
Digital Twin-enabled Application Architecture for the
Process Industry

Christoph Nölle1, Asier Arteaga2, Joseba Egia3 a, Antonio Salis4 b, Gabriele De Luca5
and Norbert Holzknecht1

1VDEh-Betriebsforschungsinstitut (BFI), Sohnstraße 69, 40237 Düsseldorf, Germany
2Sidenor I+D, Barrio Urgate, 48970 Basauri, Spain

3Mondragón Sistemas, S.COOP., Ama Kandida Etorbidea 21, 20140 Andoain, Spain
4Engineering Ingegneria Informatica S.p.A., Loc. Sa Illetta, SS195 km 2,3, I-09123 Cagliari, Italy

5Engineering Ingegneria Informatica S.p.A. Via Monteroni s.n., C/O Edificio Dhitech, Ecotekne, I-73100, Lecce, Italy

jegia@msigrupo.com, {antonio.salis, gabriele.deluca}@eng.it

Keywords: Digital Twin, Process Industry, Steel, Ontology, Cognitive Solution, Open Source.

Abstract: We develop a software platform architecture for the integration of heterogeneous software applications in the
process industries, ranging from physical simulation models to data-driven AI applications and visualizations.
Digital twins play a key role in this architecture, providing harmonised interfaces to a diverse set of data
sources, based on a domain-specific data model rooted in standard ontologies. We investigate the applicability
of existing standards and open-source software, demonstrating on the one hand their immense potential for
software-based innovations in the process industries, but also highlighting some shortcomings and the need
for further developments. Finally, a concrete implementation and data model for the production of steel long
products is presented.

1 INTRODUCTION

Process industries nowadays collect large amounts of
process data from sensors and machines, which can
be exploited for various software-based innovations,
in particular when combined with additional data
sources, such as the enterprise resource planning
system (ERP). Applications include among other
advanced analytics, such as root cause analysis for
defects and anomaly detection, process control,
planning optimizations, such as predictive
maintenance, and in general an improved
observability of the processes based on visualizations
and real time simulations (Mowbray et al., 2022).

In practice, several obstacles need to be overcome
to make best use of the available data and allow for
its efficient usage, such as different communication
protocols and data formats used by different systems
and a lack of semantic information or missing context
information. Raw sensor data is usually time-based,
but for many types of analyses an asset-centric view

a https://orcid.org/0000-0001-5851-8548
b https://orcid.org/0000-0002-4012-7490

of the data is needed, referring for instance to the
product id and a position on the product surface,
instead of time. Such conversions can be difficult,
error-prone, or impossible to implement for
application developers at all. For example, in the steel
production, the tracking of individual products
through the complete process chain is an important
prerequisite for such a conversion.

The concept of Digital Twins encompasses,
among other aspects, an asset-centric view on the
data. They are meant to break up the existing
information silos by providing a common interface to
data originating from a diverse set of sources, provide
a runtime for models related to the asset, and offer
services to other twins, applications, and the user of
the system (Jacoby et al., 2021). Digital Twins can
thus serve as an important enabling technology for
innovative software applications in the process
industries. In this paper we outline the design of a
modular software platform architecture that centers
around Digital Twins.

Nölle, C., Arteaga, A., Egia, J., Salis, A., De Luca, G. and Holzknecht, N.
Digital Twin-enabled Application Architecture for the Process Industry.
DOI: 10.5220/0011561800003329
In Proceedings of the 3rd International Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL 2022), pages 255-266
ISBN: 978-989-758-612-5; ISSN: 2184-9285
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

255

The main goal of the platform is to enable the
development of various kinds of applications, from
data-driven to physical simulation models and from
pure visualizations to machine controllers and
optimizations. We emphasize that particular attention
should be paid to the design of the application
programming interfaces (APIs) offered by the system
(Autiosalo et al., 2021). While on the one hand they
should be kept as simple as possible to enable
efficient app development, they need to fulfil several
important additional requirements:

 provide access to different types of data, such as
structured data, timeseries, or multimedia

 enable filtering of data by different categories,
such as product ids and product properties,
machine ids or time (geo-spatial properties
could be considered as well, but are less relevant
in our use case)

 provide semantic information and metadata,
based on a well-defined domain-specific data
model

 provide separate views of an asset related for
instance to different life cycle phases, such as
design, engineering, production, commissioning,
operations, maintenance, service and end of life
(Boss et al., 2020)

 allow for fine-grained access-control rules
 be easily extensible (in backwards-compatible

ways, where possible) and modular
 be interoperable with existing tools, by

leveraging on standards and best practices

Process industry companies planning to setup a
central data access platform have several
implementation options to consider. These include
proprietary IoT platforms, offered for instance by the
big cloud providers, open-source data brokers and
streaming platforms, such as the tools from the
Apache ecosystem (Kafka, Spark, Flink,
StreamPipes, NIFI, etc) or more specific solutions
with a more limited scope, such as an OPC UA server.
In the final section of the paper, we present one
concrete implementation based mostly on open-
source components that has been developed in the
CAPRI project for a steel production plant.

