
Exploring the Test Driven Development of a Fraud Detection
Application using the Google Cloud Platform

Daniel Staegemann a, Matthias Volk b, Maneendra Perera and Klaus Turowski
Magdeburg Research and Competence Cluster VLBA, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Keywords: Test Driven Development, TDD, Microservice, Big Data, Google Cloud Platform, GCP, Fraud Detection.

Abstract: The concept of big data hugely impacts today’s society and promises immense benefits when utilized correctly,
yet the corresponding applications are highly susceptible to errors. Therefore, testing should be performed as
much and rigorous as possible. One of the solutions proposed in the literature is the test driven development
(TDD) approach. TDD is a software development approach with a long history but has not been widely
applied in the big data domain. Nevertheless, a microservice-based test driven development concept has been
proposed in the literature, and the feasibility of applying it in actual projects is explored here. For that, the
fraud detection domain has been selected and a proof-of-concept online fraud detection platform is
implemented, which processes real-time streaming data and filters fraudulent and legitimate transactions.
After the implementation, an evaluation was carried out regarding test coverage and code quality. The
automatic code analysis reports revealed that TDD had produced very reliable, maintainable, and secure code
at the first attempt that is ready for production. Finally, the evaluation revealed that it is highly feasible to
develop big data applications using the concept mentioned. However, choosing suitable services, tools,
frameworks, and code coverage solutions can make it more manageable.

1 INTRODUCTION

Due to the ever-increasing importance of knowledge
and information, the concept of big data (BD) hugely
impacts today’s society and promises immense
benefits when utilized correctly (Müller et al. 2018).
While there are several slightly varying explanations
of BD, the most prominent one is provided by the
National Institute of Standards and Technology
(NIST), which states that big data “consists of
extensive datasets primarily in the characteristics of
volume, velocity, variety, and/or variability that
require a scalable architecture for efficient storage,
manipulation, and analysis” (Chang and Grady 2019).
The potential use cases for BD are manifold (Volk et
al. 2020), leading to its adoption in numerous
domains and industries. However, the corresponding
applications are highly susceptible to errors.
Therefore, testing should be performed as much and
rigorous as possible. One of the solutions proposed in
the literature is the test driven development (TDD)

a https://orcid.org/0000-0001-9957-1003
b https://orcid.org/0000-0002-4835-919X

approach (Staegemann et al. 2020) that is further
detailed in the following section.

To assure a comprehensive quality assurance, the
testing should be performed on all levels, namely
method, subcomponent (a single microservice),
component (a group of microservices that
contentually belong together), and the system in its
entirety.

For the application of TDD in the BD domain, the
use of microservices has been suggested (Staegemann
et al. 2020). The core objective of those is to allow
loosely coupled, self-contained modules or services
that are created to solve one specific task, have their
own resources and can be deployed separately.
Several asynchronous communication patterns can be
used among services and messaging; the event-driven
approach and RESTful connections are some widely
used patterns in software engineering. Also, since
they are independent components, different
programming languages can be used for the
implementation (Shakir et al. 2021).

Staegemann, D., Volk, M., Perera, M. and Turowski, K.
Exploring the Test Driven Development of a Fraud Detection Application using the Google Cloud Platform.
DOI: 10.5220/0011559000003335
In Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2022) - Volume 3: KMIS, pages 83-94
ISBN: 978-989-758-614-9; ISSN: 2184-3228
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

83

While the application of TDD in BD has already
been demonstrated (Staegemann et al. 2022), the
corresponding body of literature is still relatively
sparse. Therefore, the publication at hand aims to
expand it by presenting an additional use case from a
complex and demanding domain. Therefore, fraud
detection was chosen as the application area.
Moreover, since cloud offerings such as the Google
Cloud Platform (GCP), Amazon Web Services
(AWS), and Microsoft Azure are highly popular,
instead of building a solution completely from
scratch, in this project, the GCP is used to explore the
approach’s applicability when using a cloud provider
and (at least partly) its provided tools (e.g. Pub/Sub
and Dataflow). Consequently, the focus of this paper
is also on the realization of the TDD itself and not on
the optimization of the fraud detection algorithm’s
accuracy.

2 TEST DRIVEN DEVELOPMENT

In the literature (Staegemann et al. 2021), the
application of TDD is highlighted as a promising way
to improve the quality of an implementation as long
as the associated increase in development time and
effort is considered an acceptable trade-off.

