying process (noted as CAS2) and cognitive 

control concept applied to optimize the operation of the rotary dryer (noted as CAC1). The paper explains 

also how the CS’s are being integrated by means of an open source architecture based on FIWARE. The paper 

provides also open access to the data and algorithms used as part of the commitment of CAPRI with open 

science. 

1 INTRODUCTION 

Big data and artificial intelligence (AI) are giving a 

huge boost to Industry 4.0. Intelligent software 

solutions based on AI models can process high 

volumes of data generated to identify trends and 

patterns that can be used to make manufacturing 

processes more efficient and reduce their energy 

consumption (ElMaraghy & ElMaraghy, 2022). 

An extension of this is to incorporate cognitive 

features that enable sensing complex and unpredicted 

behaviour and reason about dynamic strategies for 

process optimization, leading to a system that 

continuously evolve its own digital structure as well 

as its behaviour. This way, an industry process will 

have its own cognitive capabilities over time based on 

the data it will collect and experience it will gain 

(Abburu, et al., COGNITWIN - Hybrid and Cognitive 

Digital Twins for the Process Industry, 2020).  

Cognitive computing (Essa, et al., 2020) is an 

interdisciplinary field, which uses a collection of 

technologies to build a machine that have reasoning 

capabilities like a human brain. Cognitive computing 
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integrates machine learning techniques to facilitate 

computers to recognize the objective world and to 

make decisions. Cognitive technologies have large 

influence on different systems and technologies such 

as cloud, mobile, wearable devices, IOT, big data, and 

industrial production (Abburu, et al., Cognitive 

Digital Twins for the Process Industry, 2020).  

This paper is organized as follows: Section 2, 

introduces the novel paradigm of what is known as 

cognitive manufacturing. Section 3, shows how this 

concept is present in the H2020 CAPRI project. More 

specifically, the asphalt use case is shown and 

presented as an industry sector where CS’s could 

make a big improvement in terms of efficiency. Then, 

in the following sections, two of the CS’s developed 

for the asphalt use case are explained. Section 4 deals 

with the Reference Architecture that is being 

deployed as part of the CAP concept, based in the 

open source FIWARE framework and how the 

reference architecture enables an easy integration of 

the CS explained for the asphalt plant. Section 5 ends 

with the conclusions and next steps. 
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2 COGNITIVE 

MANUFACTURING 

One of main challenges for process industry plants is 

to enable an efficient monitoring and control when 

the production or environments are complex, e.g. due 

to harsh conditions the system is operating in. The 

basic elements of process monitoring and control 

loops, including the models which can be used for 

supporting this task cannot be solved easily using nor 

traditional techniques from process monitoring (like 

Statistical Process Control) neither solely by using 

advanced AI techniques (like predictive analytics) 

(Cinar, Nuhu, Zeeshan, & Korhan, 2020). This 

problem requires a better understanding of the 

underlying data and processes, their contexts and 

their dynamics, similarly how human cognition is 

building a superior situational understanding and 

reasoning (Jacoby, Jovicic, Stojanovic, & Stojanović, 

2021), even in very ambiguous cases. CAPRI uses the 

analogy of human cognition, based on cognitive 

architecture (Kaur & Sood, 2015), for addressing 

above challenges. It must be emphasized that the 

human cognition is extremely efficient in getting a 

big picture of a situation at hand, i.e. not only what is 

happening (Eirinakis, y otros, 2022), but also what is 

causing the situation and what can be the 

consequences before understanding what is going on 

and how to react on (Sánchez Boza, Guerra, & Gajate, 

2011). Complex behaviour arises from sequences of 

cognitive cycles and this is exactly how CAPRI 

envisions the process of monitoring/sensing and 

controlling/reacting in cognitive plants. 

3 H2020 CAPRI PROJECT 

Digitalisation represents a new challenge for the 

European process industries, which need to handle an 

increasingly wide range of actions (Sharma, Kosasih, 

Zhang, Brintrup, & Calinescu, 2020). Cognition 

capabilities will permit the sector to improve its 

flexibility and performance. The EU-funded CAPRI 

project (Consortium, 2022) will establish, test and 

demonstrate an advanced CAP for process industry 

digital transformation. The platform will help process 

industries increase its flexibility of operations and 

improve performance through different indicators 

and cutting-edge quality control of products and 

intermediate flows. The CAP will be modular and 

scalable, allowing the development and integration of 

advanced applications that address manufacturing 

challenges in significant process sectors such as 

asphalt, steel making and pharma. 