2 INTERFACES AND DATA
MODEL

Since our software platform is meant to allow for a
modular development of digital twins and to serve
various kinds of applications, a particular emphasis

must be placed on the application programming
interfaces (APIs).

2.1 Data Types

Different types of data arise in the context of a
production plant, including

a) Structured data
b) Temporal data, i.e., data that changes in time,

such as measurement values
c) Timeseries data, including historical data and

forecasts
d) Multimedia data, including audio and video

streams

Both classical timeseries and multimedia data
should support an asset-centric interface (access via
Digital Twins, possibly both machine twins, product
twins and others), besides a simple time-based filter.
For instance, out of a stream of images taken by a
camera, a user or application might want to work with
those images showing a particular product, and this
filtering capability would ideally be implemented by
a dedicated platform module and not by the
consuming application. We will hence need advanced
filtering possibilities; a simple file download
capability would be insufficient.

Geo-spatial data is often added as a further
category but is not universally required.

2.2 Protocols

Due to the ubiquity of HTTP-based REST services
and the JSON data format on the internet-era software
world the use of HTTP as a transport protocol and
JSON as a serialization format, at least for structured
data, should be undisputed. In addition, the JSON
Linked Data (JSON-LD) may be used for providing
context information.

For event-based access methods HTTP alone is
not sufficient, however. Websockets and MQTT
seem to be the major competitors in this field. Given
that the websocket protocol is defined as an extension
of HTTP it appears as the most obvious choice for an
event-based API.

Another important aspect of an API is the query
language. As mentioned before, the API must support
complex filtering operations, which also depend on
the type of data requested. Whereas developers from
an ontological background may prefer the SPARQL
query language, ease of use in a variety of
applications seems to dictate the use of JSON-based
mechanisms for queries as well. The most common
approach for complex filters should be to define

ETCIIM 2022 - International Workshop on Emerging Trends and Case-Studies in Industry 4.0 and Intelligent Manufacturing

256

queries as JSON objects in the HTTP body of a POST
request.

Another interesting model for query languages
that plays nicely with JSON is Facebook’s GraphQL.
It is particularly suitable for data represented in the
form of graphs and allows the user to specify the data
representation in a very flexible way, adapted to the
needs of the application. Although it is not as
common as REST interfaces, it has quite a significant
user base and good tool support and is a promising
technology for empowering data-driven applications
on graph-structured data. GraphQL has been explored
in the context of Digital Twin applications before, see
for example (Autiosalo et al., 2021).

2.3 Standards

Different initiatives exist which develop standardized
APIs for Digital Twins and related technologies,
including the Asset Administration Shell (AAS)
(Boss et al., 2020), (Plattform Industrie 4.0, 2021),
the NGSI-LD standard by ETSI (ETSI, 2021), which
has its roots in the FIWARE initiative (FIWARE
Foundation, 2021), and the Web of Things (WoT)
developed by W3C (W3C, 2020).

Proprietary platforms targeted at Industrial IoT
and Digital Twin applications are, among other and in
alphabetical order, Amazon AWS IoT, Bosch IoT
Suite, Hitachi Lumada, Microsoft Azure IoT, PTC
ThingWorx, Siemens MindSphere, and Software
AG’s Cumulocity IoT platform. In our case there is a
requirement to base the platform on open-source
components to avoid a lock-in effect and to enable
market access to small and medium sized companies,
which is why we will not further investigate these
commercial platforms here. A comparative
evaluation including them will be an interesting
proposal for future work.

It should be noted that Microsoft has published a
specification called Digital Twin Definition
Language (DTDL) (Microsoft, 2019), which
describes the modeling principles behind Azure IoT
services and is somewhat similar in nature to the
NGSI-LD model. Whereas the open publication of
the specification is certainly useful and (Jacoby &
Usländer, 2020) include it in their analysis, we
decided not to include this proprietary model here.

On the one hand, the generic nature of standard
interfaces can be useful from the point of view of
interoperability. On the other hand, these interfaces
are typically not domain-specific and not tailored to
the situation at hand, possibly leading to inefficient
and non-obvious query patterns, which is why
domain-specific interfaces are generally considered a

good-practice in software development. In the case of
NGSI-LD, the proposed way to enhance the interface
with domain-specific information is to provide a
separate domain model describing the possible
properties and relationships that entities can have, in
terms of JSON schema files. A similar approach can
be taken for the AAS. This does not remedy all the
problems with the generic nature of the interfaces,
however. WoT takes a different approach in that it
provides an interface description language which can
be used to support multiple different APIs. The idea
behind this approach is to integrate multiple devices
which already come equipped with an API of their
own. This setting appears to be less relevant to our
scenario.

An analysis of different standards from the point
of view of digital twin applications has been
published in (Jacoby & Usländer, 2020). Among
other criteria, they considered the support for
different data types (geo-spatial, temporal, and
timeseries, besides normal structured data), the
possibility to describe custom events and services,
and the query language.

