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A major concern in the use of Internet of Things (IoT) technologies in general is their reliability in the pres-
ence of security threats and cyberattacks. Particularly, there is a growing recognition that [oT environments
featuring virtual sensing and interactive machine learning may be subject to additional vulnerabilities when
compared to traditional networks and classical batch learning settings. Partly, this is as adversaries could more
easily manipulate the user feedback channel with malicious content. To this end, we propose a data-centric
anomaly-based detection system, based on machine learning, that facilitates the process of identifying anoma-
lies, particularly those related to poisoning integrity attacks targeting the user feedback channel of interactive
machine learning setups. We demonstrate the capabilities of the proposed system in a case study involving
a smart campus setup consisting of different smart devices, namely, a smart camera, a climate sensmitter,
smart lighting, a smart phone, and a user feedback channel over which users could furnish labels to improve
detection of correct system states, namely, activity types happening inside a room. Our results indicate that
anomalies targeting the user feedback channel can be accurately detected at 98% using the Random Forest

classifier.

1 INTRODUCTION

Over the past few years, the Internet of Things (IoT)
has transformed environments in homes, buildings,
cities, and more, connecting them to the Internet.
With a forecast of about 29.4 billion connected de-
vices in 2030! and the global IoT market revenue es-
timated to cross USD 1 trillion landmark by 20242,
the IoT is one of the fastest-growing fields in comput-
ing (Al-Garadi et al., 2020). Concurrently, increased
adoption of IoT technology has introduced new secu-
rity challenges.

IoT devices are often left unattended and are
mostly connected via wireless networks. The lack of a
human oversight process over IoT devices, and hence
over data collection processes exposes organizations
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to new security threats and a broad attack surface that
adversaries can exploit (Goldblum et al., 2022). Ma-
chine learning (ML) is being utilized and will most
likely continue to be employed in IoT systems. This
adds to security challenges, especially if ML models
need to be updated in an online learning setting. It is
even more challenging if, like in interactive ML, this
online learning is done by regular IoT system users
rather than IoT device suppliers.

Interactive ML setups tend to be prone to integrity
attacks. This is as outsiders can manipulate training
datasets by injecting invalid or malicious data (Ke-
bande et al., 2020). A poisoning attack, or more
specifically, a poisoning integrity attack (Jagielski
et al., 2018), is a threat to the integrity of a system de-
signed to adversely affect the operation of a system.
According to a poll of industry practitioners done
in 2020 (Siva Kumar et al., 2020), organizations re-
ported that they are far more concerned about poison-
ing threats than other adversarial ML threats. These
attacks have been exploited in the real-world. For ex-
ample, the manipulation of Microsoft’s Tay chatbot
(Wolf et al., 2017) is an example demonstrating the
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exploitability of datasets, particularly, when involving
a user input channel for ML training purposes. While
reactive security mechanisms, such as intrusion detec-
tion systems (IDS), can help detect such attacks, they
have received little attention in the context of the IoT.
Indeed, the majority of the available IDSs tend to be
designed for conventional ICT infrastructure or wire-
less sensor networks, but not for the IoT (Anthi et al.,
2018).

In this paper, we propose a data-centric anomaly-
based IDS based on ML to detect anomalies associ-
ated with integrity attacks targeting interactive online
learning scenarios in the IoT. We focus on training-
only attacks that affect the user feedback channel.
Specifically, we focus on a representative type of poi-
soning integrity attack, known as a label-flipping at-
tack (Biggio et al., 2012). A label-flipping attack is
a type of adversarial attack that exploits classifica-
tion algorithms by corrupting their training data with
small perturbations. Thus, the main goal of this at-
tack type is to fool target systems into misclassifying
benign inputs as malicious ones, or vice versa. Un-
like most previous research, which has focused on
network traffic, we focus on application layer data.
Applying anomaly detection on the application layer
can detect intrusions that may be missed if only lower
layers of network traffic are analyzed (Meyer-Berg
et al., 2020). As an example, a manipulated ther-
mostat may show no irregularities on lower layers,
e.g., on the network layer, whereas actual temper-
ature readings, e.g., as captured in an activity log,
might indicate an anomaly. An attack on smart ther-
mostats was demonstrated by security researchers at
DefCon 243, where they uploaded a proof-of-concept
ransomware to a smart thermostat, allowing them to
manipulate the temperature until the homeowner paid
aransom; potentially evidence of such an attack could
have been captured at the application layer in the form
of anomalous temperature readings. We interpret an
anomaly as an intrusion (Khraisat and Alazab, 2021),
which represents any significant deviation between an
observed behavior and the learned ML model.