 

Figure 1: H2020 CAPRI project introduction. 

European process industries need to address 

resources, materials and environmental constrains by 

improving its flexibility and performance through 

cognition capabilities, as existing in human 

intelligence. Digitisation is the main enabler for such 

capabilities (Auditors, 2021). 

CAPRI Cognitive Automation Platform for 

Process Industry enabled by cognitive tools will 

provide existing process industries flexibility of 

operation, improvement of performance across 

different indicators (KPIs) and state of the art quality 

control of its products and intermediate flows. 

The CAP will encompass methods and tools for 

governing six Digital Transformation pathways (6P, 

Product, Process, Platform, Performance, People, 

Partnership) (Salis, Marguglio, De Luca, Gusmeroli, 

& Razzetti, 2022), a Reference Architecture with four 

levels of cognitive human-machine interaction 

(industrial IoT connections, smart events processing, 

knowledge data models and AI-based decision 

support), a set of reference implementations, both 

commercial and open source, for batch, continuous 

and hybrid process industry plants, and a toolbox of 

CS’s for planning, operation, control and sensing. 

The CAP will be modular and scalable, so that 

advanced applications could be developed and 

integrated on top of it and its validation will take place 

addressing manufacturing challenges in industrial 

operational environments of three outstanding 

process sectors: asphalt (minerals), steelmaking, and 

pharma industry (chemical). CAPRI results could be 

applied to a wide range of problems and challenges in 

future cognitive plants. CAP Platform and the 

cognitive tools included in it can be replicable in areas 

of production planning, control, automated processes 

and operations of many process industry sectors. 
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3.1 Asphalt Use Case 

The asphalt use case of the H2020 CAPRI project is 

located in EIFFAGE Gerena plant (located in 

southern Spain). A general overview of the asphalt 

manufacturing process of the corresponding use case 

is (El-Haggar, 2007) shown in Figure 2. 

 

Figure 2: Asphalt manufacturing process diagram. 

By weight, 95% of asphalt consists of gravel, sand 

and filler (aggregates less than 63µm) – aggregates 

that give asphalt its strength. The remaining 5% 

comprises an agent that binds all of these materials 

together. That agent is usually bitumen derived from 

crude oil. The process begins when the stockpiled 

aggregates in the cold feed are metered and conveyed 

to a dryer drum where they are heated to a specific 

temperature. A first collector removes large dust 

particles from the gases before entering the bag 

house, which removes fine particulate matter before 

they are released into the atmosphere. 

Hot aggregates are elevated to a vibrating screen 

where they are classified by size and stored in 

different bins. The aggregates, filler and other 

additives are scaled and mixed with the hot bitumen 

in the mixer producing the final asphalt mix. In some 

asphalt mixes, RAP (Reclaimed Asphalt Pavement) is 

also added. RAP is scaled, taken into account its 

approximated bitumen content (measured in a 

laboratory), and added to the mixer. After that, the 

asphalt mix is ready to be loaded to the truck for 

shipment (Sivilevičius & Šukevičius, 2009).  

3.2 Objectives and Benefits 

In the asphalt mix manufacturing process, most of the 

measured data is not usually exploited although it 

may provide very interesting information. There 

could be variables that are not known how to relate 

with the information obtained or whose relationship 

is unknown. Even more, some variables are not 

measured or measured only in the laboratory.  

CAPRI project addresses the challenge of 

integrating relevant information data sources as well 

as knowledge of the personnel of the plant, at all the 

levels: planning, operation and control of the plant 

(Zhang, Huchet, & Hobbs, 2019). The results of the 

project are translated in terms of costs, effectiveness, 

and product quality for the asphalt mix manufacturing 

process. With the development of CAPRI, for the 

asphalt use case there should be five kinds of 

improvements in the plant. 

At production performance level, the objective is 

to increase productivity by around 8% with the CS. 

CAPRI will act as well in the energy efficiency. 