The survey finds that NGSI-LD has good support
for different data types (geo-spatial, temporal and
timeseries) and a reasonable metamodel, but falls
short of describing custom services and events, an
aspect we consider of lower importance for our case.
AAS on the other hand, lacks in support for data
types, but covers services and events descriptions for
submodels (Plattform Industrie 4.0, 2021).

The handling of multimedia data seems not to be
covered by the existing standards, but to fully
integrate with the asset-centric Digital Twin platform,
advanced filtering possibilities will be needed, and it
could be beneficial to standardise those as well
(BDVA, 2017).

All the standards investigated in (Jacoby &
Usländer, 2020) support JSON via HTTP, and the
JSON-LD is also commonly used. For filtering, both
NGSI-LD and AAS mainly rely on query parameters
instead of request bodies, and AAS even defines
several query parameters as BASE64-encoded,
complex JSON objects. NGSI-LD on the other hand
provides an alternative query interface that accepts
POST requests with filters in the body. The query
objects are only partially adapted to this setting,
however, and may still require lengthy and error-
prone string concatenations for complex queries.

A GraphQL interface is not foreseen by any of the
specifications mentioned above, but since the NGSI-
LD metamodel already assumes a graph-like structure,
these two technologies might still be a good fit.

Digital Twin-enabled Application Architecture for the Process Industry

257

2.4 Semantics

A digital twin aims to provide an accurate
representation of a physical or logical asset. The
underlying data model of this representation will
cover several technical and possibly business
concepts at different levels of detail, depending on the
context and aims of the platform. The data model
should be clear and consistent, and modular in the
sense that concepts relevant to a particular subdomain
can be properly encapsulated. All submodels should
be based on a common top-level model, however,
providing generic concepts such identities,
timestamps and locations (ETSI, 2019), and possibly
also one or multiple standardised domain-specific
base models (ETSI, 2019), (DKE, 2020). Generic top-
level models could include the oneM2M base
ontology (oneM2M, 2019) or the NGSI-LD cross
domain ontology (ETSI, 2021).

Standardized domain-specific models for industrial
applications include SAREF4INMA (ETSI, 2020),
AutomationML3, OPC UA4, IEC 61360 Common Data
Dictionary (CDD)5, and ECLASS6.

If automated reasoning or formal model validation
is a requirement for the digital twin platform, then
instead of a simple data model the use of ontologies
and supporting technologies should be mandated. We
will however not pursue this aspect here.

Tooling to support the usage of the data model in
applications include machine-readable documentation,
based for instance on JSON schema and OpenAPI, and
clients or software development kits (SDKs) for
specific programming languages. The OpenAPI
approach is advocated for by FIWARE and the
Smartdatamodels initiative (FIWARE Foundation,
2021). An alternative or supplementary model
description can be realized in terms of a GraphQL
schema, mandatory for developing a GraphQL
interface, which emphasizes the possible relationships
between entities.

3 PLATFORM ARCHITECTURE

An overview of the proposed software architecture is
shown in Figure 1. At its core is the Digital Twin
platform, which provides APIs to the twin
applications; the actual twins of machines, products
and possibly other assets are composed of these
applications, while their state is stored in the twin
persistence layer, labeled Twin DB in the figure.

3 https://www.automationml.org
4 https://opcfoundation.org

Partly, this state may consist of references to the raw
data, stored in the Raw DB layer.

3.1 Types of Applications

We consider three types of applications at different
positions of the architecture. Edge apps run close to
the actual IoT devices, for instance on an IoT gateway
or on a device itself. Typical examples of this class
are applications with low latency requirements, or
those that process large amounts of raw data which
shall not be forwarded as a whole to the upper
platform components. An example from our steel use
case could be an app that recognizes id tags attached
to steel products from a camera stream. The id
information and possibly some information about the
recognition quality will be forwarded to the data
broker and digital twin, but not necessarily the raw
image data. Edge apps access data in the format it is
available and do not require tailored APIs, which is
why we are not going to consider them further in this
work.

Broker apps operate at the next level, being
connected to the data broker. They typically operate
on the raw data before it is being persisted and do not
use the Digital Twin APIs. Examples can include data
quality validation tools, which attach metadata to the
raw data stream. Broker apps may have higher
processing requirements than edge apps and may
need to access data from multiple sources.

Finally, we have the Twin apps, which provide
the core of the Digital Twin functionality, making use
of the APIs provided by the twin platform. We
consider this the default case, where the application
developer will not need specific knowledge about
implementation details of the platform, instead use
only well-documented interfaces.

The category of twin apps is very broad and could
be further subdivided, for instance into visualizations,
simulations, external data connectors, etc.

3.2 Data Interfaces

As discussed in Chapter 2 the twin platform offers a
set of data-centric APIs to the twin applications:
1. REST CRUD API, or Twin API: the basic

interface for retrieval, creation, and updates of
digital twins.