The approach aims at improving the quality of the
product under consideration by mainly influencing
two aspects. On the one hand, it aims to increase test
coverage, which helps to find and subsequently fix
problems that occurred during the implementation of
the artifact in question. On the other hand, TDD also
influences the design process itself by leading to a
more manageable and pre-planned structure that
helps to avoid bugs and incompatibilities (Crispin
2006; Shull et al. 2010). The main application area is
software development, but the special case of
implementing BD applications (Staegemann et al.
2020), process modelling (Slaats et al. 2018), or
developing ontologies (Davies et al. 2019; Keet and
Ławrynowicz 2016) are also found in the literature.

In the "traditional" way of software development,
once a function or change is envisioned to be realized,
it is implemented and then tested. In contrast, in the
test-driven approach, the order of implementation and
testing is reversed. That is, after the desired change is
conceived, it is broken down into its smallest
meaningful parts (Fucci et al. 2017). For these, one or
more tests are written to ensure that the required
functionality is provided. Then, the tests are executed
and are expected to fail because the actual
functionality is not yet implemented (Beck 2015).
Only then is the productive code written to provide

the new functionality. Factors such as the elegance of
the code are not yet considered; instead, the simplest
solution is sought. Once the code is ready, it must
pass the previously written tests (Crispin 2006). If it
is successful, the code is refactored to improve
aspects such as readability or compliance with
standards and best practices (Beck 2015). In the
process, functionality is constantly validated against
the tests.

However, this approach not only affects test
coverage, but also the design of the software by using
small work packages instead of large tasks. In
addition, this focus on incremental changes (Williams
et al. 2003), which intertwines testing and
implementation, provides more immediate feedback
to the developer by resulting in short test cycles
(Janzen and Saiedian 2005). Although most tests are
written specifically for these small units, other tests
such as integration, system, or acceptance tests can
also be used in TDD (Sangwan and Laplante 2006).
In addition, to fully exploit the potential of TDD
without tying up the developer's attention by forcing
him to manually execute the tests, TDD is often used
in conjunction with test automation in a continuous
integration (CI) context (Karlesky et al. 2007; Shahin
et al. 2017). To ensure that the latest code addition or
change does not negatively impact existing parts of
the implementation, a CI server automatically starts
and re-executes all applicable tests when a new code
commit is registered by the versioning system.

3 THE IMPLEMENTATION

The developed solution consists of multiple
microservices, and creating the application is divided
into three major parts. The first step deals with the
development of a machine learning model. It is used
to identify a given transaction as fraudulent or
genuine. Here, tasks like selecting suitable training
data, pre-processing those data, creating the machine
learning model, training the machine learning model,
and deploying the machine learning model for online
predictions are carried out.
Afterwards, the rule engine, which validates the
transaction is developed. There are different ways to
identify fraud, and traditionally rule-based fraud
detection approaches have been used before
introducing machine learning application approaches
(Mekterović et al. 2021). Rule-based systems use
conditions, and if the corresponding state is matched,
the transaction will be marked as fraud or potential
fraud. Therefore, this work uses machine learning and
rule engine-related fraud detection to improve

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

84

prediction accuracy. Further, by introducing a rule
engine, it is also aimed to identify the feasibility of
applying TDD in the rule engine microservice.
Finally, the online fraud detection platform is
developed. This is the place where the microservices
are connected with each other for the final goal of
identifying the transaction as fraudulent or not. An
online fraud detection platform is a streaming
application that initiates the analysis as soon as a
transaction is received and sends the transaction
status as the outcome. The design and implementation
of the streaming pipeline are carried in this step.

3.1 Machine Learning Model

Fraud detection is a binary classification problem that
categorizes the transaction as fraudulent or legitimate
(Maniraj et al. 2019). The GCP platform provides
several tools and services to build classification
machine learning models. However, for building such
a model, a suitable dataset is needed. Therefore, at
first, a domain-specific dataset was chosen from
Kaggle1 was selected for the project, which is one of
the most popular online communities for people
interested in machine learning and data science. This
dataset contains a simulated credit card transaction
database that was created using the Sparkov data
generator2, and it contains legitimate and fraudulent

transactions from 1st Jan 2019 to 31st Dec 2020. It
covers credit cards of 1000 customers doing
transactions with a pool of 800 merchants. The
dataset's features are known, and the documentation
of the dataset concerning the features is self-
explaining. The dataset contains fraudTest.csv and
fraudTrain.csv, dividing the dataset into two parts.
However, the dataset is highly imbalanced because
fraudulent transactions are only 0.52% out of all the
transactions. This data distribution needs extra
attention when building the machine learning model
because the classification machine learning model’s
performance and accuracy strongly depend on the
distribution of classes.

3.1.1 Pre-processing

The quality of machine learning models is highly
dependent on the quality of the input provided for the
model. Data is highly error-prone and needs cleaning
and transformation before using them in the model
training. Incomplete data, inconsistent data, and
missing data are prevalent issues visible in datasets,
and 70%-90% of project efforts are utilized for data
wrangling, which is data understanding and
transformation (Nauck 2019).