Our proposed data-centric anomaly-based detec-
tion system is demonstrated in a case study consist-
ing of a smart campus setup that involves: a smart
camera, a climate sensmitter, smart lighting, a smart
phone, and a user feedback channel, over which users
can provide feedback to the training process. For cre-
ating this setup, we leverage a concept known as the
Dynamic Intelligent Virtual Sensor (DIVS) (Tegen
et al., 2019). The DIVS essentially extends the no-
tion of a virtual sensor, which is typically used in de-

3https://defcon.org/html/defcon-24/dc-24-news.html
[Accessed on 19-September-2022].

vices with a fixed set of sensors, to a dynamic setting
with heterogeneous sensors. Through the application
of supervised ML algorithms trained on application
layer data, we demonstrate that anomalies targeting
the user feedback channel of interactive ML setups
can be accurately detected at 98% using the Random
Forest classifier.

2 RELATED WORK

Approaches to building anomaly detectors for IDSs
can be broadly categorized as design-centric and data-
centric (MR et al., 2021).

Design-centric approaches make use of physical
relationships, captured as invariants, among a sys-
tem’s components (MR et al., 2021). This means that,
if an invariant exists for a system, it can be used as a
basis for detecting anomalies in the system’s behavior.
However, design-centric approaches tend to be based
on the assumption that the system itself is a closed en-
vironment, such as a private home, in which all com-
ponents are known. In data-centric approaches, such
relationships among system components are learned
and modelled through the application of ML and
computational intelligence techniques, namely, super-
vised, unsupervised, and hybrid (semi-supervised) al-
gorithms (Alsoufi et al., 2021)(MR et al., 2021)(Al-
bulayhi et al., 2021). This also means that they can
better cater to open or semi-open environments such
as a building or campus.

Given their ability to automatically learn the dy-
namics and strategies deployed in a system and the
dynamic and heterogeneous nature of an IoT system,
we focus on data-centric approaches for developing
our anomaly detector. Another advantage of the data-
centric approaches is that they could be used to better
detect new attacks, such as zero-day attacks, and also
need fewer human interventions. Moreover, we fo-
cus on the supervised learning approach to anomaly
detection (Lin et al., 2015). Supervised learning in-
volves the collection and analysis of every input vari-
able and an output variable, and an algorithm to learn
the normal user behaviour from the input to the output
(Khraisat and Alazab, 2021).

There have been several similar works done in [oT
domains. The following are some of the most recent
notable works on IDSs that have used a data-centric
approach to anomaly detection in the IoT context.

Liu et al. (Liu et al., 2018) proposed a light
probe routing mechanism for detecting On-Off at-
tacks caused by malicious network nodes in an indus-
trial IoT site. An On-Off attack in this context means a
malicious network node could target the IoT network
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when it is active (on) and perform normally when it is
in an inactive (off) state.

Diro and Chilamkurti (Diro and Chilamkurti,
2018) proposed a deep learning model to detect dis-
tributed attacks in a social IoT network where they
compared the performance of the deep model with
a shallow neural network using the NSL-KDD (Diro
and Chilamkurti, 2018) dataset. This work’s primary
focus was to detect four classes (normal, DoS, probe,
and R2LU2R) of attacks and anomalies. Their sys-
tem achieved an accuracy of 98.27% for the deep neu-
ral network model and an accuracy of 96.75% for the
shallow neural network model.

Kozik et al. (Kozik et al., 2018) introduced an at-
tack detection technique that used the extreme learn-
ing machine (ELM) method in the Apache Spark
cloud architecture. This work focused on three main
cases in IoT systems — scanning, command and con-
trol, and infected host — and attained accuracy levels
of 99%, 76%, and 95%, respectively.

Pajouh et al. (Pajouh et al., 2019) proposed a two-
stage dimension reduction and classification model to
detect anomalies, namely U2R and R2L attacks, in
IoT backbone networks. They used principal compo-
nent analysis and linear discriminate analysis feature
extraction methods to reduce features of the dataset
and then used NB and KNN to identify anomalies at
an 84.82% identification rate.