2. GraphQL API: provides a graph-based view
of the digital twins, particularly suited for
representing complex relationships between

5 https://cdd.iec.ch
6 https://eclass.eu/

ETCIIM 2022 - International Workshop on Emerging Trends and Case-Studies in Industry 4.0 and Intelligent Manufacturing

258

Figure 1: Overview of the system architecture with a focus on the Digital Twin platform and its application and user interfaces.
Data from the IoT devices flows into a central data broker, where it can be accessed by streaming applications, performing
for instance a plausbility analysis. It is then stored in a dedicated storage layer labelled Raw DB, consisting of one or multiple
databases. The Digital Twin platform accesses the raw data via these databases, and potentially also directly via the broker
for real-time access (serving the Events API). Since the data flow from broker and raw db layer to the twin platform happens
on-demand, it is visualized by means of dashed arrows originating from the platform, as opposed to the continuous stream of
data from the devices to the broker shown as solid lines.

multiple assets. This may be realised as a read-
only interface.

3. Events API: allows applications to register
listeners on individual data points or classes of
data points, enabling a push-based or reactive
programming style. This is a read-only interface.

4. Timeseries API: receives queries for historical
data, forecasts, etc., offering among others
filtering and aggregation capabilities. Access to
historical process data is typically read-only,
whereas forecasts and other kinds of timeseries
require write-access, too.

5. Multimedia API: allows for the retrieval of
image, video, or sound data, offering filtering
capabilities aligned with the twin structure.
Depending on the setup, this may be realized as
a read-only interface.

The Twin API (1) provides references to the
timeseries API (4) and multimedia API (5), where
appropriate, so that applications can find out how to
access timeseries and multimedia data relevant to an
asset, and it also needs to indicate which data points
are eligible for access via the Events API (3).
Documentation of the Twin API should include a data
model description for the structure of the twins
(pertaining to the REST API and GraphQL API).

Depending on the data sources available and the
use cases to be realized with the platform, not all of
the APIs need to be present in every implementation,

in particular the GraphQL API and the multimedia
API can be considered optional.

3.3 User Interfaces

The user interaction with the twin platform typically
centers around two concepts, a graphical user
interface (GUI), actively controlled by the user, and
an alarming facility that informs the user about
unwanted or unexpected system states. Given the
modular nature of our twin platform it is clear that the
user interfaces need to be configurable and extensible
by applications as well. The technology of choice for
modern GUIs is the web platform, so the twin
platform should provide a means of registering web
applications, and likewise for registering alarm and/or
notification targets.

Graphical user interfaces in the simplest case
access the twin APIs for their data access. For
example, an application that generates a forecast of
the temperature evolution of a steel product on a
cooling bed may store these forecasts in the twin
platform via the timeseries API. The visualization
provided by the same app would access this data via
the timeseries API, as well. This mechanism will not
always be sufficient, however, with a need for some
applications to provide custom service interfaces to
their web apps. In our example, the temperature
forecast app could provide a means to simulate

Digital Twin-enabled Application Architecture for the Process Industry

259

certain “what if” scenarios, allowing the user to
trigger a simulation with custom parameters and
displaying the results on the web interface, without
necessarily storing the results in the platform.

3.4 Interaction between Twin
Applications

The modular nature of the twin platform, with
functionalities provided by potentially many
applications, raises the question of how these
applications can interact with each other.

In the simplest case, different applications interact
only via properties of the digital twins. For instance,
App1 may set the value of a property
expectedLifetime of a machine twin via the REST
CRUD API, while App2 listens to changes of the
same property via the Events API and reacts to the
changes. This method will not cover every use case
involving multiple independent applications, but
where it is applicable it is an excellent approach in
terms of interoperability and simplicity.

Where this is not sufficient, dedicated aggregation
apps may serve the purpose to provide combined
services, for instance running two simulations in
sequence, where the results of the first simulation are
used as input for the second. The drawback of this
approach is that it only allows for static combinations
of apps, which must all be known to the aggregator.
One can also conceive of more a sophisticated
platform which enables discoverability of custom
services and standardizes the service interfaces, so
that applications can in principle interact in a (semi-
)autonomous way. For instance, one could think of an
autonomous production planning service which
interacts with the digital twins of different machines
to find the optimum processing route for products,
querying requirements and constraints from the order
book and capabilities from the machine twins. While
our architecture does not preclude such an approach,
we do consider it a secondary priority for process
industry scenarios. Similarly, it would be feasible to
extend the platform to a co-simulation platform,
enabling the user to combine and configure different
simulations that would all need to adhere to a
common specification, such as the Functional Mock-
up Interface (FMI) (Modelica Association, 2022) for
input and output data. This kind of advanced
functionality should be kept out-of-scope for the basic
platform and should rather be realized in terms of
add-on modules, if needed.

