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Abstract: We develop a software platform architecture for the integration of heterogeneous software applications in the 
process industries, ranging from physical simulation models to data-driven AI applications and visualizations. 
Digital twins play a key role in this architecture, providing harmonised interfaces to a diverse set of data 
sources, based on a domain-specific data model rooted in standard ontologies. We investigate the applicability 
of existing standards and open-source software, demonstrating on the one hand their immense potential for 
software-based innovations in the process industries, but also highlighting some shortcomings and the need 
for further developments. Finally, a concrete implementation and data model for the production of steel long 
products is presented.

1 INTRODUCTION 

Process industries nowadays collect large amounts of 
process data from sensors and machines, which can 
be exploited for various software-based innovations, 
in particular when combined with additional data 
sources, such as the enterprise resource planning 
system (ERP). Applications include among other 
advanced analytics, such as root cause analysis for 
defects and anomaly detection, process control, 
planning optimizations, such as predictive 
maintenance, and in general an improved 
observability of the processes based on visualizations 
and real time simulations (Mowbray et al., 2022).  

In practice, several obstacles need to be overcome 
to make best use of the available data and allow for 
its efficient usage, such as different communication 
protocols and data formats used by different systems 
and a lack of semantic information or missing context 
information. Raw sensor data is usually time-based, 
but for many types of analyses an asset-centric view 
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of the data is needed, referring for instance to the 
product id and a position on the product surface, 
instead of time. Such conversions can be difficult, 
error-prone, or impossible to implement for 
application developers at all. For example, in the steel 
production, the tracking of individual products 
through the complete process chain is an important 
prerequisite for such a conversion.  

The concept of Digital Twins encompasses, 
among other aspects, an asset-centric view on the 
data. They are meant to break up the existing 
information silos by providing a common interface to 
data originating from a diverse set of sources, provide 
a runtime for models related to the asset, and offer 
services to other twins, applications, and the user of 
the system (Jacoby et al., 2021). Digital Twins can 
thus serve as an important enabling technology for 
innovative software applications in the process 
industries. In this paper we outline the design of a 
modular software platform architecture that centers 
around Digital Twins.  
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The main goal of the platform is to enable the 
development of various kinds of applications, from 
data-driven to physical simulation models and from 
pure visualizations to machine controllers and 
optimizations. We emphasize that particular attention 
should be paid to the design of the application 
programming interfaces (APIs) offered by the system 
(Autiosalo et al., 2021). While on the one hand they 
should be kept as simple as possible to enable 
efficient app development, they need to fulfil several 
important additional requirements: 

 provide access to different types of data, such as 
structured data, timeseries, or multimedia 

 enable filtering of data by different categories, 
such as product ids and product properties, 
machine ids or time (geo-spatial properties 
could be considered as well, but are less relevant 
in our use case) 

 provide semantic information and metadata, 
based on a well-defined domain-specific data 
model 

 provide separate views of an asset related for 
instance to different life cycle phases, such as 
design, engineering, production, commissioning, 
operations, maintenance, service and end of life 
(Boss et al., 2020) 

 allow for fine-grained access-control rules 
 be easily extensible (in backwards-compatible 

ways, where possible) and modular 
 be interoperable with existing tools, by 

leveraging on standards and best practices 

Process industry companies planning to setup a 
central data access platform have several 
implementation options to consider. These include 
proprietary IoT platforms, offered for instance by the 
big cloud providers, open-source data brokers and 
streaming platforms, such as the tools from the 
Apache ecosystem (Kafka, Spark, Flink, 
StreamPipes, NIFI, etc) or more specific solutions 
with a more limited scope, such as an OPC UA server. 
In the final section of the paper, we present one 
concrete implementation based mostly on open-
source components that has been developed in the 
CAPRI project for a steel production plant. 

2 INTERFACES AND DATA 
MODEL 

Since our software platform is meant to allow for a 
modular development of digital twins and to serve 
various kinds of applications, a particular emphasis 

must be placed on the application programming 
interfaces (APIs).  