Hasan et al. (Hasan et al., 2019) evaluated the per-
formance of five ML algorithms (Logistic Regression,
Support Vector Machine, Decision Tree, Random
Forest, and Artificial Neural Network) for detecting
attacks, namely, Denial of Service, Data Type Prob-
ing, Malicious Control, Malicious Operation, Scan,
Spying, and Wrong Setup, in the IoT context. One
of their findings is that their system obtained 99.4%
test accuracy for Decision Tree, Random Forest, and
ANN. However, the Random Forest classifier per-
formed the best when evaluated with other perfor-
mance metrics.

While all of the above works rely on ML and en-
semble techniques for anomaly detection, our pro-
posal is different. First, in our approach, we do not
rely on an existing dataset but instead create our own
dataset based on actual data as captured from our
IoT test lab (i.e., smart campus setup) and a hand-
crafted data simulator. The simulator allows for intro-
ducing additional data, allowing for performing con-
trolled experiments on larger datasets. Second, in
comparison to some of the existing work that rely
on a single method for detecting anomalies, we ap-
ply multiple methods — Logistic Regression, Gaus-
sian Naive Bayes, K-Nearest Neighbors, Decision
Tree, and Random Forest — to identify the most ac-
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Figure 1: Conceptual representation of the DIVS system
structure.

curate detection method. Third, we focus on an in-
teractive ML setup. This setup offers a unique setting
for studying some of the state-of-the-art attacks that
exploit the user feedback channel. Consequently, we
also study an attack, a label-flipping attack, that has
been relatively understudied in previous works, espe-
cially those concentrating on the topic of anomaly de-
tection suited for IoT-based setups.

3 SYSTEM MODEL

A system model describes the components and func-
tionality of the system being studied. We assume our
system to be one that exhibits the characteristics of an
interactive ML setup. For this reason, we assume our
system to be an instance of the DIVS. The DIVS is
a logical entity (software) that produces a sensor-like
output in real time (Tegen et al., 2019). It capitalizes
on interactive ML to make use of people’s presence in
the environment. This is done with the intent of im-
proving the accuracy of the underlying ML models.
Figure 1 is a graphical depiction of this model.

At its core, the DIVS reads sensor-like data from
the environment and users. The environment, e.g.,
the smart campus, can feature heterogeneous IoT de-
vices, ranging from constrained devices like single-
sensor devices to resourceful devices like smart cam-
eras. Users can be in the form of service users or inter-
active service users. The main difference between the
two user types is that service users rely on the DIVS
output to gain insights and perform actions, whereas
interactive service users extend the functionality of
the service users, allowing them to furnish input (e.g.,
in the form of labels) to the system to help it learn and
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adapt.

A core use case of the DIVS is to help detect the
type of activity happening in a room. This activity
recognition task can be performed by using feedback
from interactive users in an interactive ML approach.
These users are provided with a smartphone and an
accompanying mobile application. Through the mo-
bile application, they could then furnish a label in-
dicating the activity being performed (e.g., "silent",
"convo/meeting", and "gathering"); while detecting
activities can be done automatically through the use
of computer vision techniques, human input can help
improve the accuracy of the detection processes.

We assume the activities, i.e., the actions per-
formed by the users and those that are externally
generated from the environment (e.g., temperature
change), of the DIVS are captured in an activity log.
This log identifies, among other things, the date, time,
device, and type of messages being exchanged, partic-
ularly, between the interactive service users and IoT
devices. The message type can be either a data mes-
sage (e.g., an activity type) or a command message
(e.g., an actuation value). Other information, particu-
larly that related to network and system level events,
is captured in other log files; these log files are out of
scope for this study. Furthermore, we assume that the
IoT devices communicate via a central gateway/router
device. This communication model, while being the
typical for IoT systems, also allows for easier analysis
of log files for anomaly detection purposes.