7 https://owasp.org/

3.5 Security

The applications foreseen for the presented concept
providing information that belongs to a company’s
corporate secrets because deep insights to the
production are given. Therefore, security is a main
concern. As a first step, the platform and applications
should only be accessible from within a companies’
protected network, if possible, behind a firewall to the
internet, so that only registered users can get access
via an encrypted VPN tunnel. In addition, the zero-
trust paradigm demands that all communication with
and between services be protected.

Following the first law for web-programmers
(“The user is not your friend”) several techniques to
improve the security are foreseen. Besides transport
layer security (TLS) also authorization,
authentication, and access controls need to be
implemented. The principle of least privileges can
ensure that not everyone has access to everything and
performs only those actions they have authorization
for. Depending on the company’s security concept
open-source tools for multi-factor authentication like
Keycloak (Keycloak, 2022), PrivacyIDEA
(privacyIDEA, 2022) or Google2FA (Google Two-
Factor Authentication for PHP, 2022) can be used for
increased authentication security avoiding ‘lost’
passwords due to social engineering.

Finally, already during the development the
security must be considered using, e.g., application
security best practices, such as the OWASP
guidelines7, patch management, etc.

4 OPEN-SOURCE
IMPLEMENTATION

In the Horizon2020 project CAPRI (Cognitive
Automation Platform for European PRocess Industry
digital transformation) a reference architecture for
cognitive-enabled automation platforms (CAPs) has
been developed (Salis et al., 2022) along with three
implementations for different process industry
domains: asphalt, steel, and pharma. Here we report
on how the digital twin concept has been integrated
into the CAP for the steel domain.

Figure 2 above shows the data flow architecture
proposed for the steel use case, with the following
three main elements:

ETCIIM 2022 - International Workshop on Emerging Trends and Case-Studies in Industry 4.0 and Intelligent Manufacturing

260

Figure 2: CAP implementation.

 the data capture through agents from the
existing automation system

 the CAP, where the data ingestion, validation,
storage, aggregation, and accessing is
performed

 the Apps, which consume the raw and/or
aggregated data from the CAP and return results
to be consumed by other Apps

For the data capture the idea is to use Debian
based Edge IIoT type equipment in which the main
service is Node-RED. This free software based on
Node.JS is a development tool based on flows for
visual programming designed to facilitate the
integration of hardware devices, APIs and online
services as part of the Internet of Things. There is a
very participative community that has developed and
maintains libraries for communication with industrial
devices and protocols of any kind, making it a very
agile tool for development and testing but also
allowing fast and easy replicability. In addition, the
use of Node-RED has made it possible to recreate the
data capture architecture in the form of a simulation
of the process in a transparent way for the CAP,
especially interesting in the development and
validation stages of the apps.

The communication of the data captured on the
Edge devices to the CAP has been implemented using
MQTT TLS, the most widely used protocol for IIoT
data transmission to which an end-to-end encryption
layer has been added. In the CAP, once again Node-
RED was selected to perform the functions of an
ETL, as it allows to parallelize the work of ingesting
the three types of data:

 Events and data in motion

 Timeseries
 Structured data

These three types of data are validated,
transformed in Node-RED and finally stored in their
corresponding databases respectively:

 Redis: in-memory data structure store, used as
the key-value database of the data in motion.

 InfluxDB: a database for storing and retrieving
time series data, very resource-efficient when
dealing with large volumes of historical data.

 PostgreSQL: relational database management
system that emphasizes extensibility and SQL
compliance.

Finally, with the goal to allow different
applications to access the data, a REST API has been
developed and implemented, including endpoints for
structured data (the twin API) and timeseries, as well
as an events interface. The multimedia API proposed
in Section 2.1 was foreseen initially, since the billet
and bar tracking system installed in the plant
generates images of the QR codes on tracked products
that need to be analyzed. For the scope of this project,
it was decided to perform the QR code recognition
solely on dedicted edge computers installed at the
shop floor, however, eliminating the need for any
handling of images, videos, or sound files via the twin
platform. It was hence decided that the multimedia
API will not be provided in this project but might be
added in a future expansion. The addition of a
GraphQL interface is planned, too, it is already shown
in Figure 2.

This service requires authentication by a token
previously generated in the server, in which the
corresponding read, write or r/w permissions are

Digital Twin-enabled Application Architecture for the Process Industry

261

assigned for each type of data and database table and
token.

The necessary classes have been developed in
such a way that the data consumers can obtain, in the
three existing data types, the structures of the tables.
Then, the classes for reading and writing these data
types have been developed, each of them with their
corresponding query structure requirements.

In addition to all this, the integration with the
Kafka broker has also been implemented to make the
CSS5 developments able to receive the process data
in real time.

Finally, to complete the CAP architecture, several
process monitoring visualizations have been created
using Grafana (for time series) and Apache Superset
(for aggregated and structured data). Both data
visualization platforms are open-source and are
gradually becoming standard services in the industry.