Objective is to decrease the consumption of 15% of 

electricity, 11% recycled fuel and 50% diesel. These 

will be improved with the cognitive control of dryer 

drum (known as CAC1). Knowing the humidity and 

temperature in the input of the drum, adjustments will 

be made to obtain the best conditions of output, 

avoiding overheating of aggregates. 

The next benefit, in the asphalt use case, is related 

to the consumption of resources, like, aggregates, 

bitumen and RAP. In this case, is to reduce 20% of 

aggregates consumption, 20% of the consumption of 

bitumen and increase in 500% RAP consumption. 

Related with waste generation and the product 

quality, the point to action is the control of hot 

aggregates temperature. To obtain this, the cognitive 

control of asphalt plant dryer drum (CAC1) is 

required to optimise aggregates heating of 

temperature, and the cognitive sensor of amount of 

filler (CAS2) in combination with the other CS’s are 

needed to control the filler present in the aggregates 

and the filler needed in the final mix. 

3.3 Cognitive Solution – Control of the 

Asphalt Drum (CAC1) 

The asphalt drying process aim is to produce a dry 

solid product of desired quality at minimum cost and 

maximum throughput. Good quality implies that the 

product corresponds to a number of technical, 

chemical and biological parameters, each within 

specified limits (Yliniemi, Koskinen, & Leiviskä, 

1998). 

Different control techniques, at different levels, 

are present in this type of equipment, ranging from 

conventional industrial controls (like PID) to more 

advanced control systems like model-based 

feedforward-feedback until recently applied 

intelligent control systems based on fuzzy logic or 
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Figure 3: CAC1 and CAS2 Basic Architecture. 

neural networks applied to machine learning 

techniques (Raghavan, Jumah, & Mujumdar, 2006).  

Within CAPRI project, CAC1 Cognitive Control 

Solution objectives are to obtain a dry product at an 

optimum temperature and fumes (combustion gases) 

at the possible lowest temperature, on one hand not to 

damage the baghouse filter and on the other to 

minimize energy consumption, thus increasing the 

efficiency of the drying process. The main objective 

is to decrease the consumption of electricity, recycled 

fuel and diesel. This way, knowing the humidity and 

temperature in the input of the drum, adjustments will 

be made to obtain the best conditions of output, 

avoiding overheating of aggregates. 

This solution has been developed based on a 

control algorithm where sensors and actuators are 

used to calculate the optimum values for the different 

variables that run the drum. Currently, a dynamic 

modelling of the rotary drum is being created through 

model-based identification methods (Ljung, 1998) 

running several experimental tests performed at the 

asphalt plant taking into account some of the main 

variables: temperatures, humidity, load to dry, burner, 

drum speed, combustion gas flow. This identified 

model will be required like an input for the Model 

Predictive Control (MPC) (Schwenzer, Ay, Bergs, & 

Abel, 2021), advanced method of process control that 

is used to control a process while satisfying a set of 

constraints. It is in this control solution where the 

rotary drum optimized control calculations are 

performed. 

The Cognitive Algorithm will be executed in real 

time by providing the setpoints: drum burner power 

(%), drum rotation speed (%) and exhaust damper 

opening (%), to obtain the optimal temperature of the 

hot aggregates coming out of the drum and to 

guarantee in this way the desired temperature of the 

final asphalt mix and also the gas combustion 

temperature. In addition, this is intended to minimize 

the combustion gases temperature and to improve 

energy efficiency and reduce pollution.  

CAC1 Data Model and Algorithm 

Different attempts have been made to model rotary 

dryer drums, ranging from physical equations as in 

(Rubio, Bordons, Holgado, & Rivas, 2001), (Le 

Guen, Huchet, & Tamagny, 2011), numerical 

analysis as in (Li, Yao, & Zhao, 2017) and energy and 

exergy equations (Zhang, Huchet, & Hobbs, 2019). 