4 THREAT MODEL

A threat model describes the potential ways an ad-
versary can compromise a system. Formally, we
assume a sample-label pair of the normal dataset

to be: a={(xlayl)7(x25y2)7(x37y3)7'"?(xNayN)}7
where, x;,i = 1,...,N is the sample, and y;,i =
1,...,N is the label corresponding to the sam-

ple. The correct labels are assumed to be pro-
vided by interactive service users, who tend to
have knowledge of the current state of the environ-
ment. Labels are provided during the ML train-
ing process, which might occur in an online fash-
ion. Based on the formalization of the label-flipping
attack proposed by Liu et al. (Liu et al., 2021),
we assume that the attack takes o and transforms
it into: B:{(xhyil)a (XZa)Tz)v (x3>)T3)7 B (XN,YW)},
where, x;,i = 1,...,N is the sample, and y;,i =
1,...,N is the label corresponding to the sample af-
ter label-flipping. We assume that o is transformed to
B by the function 6, i.e., 8:00 — . Moreover, we as-
sume the set of all labels of the normal dataset Y and

Activity log

Anomaly-based detection system

i (activity, silent)

User 1

(activity, silent) [ (activity, meeting)
User N
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Figure 2: Threat model for the DIVS system enhanced with
anomaly detection.

—> anomaly detection

the set of all the labels of the malicious dataset Y re-
spectively expressed as: Y = {(y1,y2,¥3,...,yn)} and
Y ={(1,52,53;---,IN) }, Where, Y =Y but y; # y;,i =
1,...,N. This implies that malicious labels must be
present in the normal dataset.

We assume that the adversary’s goal is to corrupt
the learning model generated in the training phase, so
that predictions on new data will be modified in the
test phase. This, in our case, translates to the system
not being able to accurately detect an activity type be-
ing performed. Moreover, we assume that the attack is
a gray-box attack, meaning that the adversary has par-
tial knowledge about the system, i.e., the DIVS setup.
In our case, we assume that the adversary has at least
some knowledge on the features values of the system,
specifically, the labels and the types of activities. Fi-
nally, when it comes to the capability of the adversary,
we assume that an adversary can inject poison points
into the training set. However, we assume that an ad-
versary cannot manipulate the activity log; in practice,
this requirement is often implemented through access
control mechanisms.

S EXPERIMENTAL SETUP

To conduct the experiment, we created a smart cam-
pus setup. This setup is an instantiation of the sys-
tem model proposed earlier in Section 3. Specif-
ically, it consisted of the following devices: a
smart camera, a climate sensmitter, smart lighting,
and a smart phone. These devices are intercon-
nected with the users and services deployed over the
cloud using the Message Queue Telemetry Trans-
port (MQTT) protocol; internally, this translates to
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the exchange of data/commands between the men-
tioned entities. MQTT is a lightweight IoT-oriented
publish-subscribe protocol and has been selected as it
is widely used in IoT systems (Rolddn-Gémez et al.,
2021). Also, the setup featured a user feedback chan-
nel, over which users could provide online feedback
to the DIVS’ learning/training modules. The DIVS, in
our case, was configured to help detect activity types
and occupancy rate of a room. For the purposes of
our experiment, we focus our analysis work on activ-
ity types. Nonetheless, both data messages are repre-
sented and captured in the activity log.

In the following sections, we describe the different
phases of the experiment.

5.1 Data Collection and Preprocessing
Phase

To generate the data, we collected activity data (i.e.,
normal data) from the deployed DIVS setup. Further-
more, based on the specification of the collected data,
we generated additional data using a hand-crafted
simulator. This simulator was developed using the
Python programming language libraries — Panda and
NumPy. Panda was used for generating the tabular
data, whereas NumPy was used for generating numer-
ical data. The final raw dataset consisted of a total
of 600 records (N = 600) representing data generated
for the entire month of November 2021. The dataset
is composed of data extracted from a network using
MQTT. A representation of the collected activities for
the month of November is displayed in Figure 3. The
final code was deployed on the cloud using Datalore®.

The collected raw data was transformed as part of
the preprocessing phase. Data preprocessing consists
of cleaning of data, visualization of data, feature en-
gineering, and vectorization steps. The raw dataset
contained both categorical and numerical data. Cat-
egorical data, such as activity types, was converted

E silent
W convo/meeting
g gathering

date

Figure 3: Type of activities happening in November 2021.
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into vectors using label encoding. Numerical data,
such as sensor and actuator values, was removed and
hence not used for model development later. This is
because it was not related to the user feedback pro-
cess, let alone the activity recognition task. Finally, to
the dataset, which contains normal patterns, we added
the feature anomaly. A summary of all the dataset fea-
tures is provided in Table 1.