2.1 Data Types  

Different types of data arise in the context of a 
production plant, including  

a) Structured data 
b) Temporal data, i.e., data that changes in time, 

such as measurement values 
c) Timeseries data, including historical data and 

forecasts 
d) Multimedia data, including audio and video 

streams 

Both classical timeseries and multimedia data 
should support an asset-centric interface (access via 
Digital Twins, possibly both machine twins, product 
twins and others), besides a simple time-based filter. 
For instance, out of a stream of images taken by a 
camera, a user or application might want to work with 
those images showing a particular product, and this 
filtering capability would ideally be implemented by 
a dedicated platform module and not by the 
consuming application. We will hence need advanced 
filtering possibilities; a simple file download 
capability would be insufficient. 

Geo-spatial data is often added as a further 
category but is not universally required. 

2.2 Protocols 

Due to the ubiquity of HTTP-based REST services 
and the JSON data format on the internet-era software 
world the use of HTTP as a transport protocol and 
JSON as a serialization format, at least for structured 
data, should be undisputed. In addition, the JSON 
Linked Data (JSON-LD) may be used for providing 
context information. 

For event-based access methods HTTP alone is 
not sufficient, however. Websockets and MQTT 
seem to be the major competitors in this field. Given 
that the websocket protocol is defined as an extension 
of HTTP it appears as the most obvious choice for an 
event-based API.  

Another important aspect of an API is the query 
language. As mentioned before, the API must support 
complex filtering operations, which also depend on 
the type of data requested. Whereas developers from 
an ontological background may prefer the SPARQL 
query language, ease of use in a variety of 
applications seems to dictate the use of JSON-based 
mechanisms for queries as well. The most common 
approach for complex filters should be to define 
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queries as JSON objects in the HTTP body of a POST 
request.  

Another interesting model for query languages 
that plays nicely with JSON is Facebook’s GraphQL. 
It is particularly suitable for data represented in the 
form of graphs and allows the user to specify the data 
representation in a very flexible way, adapted to the 
needs of the application. Although it is not as 
common as REST interfaces, it has quite a significant 
user base and good tool support and is a promising 
technology for empowering data-driven applications 
on graph-structured data. GraphQL has been explored 
in the context of Digital Twin applications before, see 
for example (Autiosalo et al., 2021). 

2.3 Standards 

Different initiatives exist which develop standardized 
APIs for Digital Twins and related technologies, 
including the Asset Administration Shell (AAS) 
(Boss et al., 2020), (Plattform Industrie 4.0, 2021), 
the NGSI-LD standard by ETSI (ETSI, 2021), which 
has its roots in the FIWARE initiative (FIWARE 
Foundation, 2021), and the Web of Things (WoT) 
developed by W3C (W3C, 2020).   

Proprietary platforms targeted at Industrial IoT 
and Digital Twin applications are, among other and in 
alphabetical order, Amazon AWS IoT, Bosch IoT 
Suite, Hitachi Lumada, Microsoft Azure IoT, PTC 
ThingWorx, Siemens MindSphere, and Software 
AG’s Cumulocity IoT platform. In our case there is a 
requirement to base the platform on open-source 
components to avoid a lock-in effect and to enable 
market access to small and medium sized companies, 
which is why we will not further investigate these 
commercial platforms here. A comparative 
evaluation including them will be an interesting 
proposal for future work. 

It should be noted that Microsoft has published a 
specification called Digital Twin Definition 
Language (DTDL) (Microsoft, 2019), which 
describes the modeling principles behind Azure IoT 
services and is somewhat similar in nature to the 
NGSI-LD model. Whereas the open publication of 
the specification is certainly useful and (Jacoby & 
Usländer, 2020) include it in their analysis, we 
decided not to include this proprietary model here. 

On the one hand, the generic nature of standard 
interfaces can be useful from the point of view of 
interoperability. On the other hand, these interfaces 
are typically not domain-specific and not tailored to 
the situation at hand, possibly leading to inefficient 
and non-obvious query patterns, which is why 
domain-specific interfaces are generally considered a 

good-practice in software development. In the case of 
NGSI-LD, the proposed way to enhance the interface 
with domain-specific information is to provide a 
separate domain model describing the possible 
properties and relationships that entities can have, in 
terms of JSON schema files. A similar approach can 
be taken for the AAS. This does not remedy all the 
problems with the generic nature of the interfaces, 
however. WoT takes a different approach in that it 
provides an interface description language which can 
be used to support multiple different APIs. The idea 
behind this approach is to integrate multiple devices 
which already come equipped with an API of their 
own. This setting appears to be less relevant to our 
scenario.  