4.1 Data Model

The data model in our approach describes the
structure of entities accessible via the REST API. It is
specified in terms of JSON schema files, as advocated
by the Smartdatamodels initiative and the FIWARE
community (https://smartdatamodels.org/). The
JSON schema files can be used to generate both
OpenAPI/Swagger-compatible interface descriptions
and a JSON-LD context file, which can then be
served from the API web server. This way,
interoperability with a variety of existing software
tools and compatibility with the semantic web
principles is ensured.

As the base ontology for our model, we selected
the NGSI-LD cross domain ontology (ETSI, 2021),
and the domain-specific model is based on
SAREF4INMA, the SAREF for industry and
manufacturing ontology (ETSI, 2020), with some
adaptations to meet the needs of our specific use case.
Figure 3 shows the high-level view of the model. One
central class in the model is ProductionResource,
which encompasses all the resources and (semi-
)products used and produced in the process, such as
the batches of hot, liquid steel transported in a ladle
(class LadleHeat) and steel billets and bars (classes
Billet and Bar). The sub-hierarchy of
ProductionResources is shown in Figure 4. Another
important class is ProductionEquipment, which
models machines and plants. ProductionResources
keep a reference to the equipment they have been
treated with, but not vice versa. These references may
also contain additional properties and are themselves
submodels of the Transformation class.

Figure 3: High-level data model for the steel production,
loosely based on SAREF4INMA (ETSI, 2020).

One specific feature of our use case is the tracking
uncertainty for steel billets and bars. After billets are
cut from the casting strand of the continuous casting
machine, they are usually stored for several days in a
large storage facility before being further processed
in the hot rolling mill. Similarly, steel bars created
from the rolled billets in the hot rolling mill first go
to a cooling bed and storage before being transported
to the finishing line. A tracking system has been
installed in the plant for identifying the individual
billet, resp. bar, when entering the hot rolling mill,
resp. finishing line, but due to the harsh conditions
within the steel mill the tracking system cannot
identify every item correctly, and a significant error
rate remains. In the model we handle this problem by
maintaining separate digital twins for billets from the
casting machine and those in the hot rolling mill, and
by means of references between the two, dubbed
identifiedWithNext and identifiedWithPrevious.
These references can be multi-valued to deal with the
possibility of tracking errors, although there should in
principle be a 1-1 correspondence between the two.

Since our model allows for references of different
kinds, it can be represented as a graph. Furthermore,
since both entities and relationships, i.e., nodes and
edges of the graph, can have properties, it is a
property graph. An example is shown in Figure 5. The
natural representation of the model in terms of a graph
imply that a GraphQL-based API is very suitable for
the development of applications.

It is therefore planned to add such an interface to
the existing REST, timeseries and events interfaces.

ETCIIM 2022 - International Workshop on Emerging Trends and Case-Studies in Industry 4.0 and Intelligent Manufacturing

262

Figure 4: The ProductionResource hierarchy, showing some
steel (semi-)products, such as Billets and Bars, at the top.

4.2 Applications

Being competitive in the worldwide steel sector is of
great importance for the European steel companies.
One solution for a differentiation is the production of
high-quality products. For that a detailed knowledge
of the actual state of each individual (semi-)product
from the very beginning combined with an early
detection of a risk for quality deficiencies will lead to
an advantage. To reach this aim the following
applications are being developed in the project:

 Product tracking (CSS1): the tracking of the
products along the production chain considering
the changes in the product geometry. This is
mainly realized as an edge application, i.e., the
relevant software is installed near the marking
and reading hardware.

 Data enrichment: soft sensors for steel
solidification in the continuous casting machine
(CSS2), internal temperature development in the
hot rolling mill (CSS3) and scale development
(CSS4). These are realized as twin applications,

i.e., they use the APIs of the CAP for data
access.

 Risk sensor (CSS5): online evaluation of the
available information to early detect a risk for
degraded product surface quality. This is
realized as a broker app, i.e., it operates directly
on the incoming data streams within the CAP.

The tracking system in the steel production has
been improved within the scope of this CAPRI
project, and this is a helpful tool for the Digital Twin
architecture application, as the steel goes through
severe transformations during the global process from
liquid steel to final bar, with an intermediate step of
billet, in this case. The initial state was a tracking to
the heat level: every billet and bar had a clear
identification tracked up to the liquid steel moment.
This way, the chemical composition and most critical
parameters are tracked and ensured. Nonetheless,
there are some other parameters that depend on
process data that vary within one heat as they are
produced in the solid phase, so different bars from the
same heat number can have different casting speeds
or reheating processes.

A more detailed tracking was designed to be able
to identify in each of the final bars the significant
parameters happening in the different moments of the
process.

The concept of this tracking is based on a
combination of hardware and software tools to
produce a bridge of the material in each of the
transformations and a clear identification after it. The
main difficulties arise from the temperature
conditions and, in some cases, the speed of the
process. The approach followed is to mark every
billet in a hot state after it is cut at the end of the
Casting Machine, engraving a QR code by means of
a laser (see Figure 6). In the next step this billet,
already identified, is read in the entrance of the
Rolling Mill, goes through the rolling transformation
into a bar and each bar is marked again, with billet
and bar identification, in hot conditions. Finally, the
bar, in cold conditions, is read in the finishing units
that check quality bar by bar. The last part of the
system was successfully tried but not fully
implemented as the Rolling Mill was revamped and
the new conditions required an important adaptation
of the marking system.