Regarding control algorithms for rotary dryer 

drums, several approaches can be found through the 

literature, from basic algorithms as in (Rubio, 

Bordons, Holgado, & Rivas, 2001) to an advanced 

control based on fuzzy logic, (Yliniemi, Koskinen, & 

Leiviskä, 1998), (Koskinen, 1998), variable structure 

controller as in (Mahmoud, El-Kasassy, & Areed, 

2020). More recently, intelligent control applied to 

rotary dryer drums has also been approached from 

different intelligent perspectives: a decisive control 

module (Pang, Jia, Ding, Yu, & Liu, 2021), rule-

based expert and neural networks (Raghavan, Jumah, 

& Mujumdar, 2006) and a more sophisticated control 

based on cognition with self-X capabilities as in 

(Haber, Juanes, Del Toro, & Beruvides, 2015) in a 

more general way. 

CAC1 algorithm applied in CAPRI consists of an 

identified data-based model and an MPC 

programmed in MATLAB environment using both 

MATLAB scripts and SIMULINK function blocks. 

The identified model has been done using the data 
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with certain predefined conditions and with different 

tests performed at the asphalt plant. The manipulated 

variables are the ones used to the tests for 

identification purposes: First set of experiments were 

based varying the rotary dryer burner power (and 

leaving the rest of the variables as constant as 

possible) and a second set of tests where the varying 

variable was the dryer drum rotary speed. The CAC1 

experimentally data-based identified model, from all 

sensor measurements and the dynamics (data-based 

model) in the production chain and related process 

variables calculates the setpoint SP1 of the drum 

temperature controller. The setpoint of combustion 

gases temperature controller leaving the rotary drum 

dryer SP2, modulating the speed of rotation of the 

drum will also come from this AC algorithm. 

The MPC calculates and changes in real time the 

setpoints of the plant PLC slave controllers from the 

setpoints generated by the CAC1 algorithm.  

All related CAC1 files can be accessed at Zenodo 

open CAPRI link (Gómez & Diego, 2022). 

3.4 Cognitive Solution – Cognitive 

Sensor for Amount of Filler (CAS2) 

The asphalt plants contain different types of sensors 

in order to be able to monitor and control the different 

stages of the production process like temperature 

sensors, humidity sensors, pressure sensors, load cells 

and more. 

However, not all these sensors per se give a smart 

understanding and approach to the process. During 

process assessment in the CAPRI project, some CS 

have been identified to find an optimal behaviour and 

reaction to the manufacturing of asphalt mixes to give 

a high-level cognition reaction to optimize and detect 

variations and have a cognitive sensing and support 

of the process that commercial sensors cannot give. 

One of these identified CS is: Cognitive sensor of 

amount of filler (known as CAS2). 

This cognitive sensor is developed to estimate and 

measure the fine filler quantity that goes out of the 

aggregates drying to the baghouse filter (Figure 3 

with position of CAS2 solution). The high-level 

outcome of this cognitive sensor is to obtain the real 

amount of filler present in the cold aggregates, which 

allows then wasting less energy in the rotary drying 

drum and in the filtering (baghouse) process. 

Different technologies and approaches can be 

found to tackle this measurement: Laser technology 

that uses a time-of-transition technique to measure 

particle size distribution (Measuring Coal Particles in 

the Pipe, 2022); machine vision to analyse particulate 

material on conveyor belts as in (Andersson, 2010); 

also, techniques applied using intelligent vision with 

camera images applied to different structures of  new 

neural networks to image processing and estimate the 

granulometric distribution of small and medium size 

aggregates, (Fernández, Viennet, Goles, Barrientos, 

& Telias, 1998); more recent techniques based on 3D 

particle tracking velocimetry in up and down flows in 

pipes, (Oliveira, Van Der Geld, & Kuerten, 2017); 

miniaturized sensors based on nanofibers to 

determine vibrations and then analyse the possible 

flow in different structures, (Singh, Lye, & Miao, 

2019); also, new capacitive sensors and electrodes 

using calibration-based and tomographic approaches 

have also been recently presented to measure 

particulate flow in pipes, (Suppan, Neumayer, 

Bretterklieber, Puttinger, & Wegleiter, 2022). 

All these techniques are not appropriate to be 

deployed in asphalt production due to the required 

harsh conditions of this process: high temperature, 

pressure, and concentration of abrasive particles.  

Eventually CAS2 solution has two kinds of 

physical sensors, one is a commercial solution, that 

has never been used under these conditions. The 

second sensor is a custom sensor based on another 

commercial sensor, not intended to measure 

concentrations of particles, but to measure 

disturbances of the flow, which can then be used to 

estimate the amount of filler flow through the pipe of 

baghouse. This second sensor is a research and 

innovation action of this project. It is based on a 

vibration measurement that has been validated under 

laboratory conditions providing an actual 

measurement of filler flow at a smaller scale process. 