An analysis of different standards from the point 
of view of digital twin applications has been 
published in (Jacoby & Usländer, 2020). Among 
other criteria, they considered the support for 
different data types (geo-spatial, temporal, and 
timeseries, besides normal structured data), the 
possibility to describe custom events and services, 
and the query language.  

The survey finds that NGSI-LD has good support 
for different data types (geo-spatial, temporal and 
timeseries) and a reasonable metamodel, but falls 
short of describing custom services and events, an 
aspect we consider of lower importance for our case. 
AAS on the other hand, lacks in support for data 
types, but covers services and events descriptions for 
submodels (Plattform Industrie 4.0, 2021).  

The handling of multimedia data seems not to be 
covered by the existing standards, but to fully 
integrate with the asset-centric Digital Twin platform, 
advanced filtering possibilities will be needed, and it 
could be beneficial to standardise those as well 
(BDVA, 2017).  

All the standards investigated in (Jacoby & 
Usländer, 2020) support JSON via HTTP, and the 
JSON-LD is also commonly used. For filtering, both 
NGSI-LD and AAS mainly rely on query parameters 
instead of request bodies, and AAS even defines 
several query parameters as BASE64-encoded, 
complex JSON objects. NGSI-LD on the other hand 
provides an alternative query interface that accepts 
POST requests with filters in the body. The query 
objects are only partially adapted to this setting, 
however, and may still require lengthy and error-
prone string concatenations for complex queries.  

A GraphQL interface is not foreseen by any of the 
specifications mentioned above, but since the NGSI-
LD metamodel already assumes a graph-like structure, 
these two technologies might still be a good fit.  
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2.4 Semantics 

A digital twin aims to provide an accurate 
representation of a physical or logical asset. The 
underlying data model of this representation will 
cover several technical and possibly business 
concepts at different levels of detail, depending on the 
context and aims of the platform. The data model 
should be clear and consistent, and modular in the 
sense that concepts relevant to a particular subdomain 
can be properly encapsulated. All submodels should 
be based on a common top-level model, however, 
providing generic concepts such identities, 
timestamps and locations (ETSI, 2019), and possibly 
also one or multiple standardised domain-specific 
base models (ETSI, 2019), (DKE, 2020). Generic top-
level models could include the oneM2M base 
ontology (oneM2M, 2019) or the NGSI-LD cross 
domain ontology (ETSI, 2021).  

Standardized domain-specific models for industrial 
applications include SAREF4INMA (ETSI, 2020), 
AutomationML3, OPC UA4, IEC 61360 Common Data 
Dictionary (CDD)5, and ECLASS6. 

If automated reasoning or formal model validation 
is a requirement for the digital twin platform, then 
instead of a simple data model the use of ontologies 
and supporting technologies should be mandated. We 
will however not pursue this aspect here.  

Tooling to support the usage of the data model in 
applications include machine-readable documentation, 
based for instance on JSON schema and OpenAPI, and 
clients or software development kits (SDKs) for 
specific programming languages. The OpenAPI 
approach is advocated for by FIWARE and the 
Smartdatamodels initiative (FIWARE Foundation, 
2021). An alternative or supplementary model 
description can be realized in terms of a GraphQL 
schema, mandatory for developing a GraphQL 
interface, which emphasizes the possible relationships 
between entities.  

3 PLATFORM ARCHITECTURE 

An overview of the proposed software architecture is 
shown in Figure 1. At its core is the Digital Twin 
platform, which provides APIs to the twin 
applications; the actual twins of machines, products 
and possibly other assets are composed of these 
applications, while their state is stored in the twin 
persistence layer, labeled Twin DB in the figure. 

 
3 https://www.automationml.org 
4 https://opcfoundation.org 

Partly, this state may consist of references to the raw 
data, stored in the Raw DB layer.  

3.1 Types of Applications 

We consider three types of applications at different 
positions of the architecture. Edge apps run close to 
the actual IoT devices, for instance on an IoT gateway 
or on a device itself. Typical examples of this class 
are applications with low latency requirements, or 
those that process large amounts of raw data which 
shall not be forwarded as a whole to the upper 
platform components. An example from our steel use 
case could be an app that recognizes id tags attached 
to steel products from a camera stream. The id 
information and possibly some information about the 
recognition quality will be forwarded to the data 
broker and digital twin, but not necessarily the raw 
image data. Edge apps access data in the format it is 
available and do not require tailored APIs, which is 
why we are not going to consider them further in this 
work. 