Apart from the hardware itself, the tracking
requires important software considerations.

First of all, the Level 2 systems involved have to
transmit the relevant new information and
communicate with the markers. Reading cameras on

Digital Twin-enabled Application Architecture for the Process Industry

263

Figure 5: Excerpt of a data graph for the CAPRI steel use case.

Figure 6: A marked steel billet.

the other hand feed the Level 2 systems with the
information obtained from the reading of the
identified QR codes. However, there is another
important aspect that has been addressed: the
transformation from the time series data to the
product-based data. Effectively, in the Casting
Machine, for example, there are several billets in the
different parts of the machine and at the same time
one billet is in the mould, another one in the
secondary cooling and another one, maybe from the
previous heat, in the straightening unit. The
transformation from the time series data to the billet-
based data, has to be done strand by strand; it is
important to correctly feed the Digital Twin; and it is
a direct consequence of the tracking improvement, as
previously, the only possible consideration was the
average value for the whole heat.

The Digital Twins concept is implemented in our
use case for the steel billets and bars, and it is heavily
rooted in the improved tracking system. An example
of billet and bar twins with an indication of their
tracking status (successful, missed, duplicate) is
shown in Figure 7.

The realization of broker apps, notably the risk
sensor CSS5, in the platform is based on the coupling

of Kafka data streams and Spark jobs running the
applications. Kafka data streams comprise different
data streams, including metallurgy, casting and hot
rolling data, which arrive at different frequencies and
volumes. Kafka jobs requests are structured in
different topics.

The broker applications are organized as a set of
spark jobs in three different steps, see also Figure 8:

 Pre-processing: this runs on the spark master
and is in charge of collecting data coming
from different sources (metallurgy and casting
data), synchronizing data streams, loading to a
HDFS and coded with a heatnumber.
Algorithm correctness is ensured by the
correct association of metallurgy and billet
data in the correct sequence.

 Once both casting and metallurgy data are
available the processing step can start.

 Processing: this part is in charge of receiving
Kafka jobs. Each time the topics contain a new
job, the spark job consumes it by accessing
HDFS for data, and once all data is available, it
fires the cognitive solution processing on
different worker machines in parallel,
leveraging on the CAP capabilities.

 Post-processing: once the output is generated
to the spark worker node, the data is stored in
the CAP persistence layer and sent back to the
requester through a Kafka topic. The data
stored will be later used to visualize all
generated data. Custom dashboards can be
designed and implemented allowing users to
consume real-time and historical data for
monitoring and decision support. Furthermore,
a bidirectional interaction is supported,

ETCIIM 2022 - International Workshop on Emerging Trends and Case-Studies in Industry 4.0 and Intelligent Manufacturing

264

Figure 7: Visualization of billet and bar twins in the steel use case. Rectangles in the upper row represent billets (steel semi-
products) and those in the middle row represent bars (the final products) made from a single billet. Colors indicate the tracking
status (green: successful, grey: missed, orange: duplicate).

enabling the control functionalities through the
communication with the brokering layer as an
intermediary for the southbound devices.

5 CONCLUSIONS

We have outlined the software architecture for a
modular Digital Twin application platform for the
process industries, along with an implementation in
terms of open-source components that has been
created for a producer of steel long products. We
emphasized the need to support different types of
applications and to provide well-documented and
simple to use interfaces, enriched with semantic
information and cross-referencing each other.

Figure 8: Detail view of the broker application runtime.

An analysis of the existing standards landscape
for digital twins reveals the existence of promising
initiatives, such as the Asset Administration Shell
(AAS) or the NGSI-LD specification, but we also

identified gaps and a few questionable design
decisions in these rather new technologies, which
ultimately drove our decision for a custom interface
specification. Future iterations of these standards may
improve on this and make them a good basis for
achieving interoperability between systems.

The importance of product tracking for the
application of Digital Twins concepts in the process
industries cannot be overestimated. A novel tracking
system for steel long products has been deployed in
the steel plant considered, and our twin platform has
been equipped with a data model that is well capable
of representing tracking errors and uncertainties.

As a next step the platform and applications will
be fitted for online operation and be deployed to the
plant network. The goal is to significantly reduce the
amount of surface defects, resp. to detect defective
products early on, in order to avoid the costs incurred
by the further processing and to reduce the impact on
the environment. A set of KPIs has been defined to
quantify the impact of these solutions.

Surface defects on the bars, as final products
considered here, can originate from different
processes in the steel mill, in particular from
inclusions that occurred during the casting of steel or
from problems in the hot rolling mill. The digital twin
concept based on the new tracking system will allow
us to retrieve the relevant datasets applicable to an
individual bar, to analyse them for irregularities and
potentially to identify the root cause of the problem.