Thanks to the knowledge that this sensor will 

provide (actual mass flow of filler trough baghouse 

aspiration pipe), the needed filler addition and 

extracted will be minimized and added only if it is 

detected that there is less amount of filler than the 

final hot mix needs.  

Therefore, the outcome of this cognitive sensor, 

the estimation of filler present in the cold aggregates, 

will help to avoid excessive recirculation and/or 

unnecessary addition of filler, making the process 

more energy efficient. In the development of this 

cognitive sensor, different steps were taken. At early 

stages, laboratory measures and test were performed 

with the following results, where all the referred files 

are openly available at CAPRI Zenodo repository 

(Vega & Reñones, Cognitive sensor for amount of 

filler, 2022): 

At lab scale, different tests were performed, where 

different parameters were taken into account. Also, a 

set of vibration sensors were installed at the actual 

plant baghouse inlet pipe and compared against a 
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Figure 4: Comparison of sensors measures in Gerena use case plant (Seville, Spain). The process variables of aggregates flow, 

pressure at the baghouse and temperature at the baghouse are compared with CAS2 cognitive sensor. 

commercial solution not usually used at this location 

due to the harsh conditions present at these points. 

CAS2 vibration parameter is compared with the 

results offered by the commercial sensor tested in 

parallel (measured in ppm) (Figure 4). The data also 

contains relevant process variables from the control 

of the plant like the SP of aggregates flow into the 

drying drum (in T/s) the aspiration pressure at 

baghouse input pipe (in mm H20) and the temperature 

at such input. The sequence of operation of the 

baghouse and drying drum is the following (Table 1 

and Figure 4). File named CAS2_Data_4.csv is a 

dataset file that represents the amount of vibration 

measured in the EIFFAGE asphalt plant during the 

drying process of aggregates in that sequence of 

operation.  

CAS2 sensor aims to provide an estimation of 

flow of filler during the drying process of the 

aggregates. As such, the raw measurements need to 

be adjusted to compensate the undesired noise when 

the aspiration takes place but there are no aggregates 

into the drum to be dried. To compensate this noise a 

model based on the actual aspiration pressure has 

been created. 

 

Table 1: Important events of comparison the process 

variables from Gerena Plant and the CAS2. 

TIME EXPLANATION 

1 Aspiration of the baghouse starts 

1,2 
Baghouse depressure maintains still, sensors 

starts to measure the flow without filler 

2 Flow of aggregates starts 

2,3 Production, measure of filler 

3 Flow of aggregates stops 

3,4 Measure of filler, production off, baghouse on 

4 
Baghouse depressure decreases, flow of filler 

stops 

4,5 
No aggregates, baghouse with constant 

depressure, low vibration of sensors 

5 Asphalt plant stops 

CAS2 Data Model and Algorithm 

All the performed calculations are explained 

following the files that can be openly found at (Vega, 

Reñones, & Sanz, Cognitive sensor for amount of 

filler [CAS2] - INTEGRATED, 2022). File named 

CAS2_dataset_5.RData is a dataset of raw data used 

for the creation of the model of CAS2. This model  
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Figure 5: CAP Reference Architecture. 

tries to estimate the vibration measured (ACEL1_20-

25 [gRMS]) based on the aspiration pressure (variable 

named as RPA2100 [mmH2O]).  

Figure 6 shows a collection of temporary 

moments in time when the baghouse is running, but 

there is no material flow, so it is just vacuuming air. 

Figure 7 shows an operation of the baghouse during 

one day of production of the asphalt plant and how 

the different segments used for the creation of the 

model are selected (marked with red rectangles). 

The file CAS2_sourcecode_1.R file is an 

algorithm programmed in an open source, R 

programming, environment and language. This 

algorithm creates a model that relates the aspiration 

(x variable) and vibration variables (f function) in the 

suction process with the dataset described above. The 

developed model creates a piecewise linear 

relationship between the two variables for aspiration 

values as can be seen in the figure below. It must be 

also noted that for a certain pressure below a 

threshold (27 mmH2O) the output of the model is 

forced to 0 as the baghouse does not operate and the 

flow should be 0. 