Broker apps operate at the next level, being 
connected to the data broker. They typically operate 
on the raw data before it is being persisted and do not 
use the Digital Twin APIs. Examples can include data 
quality validation tools, which attach metadata to the 
raw data stream. Broker apps may have higher 
processing requirements than edge apps and may 
need to access data from multiple sources.  

Finally, we have the Twin apps, which provide 
the core of the Digital Twin functionality, making use 
of the APIs provided by the twin platform. We 
consider this the default case, where the application 
developer will not need specific knowledge about 
implementation details of the platform, instead use 
only well-documented interfaces. 

The category of twin apps is very broad and could 
be further subdivided, for instance into visualizations, 
simulations, external data connectors, etc. 

3.2 Data Interfaces 

As discussed in Chapter 2 the twin platform offers a 
set of data-centric APIs to the twin applications: 
1. REST CRUD API, or Twin API: the basic 

interface for retrieval, creation, and updates of 
digital twins.  

2. GraphQL API: provides a graph-based view  
of the digital twins, particularly suited for 
representing   complex   relationships   between 

5 https://cdd.iec.ch 
6 https://eclass.eu/ 
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Figure 1: Overview of the system architecture with a focus on the Digital Twin platform and its application and user interfaces. 
Data from the IoT devices flows into a central data broker, where it can be accessed by streaming applications, performing 
for instance a plausbility analysis. It is then stored in a dedicated storage layer labelled Raw DB, consisting of one or multiple 
databases. The Digital Twin platform accesses the raw data via these databases, and potentially also directly via the broker 
for real-time access (serving the Events API).  Since the data flow from broker and raw db layer to the twin platform happens 
on-demand, it is visualized by means of dashed arrows originating from the platform, as opposed to the continuous stream of 
data from the devices to the broker shown as solid lines. 

multiple assets. This may be realised as a read-
only interface. 

3. Events API:  allows applications to register 
listeners on individual data points or classes of 
data points, enabling a push-based or reactive 
programming style. This is a read-only interface. 

4. Timeseries API: receives queries for historical 
data, forecasts, etc., offering among others 
filtering and aggregation capabilities. Access to 
historical process data is typically read-only, 
whereas forecasts and other kinds of timeseries 
require write-access, too. 

5. Multimedia API: allows for the retrieval of 
image, video, or sound data, offering filtering 
capabilities aligned with the twin structure. 
Depending on the setup, this may be realized as 
a read-only interface. 

The Twin API (1) provides references to the 
timeseries API (4) and multimedia API (5), where 
appropriate, so that applications can find out how to 
access timeseries and multimedia data relevant to an 
asset, and it also needs to indicate which data points 
are eligible for access via the Events API (3). 
Documentation of the Twin API should include a data 
model description for the structure of the twins 
(pertaining to the REST API and GraphQL API). 

Depending on the data sources available and the 
use cases to be realized with the platform, not all of 
the APIs need to be present in every implementation, 

in particular the GraphQL API and the multimedia 
API can be considered optional. 

3.3 User Interfaces 

The user interaction with the twin platform typically 
centers around two concepts, a graphical user 
interface (GUI), actively controlled by the user, and 
an alarming facility that informs the user about 
unwanted or unexpected system states. Given the 
modular nature of our twin platform it is clear that the 
user interfaces need to be configurable and extensible 
by applications as well. The technology of choice for 
modern GUIs is the web platform, so the twin 
platform should provide a means of registering web 
applications, and likewise for registering alarm and/or 
notification targets.  

Graphical user interfaces in the simplest case 
access the twin APIs for their data access. For 
example, an application that generates a forecast of 
the temperature evolution of a steel product on a 
cooling bed may store these forecasts in the twin 
platform via the timeseries API. The visualization 
provided by the same app would access this data via 
the timeseries API, as well. This mechanism will not 
always be sufficient, however, with a need for some 
applications to provide custom service interfaces to 
their web apps. In our example, the temperature 
forecast app could provide a means to simulate 

Digital Twin-enabled Application Architecture for the Process Industry

259



certain “what if” scenarios, allowing the user to 
trigger a simulation with custom parameters and 
displaying the results on the web interface, without 
necessarily storing the results in the platform. 