By generalizing on the labeling function proposed
by Pathak et al. (Pathak et al., 2021) for labeling
anomalies, we assume that the feature anomaly is set
by the function y(I) as indicated in Equation 1. The
function (/) is {0, 1} with O representing / = N, and
N representing application data coming in on a nor-
mal day, and 1 the contrary. We assume A to represent
abnormal data, i.e., irregular input data coming in as
a result of an adversary calling 6.

0,if I = N
Y(l):{l,if(l;«éN) A (1=A) M

The end result of the data collection and prepro-
cessing phase is a dataset consisting of feature vec-
tors.

5.2 Model Development and Validation
Phase

A major goal of the ML process is to find an algorithm
that most accurately predicts future values based on
a set of features. Accordingly, we split our prepro-
cessed data into training and test datasets. Effectively,
we split the feature vectors into an 80-20 ratio repre-
senting, training and test data, respectively. The data
was split using random sampling.

As part of the training set, we selected a random
sample of activities from the dataset that correspond
to the user feedback process. Then, to simulate a
label-flipping attack, we poisoned those records via
0. For simplicity, as part of the interactive ML train-
ing process, we set y(/) = 1 when: (a) there was a
gathering or a convo/meeting being held before 08:00
and after 19:00; and (b) when the update was done
by a principal, i.e., an interactive service user, other
than Userl and User2. We flag these as anomalies as
the smart campus tends to be vacated during the spec-
ified time period and updates tend to occur by those
two users. In total, 35% of the training dataset was
poisoned®. An overview of the anomalies and nor-
mal behaviour registered for the month of November

>The processed dataset is available here:

https://bit.ly/3U1d9nL
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Table 1: Feature description.

Feature Description Data type
timestamp Date and time the activity occurred discrete
principal Entity performing the activity nominal
device Source [oT device used to perform the activity nominal
activity Type of activity performed nominal
message Indicates whether the activity is a command or data nominal
attribute Physical or virtual feature of the environment or system nominal
value Content of the attribute nominal
anomaly Indicates whether the activity represents an anomaly binary

2021, after running the label-flipping attack, is dis-
played in Figure 4.

Next, we applied five ML algorithms: Logistic
Regression, Gaussian Naive Bayes, K-Nearest Neigh-
bors, Decision Tree, and Random Forest; for train-
ing the anomaly-based detection system. All the fea-
tures identified in Table 1 were used as input for train-
ing the aforementioned ML algorithms. During the
training phase, the time component of the timestamp
was dynamically extracted and used, instead of the
entire timestamp. The timestamp feature is not con-
sidered in its entirety as it has minimal correlation to
the dataset’s predictor variable normality and also be-
cause the target model was not intended to be a time
series model but a classification model.

Finally, during the model validation phase, differ-
ent evaluation metrics were used in the comparison of
performance. Namely, the metrics are: AUC (Area
Under Curve) of ROC (Receiver Operating Charac-
teristics), accuracy, and Fl-score. AUC-ROC is an
evaluation metric that calculates the rank correlation
between predictions and targets. Accuracy is an eval-
uation metric that measures how many observations,
both positive and negative, were correctly classified.
The Fl-score is an evaluation metric that combines
precision and recall into one metric by calculating the
harmonic mean between those two.

7 = Normal

Anomaly
oo om
a8
8

Figure 4: Normal and anomalous activity types being regis-
tered during the month of November 2021.
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6 RESULTS AND DISCUSSION

The results obtained from our experiment demon-
strate that label-flipping attacks were successfully de-
tected, to different extents, by the proposed data-
centric anomaly-based detection system. In Table
2, we summarize the evaluation metrics (AUC-ROC
score, accuracy, and Fl-score) for each of the differ-
ent ML algorithms. The results indicate that the Ran-
dom Forest was the algorithm with the highest AUC-
ROC score, accuracy, and F1-score.

In Figure 5, we present the ROC curve obtained
for the five ML classification models. The ROC curve
is a chart showing the performance of a classification
model at all classification thresholds. In our case, it
indicates that the best predictions are those attained
when using the Random Forest algorithm. A similar
finding was reported by Husan et al. (Hasan et al.,
2019), who in their proposed system for attack and
anomaly detection in IoT sites, empirically found that
Random Forest also offers the best overall perfor-
mance in comparison to the other ML classifiers they
evaluated for detecting cyberattacks on [oT networks.
The corresponding confusion matrix for the Random
Forest classifier is presented in Figure 6. This chart il-
lustrates the performance of that classification model
on a set of test data for which the true values are
known.