𝒇(𝒙) = {
                   0                                              𝑥 < 27

           0.00355 ∗ 𝐱 − 0.07125             27 < 𝑥 ≤ 36
0.0119 ∗ 𝐱 − 0.2872                  𝑥 > 36

 (1) 

The model is divided in three intervals as the 

variation of the variable to model is not continuous 

but with abrupt changes as shown in the Figure 7. 

With this model ready, the next measurements of 

vibration will be compared with the ones provided by 

the model and the difference among them 

corresponds to the vibration due to the aspiration of 

actual filler through the baghouse pipe. 

 

Figure 6: Dataset used for the creation of the model. 

 

Figure 7: Model aspiration values between 0 to 40 mm H2O. 

4 CAP REFERENCE 

ARCHITECTURE 

In process industries, due to harsh conditions the 

system is operating in, some sensors might be 

operating improperly (de-calibrated), or some  
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Figure 8: Cognition-driven process monitoring and control loop (cognitive plant) (ToBe). 

parameters might be very deviating (instable) in a 

period of time. On the other hand, the production 

processes have to be under strict control ensuring 

stability - otherwise some small issues might be 

escalating very quickly.  

Figure 8 (cf. grey boxes) shows basic elements of 

a process monitoring and control loop, including the 

models that can be used for supporting this task. 

As explained in section 2, this problem requires a 

better understanding of the underlying data and 

processes, similarly how human cognition builds a 

superior situational understanding and reasoning, 

even in very ambiguous cases. 

Therefore, the analogy of human cognition for 

resolving above-mentioned challenges is used for an 

efficient process control in process industry plants. 

Since one of the most critical issues in 

understanding/analysing process stability is to 

observe variations, this artificial (or machine) 

cognition should be based on a complex, 

comprehensive but yet very efficient sensing, 

analysing and understanding variations, including 

their root causes, as well as their impacts (Wagner, 

Milde, Barhebwa-Mushamuka, & Reinhart, 2022). 

This is exactly how CAPRI envisions the 

monitoring/sensing and controlling/reacting in 

cognitive process plants (Zaeh, y otros, 2008).  

In a cognitive plant, there is a need for monitoring 

a broader context of the data that is collected and 

processed in, as well as for a deep multivariate 

analysis of the variation in data, to be able to detect 

and react properly to unexpected events. The 

realization of the cognitive plant is supported by 

Cognitive components as depicted in Figure 8 (cf. 

light-blue and blue coloured boxes). 

The Cognitive capabilities and corresponding 

Cognitive components are briefly illustrated: 

Cognitive sensing enables getting accurate data 

from sensors (IoT) or software sensors, even in the 

cases when the sensing system is malfunctioning (e.g. 

uncertainty, inconsistency, missing data). It will be 

realized through Smart IoT Connection component, 

which is responsible for establishing and maintaining 

the connection to the production system. 

Cognitive control enables reacting on various 

situations of interest, even if the data is huge, 

multivariate or changing (i.e. the process is instable).  

It will be realized through Smart Event Processing 

component, which is responsible for detecting 

complex situations of interest in real-time data and 

reacting correspondingly, e.g. in the context of 

product/process quality control. 

Cognitive operation supports the realization of 

complex operations in a plant, even in the case of 

unplanned delays or other types of deviations. It will 

be supported by Smart Event Processing component, 

applied on the intra-factory data streams, to guarantee 

better performance and quality at organization level 

(and nod only at multi-step or multi-stage levels). 

Cognitive planning enables logistics, planning 

and rescheduling capabilities in the inter-

organizational context. It will be supported by Smart 

Decision Support component, which realizes 

complex decision-making plans in the form of 

heterogeneous processing pipelines (Salis, 

Marguglio, De Luca, Gusmeroli, & Razzetti, 2022). 
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All Cognitive capabilities will be boosted by 

Smart Knowledge Modelling component, which is 

responsible for the overall technical modelling of the 

plant and the aggregate interdependencies. It will be 

basis for the Digital Twin (Rožanec, y otros, 2021), 

as the collection of the digital assets (data, model, 

services) belonging to the plant. 