3.4 Interaction between Twin 
Applications 

The modular nature of the twin platform, with 
functionalities provided by potentially many 
applications, raises the question of how these 
applications can interact with each other.  

In the simplest case, different applications interact 
only via properties of the digital twins. For instance, 
App1 may set the value of a property 
expectedLifetime of a machine twin via the REST 
CRUD API, while App2 listens to changes of the 
same property via the Events API and reacts to the 
changes. This method will not cover every use case 
involving multiple independent applications, but 
where it is applicable it is an excellent approach in 
terms of interoperability and simplicity.  

Where this is not sufficient, dedicated aggregation 
apps may serve the purpose to provide combined 
services, for instance running two simulations in 
sequence, where the results of the first simulation are 
used as input for the second. The drawback of this 
approach is that it only allows for static combinations 
of apps, which must all be known to the aggregator.  
One can also conceive of more a sophisticated 
platform which enables discoverability of custom 
services and standardizes the service interfaces, so 
that applications can in principle interact in a (semi-
)autonomous way. For instance, one could think of an 
autonomous production planning service which 
interacts with the digital twins of different machines 
to find the optimum processing route for products, 
querying requirements and constraints from the order 
book and capabilities from the machine twins. While 
our architecture does not preclude such an approach, 
we do consider it a secondary priority for process 
industry scenarios. Similarly, it would be feasible to 
extend the platform to a co-simulation platform, 
enabling the user to combine and configure different 
simulations that would all need to adhere to a 
common specification, such as the Functional Mock-
up Interface (FMI) (Modelica Association, 2022) for 
input and output data. This kind of advanced 
functionality should be kept out-of-scope for the basic 
platform and should rather be realized in terms of 
add-on modules, if needed. 

 
7 https://owasp.org/ 

3.5 Security 

The applications foreseen for the presented concept 
providing information that belongs to a company’s 
corporate secrets because deep insights to the 
production are given. Therefore, security is a main 
concern. As a first step, the platform and applications 
should only be accessible from within a companies’ 
protected network, if possible, behind a firewall to the 
internet, so that only registered users can get access 
via an encrypted VPN tunnel. In addition, the zero-
trust paradigm demands that all communication with 
and between services be protected.  

Following the first law for web-programmers 
(“The user is not your friend”) several techniques to 
improve the security are foreseen. Besides transport 
layer security (TLS) also authorization, 
authentication, and access controls need to be 
implemented. The principle of least privileges can 
ensure that not everyone has access to everything and 
performs only those actions they have authorization 
for. Depending on the company’s security concept 
open-source tools for multi-factor authentication like 
Keycloak (Keycloak, 2022), PrivacyIDEA 
(privacyIDEA, 2022) or Google2FA (Google Two-
Factor Authentication for PHP, 2022) can be used for 
increased authentication security avoiding ‘lost’ 
passwords due to social engineering.  

Finally, already during the development the 
security must be considered using, e.g., application 
security best practices, such as the OWASP 
guidelines7, patch management, etc. 

4 OPEN-SOURCE 
IMPLEMENTATION 

In the Horizon2020 project CAPRI (Cognitive 
Automation Platform for European PRocess Industry 
digital transformation) a reference architecture for 
cognitive-enabled automation platforms (CAPs) has 
been developed (Salis et al., 2022) along with three 
implementations for different process industry 
domains: asphalt, steel, and pharma. Here we report 
on how the digital twin concept has been integrated 
into the CAP for the steel domain. 

Figure 2 above shows the data flow architecture 
proposed for the steel use case, with the following 
three main elements:  
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Figure 2: CAP implementation. 

 the data capture through agents from the 
existing automation system 

 the CAP, where the data ingestion, validation, 
storage, aggregation, and accessing is 
performed 

 the Apps, which consume the raw and/or 
aggregated data from the CAP and return results 
to be consumed by other Apps 

For the data capture the idea is to use Debian 
based Edge IIoT type equipment in which the main 
service is Node-RED. This free software based on 
Node.JS is a development tool based on flows for 
visual programming designed to facilitate the 
integration of hardware devices, APIs and online 
services as part of the Internet of Things. There is a 
very participative community that has developed and 
maintains libraries for communication with industrial 
devices and protocols of any kind, making it a very 
agile tool for development and testing but also 
allowing fast and easy replicability. In addition, the 
use of Node-RED has made it possible to recreate the 
data capture architecture in the form of a simulation 
of the process in a transparent way for the CAP, 
especially interesting in the development and 
validation stages of the apps. 