The obtained results demonstrate that without the
need to have any hard-coded rules (which may also
be challenging to write), e.g., as required by IDS so-
lutions such as Snort (Roesch et al., 1999) that tend
to rely on pattern matching detection, we were able to
detect anomalies pertaining to label-flipping attacks.
Even though the specified anomalies could have been
detected using simple programming rules, we were
able to identify them automatically by harnessing su-
pervised ML. This is beneficial, particularly for future
use cases where such rules may be more challenging
to develop. Furthermore, even though there are more
specific existing proposals for defending against poi-
soning techniques (e.g., methods from robust statis-
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Table 2: Measuring the anomaly detection performance using the metrics: AUC-ROC, accuracy, and F1-Score.

ML classifier AUC-ROC Accuracy F1-Score
Logistic Regression 0.465368 0.488372 0.656250
Gaussian Naive Bayes 0.909091 0.860465 0.863636
K-Nearest Neighbors 0.833333 0.697674 0.628571
Decision Tree 0.976190 0.488372 0.000000
Random Forest 1.000000 0.976744 0.976744

tics such as Huber regression (Huber, 1992)), our aim
was to demonstrate how these attacks and potentially
other attacks can be detected using our proposal. With
the proposed system, it also becomes easier to extend
the model to detect other, perhaps more complex, at-
tack types that exploit the user feedback process. In
practice, though, there are limitations to our approach.

A first limitation of our approach is that while the
accuracy obtained is noteworthy, the current model
implementation requires retraining similar to batch
learning. This is necessary in the beginning, partic-
ularly to avoid the cold start problem. However, this
might be challenging to do for some IoT setups, such
as certain types of smart buildings, where activities
might be happening continuously. While training the
model with the different classifiers took only 2.6s,
other algorithms may need to be explored to allow
for partial retraining of the model. Another limita-
tion is the dataset size. The dataset consisted of only
600 records. This may be significantly smaller than
what one would expect in a real-world setting. How-
ever, this is still large enough to demonstrate that the
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Figure 5: ROC Curve of: Logistic Regression, Gaussian
Naive Bayes, K-Nearest Neighbors, Decision Tree, and
Random Forest.
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proposed approach is capable of detecting anomalies
with good accuracy given only a small training set. A
final limitation concerns the validation method used.
The data was divided into training and testing sets via
a train/test split method. Consequently, there might
have been some classifier overfitting. While we re-
duced that risk by repeating the train/test split with
various random state values, cross-validation could
have been implemented instead. Cross-validation au-
tomatically splits the dataset into k folds (subsets) and
performs the training phase on k-1 folds and tests on
the remaining fold.

7 CONCLUSION AND FUTURE
WORK

A major concern in the use of IoT technologies in
general is their reliability in the presence of secu-
rity threats and cyberattacks. In this paper, we pre-
sented a data-centric anomaly-based detection system
intended for interactive ML setups. By evaluating the
system in a case study consisting of an exemplary
smart campus setup that communicates via the MQTT
protocol, we observed that of the five evaluated ML
classifiers, the Random Forest classifier was the most
accurate, at 98%, in detecting anomalies. An advan-
tage of the presented system is that it requires no hard-
coded rules, thus making it suitable for detecting new
types of cyberattacks that were not initially identified
by the domain experts.

Although our results are promising, there are still
various elements and parameters that we need to con-
sider to fully develop the system. As part of our fu-
ture work, we plan to combine the proposed approach
with Complex Event Processing to help collect and
analyze different IoT data streams in real time for cy-
berattacks. Here, we also intend to perform more ex-
periments to further validate or improve the proposed
approach. Moreover, we plan to extend the system
to be able to detect other attack types, for example,
low-level attacks, e.g., network protocol Denial-of-
Service attacks, as well as high-level attacks, e.g.,
command injection attacks. Possibly, implementing
this requires the analysis of network data in addition
to application data. Finally, we plan to develop in-
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terfaces that can help notify the building administra-
tors when the system detects anomalies in real time.
This process can further help improve the accuracy
of the system by having an expert user decide if a
flagged anomaly is a false positive or not. Eventu-
ally, such a system could be possibly integrated into
another mechanism to be able to also react to attacks
by blocking them in real time.
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