4.1 CAP Reference Architecture 

The CAP Reference Architecture is structured for the 

development of an advanced cognitive software 

solution. As a digital enabler, it is an Open-Source 

solution which is applicable to wide range of use 

cases, supporting at the same time, a large variety of 

applications. The design becomes ever harder in the 

real industrial environment, for this reason, it was 

done thanks to an iterative process started in the 

report called D2.1, (Project Deliverables — Capri, 

2022), where as a first step, there were a phase of 

functional and non-functional requirements 

collection followed by a continuous validations from 

the pilots. The selected Reference Architecture 

underlines the concept of edge and cloud cognitive 

computing with the aim of solving business 

challenges, creating new value from data and 

improving the product quality. 

The CAP Reference Architecture in CAPRI 

project is designed with many horizontal layers able 

to guarantee the interoperability, privacy, protection 

and data sovereignty. In Figure 5 the core of the 

architecture is depicted, since it contains the 

brokering, the storage and the data processing 

capabilities, including also cognitive process 

analytics and simulation systems. Data in Motion, 

Data at Rest and Situational Data are represented 

using standard information models and made 

available using standard APIs, (Salis, Marguglio, De 

Luca, Gusmeroli, & Razzetti, 2022). The sensor layer 

and the control layer use open-source technologies  

from Apache (Livy, Spark, StreamPipes, Kafka) and 

FIWARE (Draco, Cosmos, Orion Context Broker, 

OPC UA Agent) foundations, (FIWARE - Open APIs 

for Open Minds, 2022).  

4.2 CAP Asphalt Use Case  

The platform developed for the Asphalt domain is 

comprised of the following modules: 

Based on previous FIWARE Reference 

Architecture, following the previous considerations, 

the asphalt domain platform has been implemented in 

a Linux Ubuntu distribution based server where the 

different modules communicate and interact among 

each other but deployed using the Docker platform 

(Docker, 2022). The basic structure of this 

architecture can be seen on Figure 9. 

From the Asphalt Plant, real time data (with 

sample times from 1 or 5 seconds, depending on the 

data source) is received from a WAGO PLC 

datalogger using MQTT protocol. This real time data 

consists of production, event per batch of asphalt mix 

and IoT data coming from other process sensors not 

used for production control (e.g. weather station 

data). In the asphalt domain CAP platform, a 

mosquitto-based broker (Eclipse Mosquitto, 2022) 

receives those data and it is redirected through an IoT 

Agent for JSON (a bridge between HTTP/MQTT 

messaging (with a JSON payload) and NGSIv2). This 

IoT Agent has been customized to meet the asphalt 

domain requirements of data flow. This IoT Agent 

communicates and send the corresponding data to the 

Orion Context Broker module (Generic Enabler that 

provides the FIWARE NGSI v2 API, a Restful API 

enabling to perform updates, queries, or subscribe to 

changes on context information). This Broker is the 

core of the whole FIWARE-based Reference 

Architecture implemented in the Asphalt domain, 

(FIWARE - Open APIs for Open Minds, 2022). 

From this broker, a Draco (Fiware-Draco, 2022) 

module has been set up, which is a Generic Enabler 

that is a data persistence mechanism for managing the 

history of context. It is based on Apache NiFi and is 

a dataflow system based on the concepts of flow-

based programming. In this case, it manages the data 

coming through the Orion Context Broker and sends 

them to a MySQL database which is used for data 

persistence within the CAP platform. 

4.2.1 CAC1 Integration in CAP 

CAC1 algorithm reads data coming from the plant 

directly from the MySQL database, reading the last 

data set received from the asphalt plant. The 

calculated outputs are then sent to the Orion Context 

Broker through a MATLAB S-function used at the 

Simulink environment.  

It is used a library function that, through https, 

make a POST request to update the corresponding 

entity via curl.  

From this point and through the Broker, using the 

Draco module, calculated outputs are written to the 

CAC_Outputs table of the database.  

From here, the corresponding visualization 

module is used for the outputs to be shown at the 

actual asphalt plant which is accessed through a web 

interface (Figure 9).  
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Figure 9: CAC1 & CAS2 Integration in CAP Asphalt Use Case Platform. 