The communication of the data captured on the 
Edge devices to the CAP has been implemented using 
MQTT TLS, the most widely used protocol for IIoT 
data transmission to which an end-to-end encryption 
layer has been added. In the CAP, once again Node-
RED was selected to perform the functions of an 
ETL, as it allows to parallelize the work of ingesting 
the three types of data: 

 Events and data in motion 

 Timeseries 
 Structured data 

These three types of data are validated, 
transformed in Node-RED and finally stored in their 
corresponding databases respectively: 

 Redis: in-memory data structure store, used as 
the key-value database of the data in motion. 

 InfluxDB: a database for storing and retrieving 
time series data, very resource-efficient when 
dealing with large volumes of historical data. 

 PostgreSQL: relational database management 
system that emphasizes extensibility and SQL 
compliance. 

Finally, with the goal to allow different 
applications to access the data, a REST API has been 
developed and implemented, including endpoints for 
structured data (the twin API) and timeseries, as well 
as an events interface. The multimedia API proposed 
in Section 2.1 was foreseen initially, since the billet 
and bar tracking system installed in the plant 
generates images of the QR codes on tracked products 
that need to be analyzed. For the scope of this project, 
it was decided to perform the QR code recognition 
solely on dedicted edge computers installed at the 
shop floor, however, eliminating the need for any 
handling of images, videos, or sound files via the twin 
platform. It was hence decided that the multimedia 
API will not be provided in this project but might be 
added in a future expansion. The addition of a 
GraphQL interface is planned, too, it is already shown 
in Figure 2. 

This service requires authentication by a token 
previously generated in the server, in which the 
corresponding read, write or r/w permissions are 
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assigned for each type of data and database table and 
token. 

The necessary classes have been developed in 
such a way that the data consumers can obtain, in the 
three existing data types, the structures of the tables. 
Then, the classes for reading and writing these data 
types have been developed, each of them with their 
corresponding query structure requirements. 

In addition to all this, the integration with the 
Kafka broker has also been implemented to make the 
CSS5 developments able to receive the process data 
in real time. 

Finally, to complete the CAP architecture, several 
process monitoring visualizations have been created 
using Grafana (for time series) and Apache Superset 
(for aggregated and structured data). Both data 
visualization platforms are open-source and are 
gradually becoming standard services in the industry. 

4.1 Data Model 

The data model in our approach describes the 
structure of entities accessible via the REST API. It is 
specified in terms of JSON schema files, as advocated 
by the Smartdatamodels initiative and the FIWARE 
community (https://smartdatamodels.org/). The 
JSON schema files can be used to generate both 
OpenAPI/Swagger-compatible interface descriptions 
and a JSON-LD context file, which can then be 
served from the API web server. This way, 
interoperability with a variety of existing software 
tools and compatibility with the semantic web 
principles is ensured. 

As the base ontology for our model, we selected 
the NGSI-LD cross domain ontology (ETSI, 2021), 
and the domain-specific model is based on 
SAREF4INMA, the SAREF for industry and 
manufacturing ontology (ETSI, 2020), with some 
adaptations to meet the needs of our specific use case. 
Figure 3 shows the high-level view of the model. One 
central class in the model is ProductionResource, 
which encompasses all the resources and (semi-
)products used and produced in the process, such as 
the batches of hot, liquid steel transported in a ladle 
(class LadleHeat) and steel billets and bars (classes 
Billet and Bar). The sub-hierarchy of 
ProductionResources is shown in Figure 4. Another 
important class is ProductionEquipment, which 
models machines and plants. ProductionResources 
keep a reference to the equipment they have been 
treated with, but not vice versa. These references may 
also contain additional properties and are themselves 
submodels of the Transformation class. 

 

Figure 3: High-level data model for the steel production, 
loosely based on SAREF4INMA (ETSI, 2020). 