ACKNOWLEDGEMENTS

This work has been supported by the CAPRI project,
which has received funding from the European

Digital Twin-enabled Application Architecture for the Process Industry

265

Union’s Horizon 2020 research and innovation
programme under grant agreement No. 870062.

REFERENCES

Autiosalo, J., Ala-Laurinaho, R., Mittal, J., Valtonen, M.,
Peltoranta, V., & Tammi, K. (2021). Towards
Integrated Digital Twins for Industrial Products: Case
Study on an Overhead Crane. In: Applied Sciences,
11(2), 683. https://doi.org/10.3390/app11020683

Big Data Value Association (BDVA) (2017). Strategic
Research and Innovation Agenda. http://bdva.eu/
sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf

Boss, B., Malakuti, S., Lin, S.-W., Usländer, T., Clauer, E.,
Hoffmeister, M., & Stojanovic, L. (2020). Digital Twin
and Asset Administration Shell Concepts and
Application in the Industrial Internet and Industrie 4.0.
An Industrial Internet Consortium and Plattform
Industrie 4.0 Joint Whitepaper. https://www.plattform-
i40.de/IP/Redaktion/DE/Downloads/Publikation/Digital
-Twin-and-Asset-Administration-Shell-Concepts.html

DKE (2020). Industry 4.0 Standardization
Roadmap. https://www.dke.de/en/areas-of-work/
industry/standardization-roadmap-industry-40

Microsoft (2019). Digital Twin Definition Language
https://github.com/Azure/opendigitaltwins-dtdl

ETSI (2019). ETSI TR 103 535 SmartM2M; Guidelines for
using semantic interoperability in the industry.
https://www.etsi.org/deliver/etsi_tr/103500_103599/1
03535/01.01.01_60/tr_103535v010101p.pdf

ETSI (2020). ETSI TS 103 410-5 SmartM2M; Extension to
SAREF; Part 5: Industry and Manufacturing Domains.
https://saref.etsi.org/saref4inma

ETSI (2021). ETSI GS CIM 009 Context Information
Management (CIM); NGSI-LD API. https://
www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.
02_60/gs_CIM009v010402p.pdf

FIWARE Foundation (2021). FIWARE for Digital
Twins. https://www.fiware.org/wp-content/uploads/
FF_PositionPaper_FIWARE4DigitalTwins.pdf

Google Two-Factor Authentication for PHP [Computer
software]. (2022). https://github.com/antonioribeiro/
google2fa

Industrial Internet Consortium (2020). Digital Twins for
Industrial Applications. Definition, Business Values,
Design Aspects, Standards and Use Cases.
https://www.iiconsortium.org/pdf/IIC_Digital_Twins_
Industrial_Apps_White_Paper_2020-02-18.pdf

Jacoby, M., & Usländer, T. (2020). Digital Twin and
Internet of Things - Current Standards Landscape. In:
Applied Sciences, 10(18), 6519. https://doi.org/
10.3390/app10186519

Jacoby, M., Jovicic, B., Stojanovic, L., & Stojanovic, N.
(2021). An Approach for Realizing Hybrid Digital
Twins Using Asset Administration Shells and Apache
StreamPipes. In: Information, 12(6), 217.
https://doi.org/10.3390/info12060217

Keycloak (Open Source Identity and Access Management)
[Computer software]. (2022). https://www.keycloak.org/

Mowbray, M., Vallerio, M., Perez-Galvan, C., Zhang, D.,
Del Rio Chanona, A., Navarro-Brull, F.J. (2022),
Industrial data science – a review of machine learning
applications for chemical and process industries. In:
React. Chem. Eng., 7, 1471-1509. https://doi.org/
10.1039/D1RE00541C

Modelica Association (2022). Functional Mock-up
Interface (FMI). https://fmi-standard.org/

oneM2M (2019). Base Ontology. https://www.
onem2m.org/images/pdf/TS-0012-Base_Ontology-
V3_7_3.pdf

Plattform Industrie 4.0 (2021). Details of the Asset
Administration Shell - Part 2. Interoperability at
Runtime – Exchanging Information via Application
Programming Interfaces. https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/Detai
ls_of_the_Asset_Administration_Shell_Part2_V1.html

privacyIDEA (Flexible, Open Source Multi Factor
Authentication (2FA)) [Computer software] (2022).
https://www.privacyidea.org/

Salis, A. Marguglio, A., De Luca, G., Gusmeroli, S. and
Razzetti, S. (2022). An Edge-Cloud based Reference
Architecture to support cognitive solutions in the
Process Industry. https://arxiv.org/abs/2202.06622

W3C (2020). Web of Things (WoT) Thing Description.
https://www.w3.org/TR/2020/REC-wot-thing-
description-202004.

ETCIIM 2022 - International Workshop on Emerging Trends and Case-Studies in Industry 4.0 and Intelligent Manufacturing

266