The Visualization Module, based on Apache 

Superset, is connected to the CAC1_Outputs table 

stored in the used MySQL database, and the 

corresponding burner power of the dryer drum and 

the rotary speed are plotted on a time-series chart 

alongside two numeric fields showing the last current 

value. 

It can be then accessed through a web-based 

interface for the plant operators to see CAC1 output 

data.  

At this step, it is the plant managers/operators 

responsibility to apply the displayed value or ignore 

it based on their experience 

4.2.2 CAS2 Integration 

In the Asphalt domain, all output dataset coming from 

CAS2 solution is sent using the MQTT protocol and 

received at the previous CAP platform. This data is 

stored in MySQL database with the structure shown 

on Figure 9. The data is then stored in a table called 

CAS2 with fields with self-explanatory names.  

To make the measurements of CAS2 sensor 

available for the process it is needed to store and 

integrate the outputs of the sensor appropriately. The 

file available at (Vega, Reñones, & Sanz, Cognitive 

sensor for amount of filler [CAS2] - INTEGRATED, 

2022), CAS2_sourcecode_2.sql contains the source 

code which shows how to integrate the sensor 

measurement into project’s CAP (cognitive 

automation platform). The calculations directly 

populate the CAS2 solution data persistence storage 

at the MySQL database. The code uses a trigger 

database, which is a procedural code that it is 

automatically executed in response to certain events 

on a particular table or view in a database. 

In the case of CAS2, each time a new MQTT 

output is sent to the CAP together with the pressure 

measured, the trigger function ‘processStreamCAS2’ 

is fired and it applies the model estimated (section 

3.4) and populates the CAS2 table. 

The objective is that once all the asphalt CAPRI 

solutions are running the results will be available for 

different purposes like showing them on an interface 

available to the plant operator or making them 

available to other CS’s for further processing. 

Providing continuous decision support, the plant 

operator will not need to actively engage with the CS. 

The warnings or alerts that have to be displayed on 

the screen will be to increase or decrease the 

depressure of the baghouse, to work with the best 

magnitude of depressure, whose final objective is to 

extract only the filler extracted not necessary and to 

lose as less energy as possible. Before the deployment 

of this CS, plant operator extracts nearly all the filler 

after the process of drying in the drum, and the 

necessary filler for the recipe of asphalt in the mixer 

is added afterwards. This added filler is cold and leads 

to an unavoidable loss of energy and raw materials. 

CAS2 Visualization Module, based on Apache 

Superset, is connected to the mentioned CAS2 table 

stored in the MySQL database and then, through a 

web-based interface, shown for the plant operators to 

see CAS2 information. 
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5 CONCLUSIONS 

H2020 CAPRI project develops and promotes digital 

transformation through a CAP involving a Reference 

Architecture (mainly based on the FIWARE 

framework) with four levels of cognitive human-

machine interactions and a set of reference 

implementations both commercial and open source. 

This CAP coordinates a set of specific CS’s at the 

various levels of functional organization of the 

automation (from planning to sensors). 

The asphalt domain shows as one of the main 

process industry sectors where the CAP provides 

flexibility of operation, improvement of performance 

across different indicators (KPIs) and state of the art 

quality control of its products and intermediate flows. 

The CAP architecture and their different modules 

have been presented in this domain and two of the 

CS’s, CAS2, Sensors Layer Implementation and 

CAC1, Control Layer Implementation, which are 

under refinement, have been explained. 

The open source architecture proposed based on 

FIWARE represents a comprehensive and useful 

platform to facilitate the integration of different 

components that needs to interact with data coming in 

real time from MQTT streams and needs to show their 

results through an easy to sue webpage. 

From here, next steps involve the final integration 

of the rest of the “layers” of the reference architecture 

and the final validation to be developed at last project 

stages, addressing manufacturing challenges in 

industrial operational environments of the three 

chosen process sectors, and providing useful 

feedbacks and lessons learnt.  

Different KPI’s will be calculated and deployed to 

see if initial target objectives are met with an 

evaluation period (6-month minimum) of the 

performance improvements thanks to the different 

implemented CS’s. This will provide effective stories 

for replication purposes and dissemination. It is 

expected that results like the reference architecture 

will be replicated in other sectors with similar 

challenges from the point of view of CS’s applied to 

similar unitary processes.  
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