One specific feature of our use case is the tracking 
uncertainty for steel billets and bars. After billets are 
cut from the casting strand of the continuous casting 
machine, they are usually stored for several days in a 
large storage facility before being further processed 
in the hot rolling mill. Similarly, steel bars created 
from the rolled billets in the hot rolling mill first go 
to a cooling bed and storage before being transported 
to the finishing line. A tracking system has been 
installed in the plant for identifying the individual 
billet, resp. bar, when entering the hot rolling mill, 
resp. finishing line, but due to the harsh conditions 
within the steel mill the tracking system cannot 
identify every item correctly, and a significant error 
rate remains. In the model we handle this problem by 
maintaining separate digital twins for billets from the 
casting machine and those in the hot rolling mill, and 
by means of references between the two, dubbed 
identifiedWithNext and identifiedWithPrevious. 
These references can be multi-valued to deal with the 
possibility of tracking errors, although there should in 
principle be a 1-1 correspondence between the two.  

Since our model allows for references of different 
kinds, it can be represented as a graph. Furthermore, 
since both entities and relationships, i.e., nodes and 
edges of the graph, can have properties, it is a 
property graph. An example is shown in Figure 5. The 
natural representation of the model in terms of a graph 
imply that a GraphQL-based API is very suitable for 
the development of applications.  

It is therefore planned to add such an interface to 
the existing REST, timeseries and events interfaces. 
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Figure 4: The ProductionResource hierarchy, showing some 
steel (semi-)products, such as Billets and Bars, at the top. 

4.2 Applications 

Being competitive in the worldwide steel sector is of 
great importance for the European steel companies. 
One solution for a differentiation is the production of 
high-quality products. For that a detailed knowledge 
of the actual state of each individual (semi-)product 
from the very beginning combined with an early 
detection of a risk for quality deficiencies will lead to 
an advantage. To reach this aim the following 
applications are being developed in the project: 

 Product tracking (CSS1): the tracking of the 
products along the production chain considering 
the changes in the product geometry. This is 
mainly realized as an edge application, i.e., the 
relevant software is installed near the marking 
and reading hardware.  

 Data enrichment: soft sensors for steel 
solidification in the continuous casting machine 
(CSS2), internal temperature development in the 
hot rolling mill (CSS3) and scale development 
(CSS4). These are realized as twin applications, 

i.e., they use the APIs of the CAP for data 
access. 

 Risk sensor (CSS5): online evaluation of the 
available information to early detect a risk for 
degraded product surface quality. This is 
realized as a broker app, i.e., it operates directly 
on the incoming data streams within the CAP. 

The tracking system in the steel production has 
been improved within the scope of this CAPRI 
project, and this is a helpful tool for the Digital Twin 
architecture application, as the steel goes through 
severe transformations during the global process from 
liquid steel to final bar, with an intermediate step of 
billet, in this case. The initial state was a tracking to 
the heat level: every billet and bar had a clear 
identification tracked up to the liquid steel moment. 
This way, the chemical composition and most critical 
parameters are tracked and ensured. Nonetheless, 
there are some other parameters that depend on 
process data that vary within one heat as they are 
produced in the solid phase, so different bars from the 
same heat number can have different casting speeds 
or reheating processes.  

A more detailed tracking was designed to be able 
to identify in each of the final bars the significant 
parameters happening in the different moments of the 
process. 

The concept of this tracking is based on a 
combination of hardware and software tools to 
produce a bridge of the material in each of the 
transformations and a clear identification after it. The 
main difficulties arise from the temperature 
conditions and, in some cases, the speed of the 
process. The approach followed is to mark every 
billet in a hot state after it is cut at the end of the 
Casting Machine, engraving a QR code by means of 
a laser (see Figure 6). In the next step this billet, 
already identified, is read in the entrance of the 
Rolling Mill, goes through the rolling transformation 
into a bar and each bar is marked again, with billet 
and bar identification, in hot conditions. Finally, the 
bar, in cold conditions, is read in the finishing units 
that check quality bar by bar. The last part of the 
system was successfully tried but not fully 
implemented as the Rolling Mill was revamped and 
the new conditions required an important adaptation 
of the marking system. 

Apart from the hardware itself, the tracking 
requires important software considerations. 

First of all, the Level 2 systems involved have to 
transmit the relevant new information and 
communicate with the markers. Reading cameras  on 
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Figure 5: Excerpt of a data graph for the CAPRI steel use case.

 

Figure 6: A marked steel billet. 

the other hand feed the Level 2 systems with the 
information obtained from the reading of the 
identified QR codes. However, there is another 
important aspect that has been addressed: the 
transformation from the time series data to the 
product-based data. Effectively, in the Casting 
Machine, for example, there are several billets in the 
different parts of the machine and at the same time 
one billet is in the mould, another one in the 
secondary cooling and another one, maybe from the 
previous heat, in the straightening unit. The 
transformation from the time series data to the billet-
based data, has to be done strand by strand; it is 
important to correctly feed the Digital Twin; and it is 
a direct consequence of the tracking improvement, as 
previously, the only possible consideration was the 
average value for the whole heat. 

The Digital Twins concept is implemented in our 
use case for the steel billets and bars, and it is heavily 
rooted in the improved tracking system. An example 
of billet and bar twins with an indication of their 
tracking status (successful, missed, duplicate) is 
shown in Figure 7. 

The realization of broker apps, notably the risk 
sensor CSS5, in the platform is based on the coupling 

of Kafka data streams and Spark jobs running the 
applications. Kafka data streams comprise different 
data streams, including metallurgy, casting and hot 
rolling data, which arrive at different frequencies and 
volumes. Kafka jobs requests are structured in 
different topics. 

The broker applications are organized as a set of 
spark jobs in three different steps, see also Figure 8: 

 Pre-processing: this runs on the spark master 
and is in charge of collecting data coming 
from different sources (metallurgy and casting 
data), synchronizing data streams, loading to a 
HDFS and coded with a heatnumber. 
Algorithm correctness is ensured by the 
correct association of metallurgy and billet 
data in the correct sequence.  

 Once both casting and metallurgy data are 
available the processing step can start. 

 Processing: this part is in charge of receiving 
Kafka jobs. Each time the topics contain a new 
job, the spark job consumes it by accessing 
HDFS for data, and once all data is available, it 
fires the cognitive solution processing on 
different worker machines in parallel, 
leveraging on the CAP capabilities.  

 Post-processing: once the output is generated 
to the spark worker node, the data is stored in 
the CAP persistence layer and sent back to the 
requester through a Kafka topic. The data 
stored will be later used to visualize all 
generated data. Custom dashboards can be 
designed and implemented allowing users to 
consume real-time and historical data for 
monitoring and decision support. Furthermore, 
a   bidirectional    interaction    is    supported,  
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Figure 7: Visualization of billet and bar twins in the steel use case. Rectangles in the upper row represent billets (steel semi-
products) and those in the middle row represent bars (the final products) made from a single billet. Colors indicate the tracking 
status (green: successful, grey: missed, orange: duplicate).

enabling the control functionalities through the 
communication with the brokering layer as an 
intermediary for the southbound devices. 

5 CONCLUSIONS 

We have outlined the software architecture for a 
modular Digital Twin application platform for the 
process industries, along with an implementation in 
terms of open-source components that has been 
created for a producer of steel long products. We 
emphasized the need to support different types of 
applications and to provide well-documented and 
simple to use interfaces, enriched with semantic 
information and cross-referencing each other.  

 

Figure 8: Detail view of the broker application runtime. 

An analysis of the existing standards landscape 
for digital twins reveals the existence of promising 
initiatives, such as the Asset Administration Shell 
(AAS) or the NGSI-LD specification, but we also 

identified gaps and a few questionable design 
decisions in these rather new technologies, which 
ultimately drove our decision for a custom interface 
specification. Future iterations of these standards may 
improve on this and make them a good basis for 
achieving interoperability between systems.  

The importance of product tracking for the 
application of Digital Twins concepts in the process 
industries cannot be overestimated. A novel tracking 
system for steel long products has been deployed in 
the steel plant considered, and our twin platform has 
been equipped with a data model that is well capable 
of representing tracking errors and uncertainties.  

As a next step the platform and applications will 
be fitted for online operation and be deployed to the 
plant network. The goal is to significantly reduce the 
amount of surface defects, resp. to detect defective 
products early on, in order to avoid the costs incurred 
by the further processing and to reduce the impact on 
the environment. A set of KPIs has been defined to 
quantify the impact of these solutions. 

Surface defects on the bars, as final products 
considered here, can originate from different 
processes in the steel mill, in particular from 
inclusions that occurred during the casting of steel or 
from problems in the hot rolling mill. The digital twin 
concept based on the new tracking system will allow 
us to retrieve the relevant datasets applicable to an 
individual bar, to analyse them for irregularities and 
potentially to identify the root cause of the problem. 
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