Pre-processing is the first step carried out in the
model creation, and the GCP has several tools that
can be used for cleansing and transforming data. Yet,

Table 1: The performed pre-processing steps.

Step Activity
1 Scan raw dataset to check if there are any missing values in the TARGET column, is_fraud, and

remove the rows where the TARGET is missing.
2 Search columns with a high number of missing values and remove those where half of the rows have

missing values.
3 Delete duplicate rows and columns with a single value as they do not add value to the machine

learning model’s creation.
4 Categorical data columns are transformed into numerical. (Even though this was not used for the

fraud detection dataset as the finally used AutoML Tables can handle absolute values, the tests and
implementation are available for this pre-processing step.)

5 Missing values are imputed using the strategy mean in sklearn.impute.SimpleImputer, which replaces
the missing values with the mean of each column.

6 Perform outlier removal using the Inter Quartile Range mechanism, the most trusted mechanism for
removing unusual data points [4]. (The inter quartile range depicts a measure in descriptive statistics
that tells the middle range of the dataset.)

7 Select the top features for the machine learning model by calculating correlations between the
columns and the target. Apart from the above automatic pre-processing, manual pre-processing is
also done to remove duplicate columns like merchant latitude and merchant longitude as longitude
and latitude columns are already present.

8 Add a new data column named data_split (explained in the following section)
9 Write the cleaned data to a CSV file.

1 https://www.kaggle.com/kartik2112/fraud-detection 2 https://github.com/namebrandon/Sparkov_Data_Generation

Exploring the Test Driven Development of a Fraud Detection Application using the Google Cloud Platform

85

when applying TDD, internal constraints would have
increased the complexity and, therefore, another
approach was needed. Using Python libraries like
sklearn, pandas, and numpy to process and transform
data is another popular and widely used method in
machine learning, and it was well suited for TDD.
Hence, the following cleansing and transformation
steps were carried out using the abovementioned
libraries, following the steps outlined in Table 1.

3.1.2 Machine Learning Model

After pre-processing, the second step of building the
machine learning model is selecting a suitable GCP
tool and implementing the fraud detection
classification model. AutoML Tables is a popular
GCP tool that automatically builds and deploys a
machine learning model (Google 2022a). It has a
simplified process, and it automatically selects the
best model for the dataset provided. Furthermore, it
maximizes the quality of the model by increasing the
accuracy, and decreasing the Root Mean Square Error
(RMSE), without manual intervention for feature
engineering, assembling, etc. (Google 2022a).
BigQuery ML is also another candidate for model
creation. However, since the main focus is on
increasing the model quality rather than model
experimentation, the AutoML Tables are used.

In AutoML Tables, the dataset is split
automatically with 80% for training, 10% for
validation, and the other 10% for testing.
Nevertheless, AutoML recommends a manual split
for highly unbalanced datasets as an automatic split
may result in fewer samples of the minority class for
the testing split (Google 2022a). Therefore, a new
column was added to the dataset called data_split,
which contains three categorical values TRAIN,
VALIDATE and TEST, constructing a custom split
during model creation.

Finally, the updated pre-processed fraud dataset
CSV file is uploaded to a storage bucket 3 via

Terraform 4 to be able to access AutoML Tables.
After uploading the CSV file, to create an AutoML
Table dataset and create the model, Python SDK was
used as Terraform still does not support AutoML
Tables. Once the model is created, it is deployed (for
this purpose, the google-cloud-automl_v1beta1
Python module was used) in the Artificial Intelligence
(AI) platform for online prediction. The GCP AI
platform supports creating, training, and hosting the
built machine learning model. Furthermore, it
supports monitoring the online predictions and
maintaining the model and versions.

3.2 Rule Engine

After creating the machine learning model and
deploying it in the AI platform for online prediction,
the second step was implementing the rule engine.
There are two main models, rule-based and
algorithmic models that are used to detect fraud. In
rule-based models, multiple conditions identify the
transaction as fraudulent or legitimate. This project
uses the rule engine as a microservice hosted in a
compute engine. It is the first component of the
platform where the online transaction gets validated,
and it has several rules for unusual attributes. In real-
time, when a transaction is initiated, Pub/Sub will
create a message and pass it to Dataflow. Then
Dataflow will invoke the rule engine application.

The rule engine was developed as a RESTful web
service using Spring Boot. It has a POST endpoint
called “/api/isTransactionValid” and invoking the
endpoint with the transaction details will return the
transaction validity. It must be deployed on a server
to use the web service. Therefore, a virtual machine
is created in Compute Engine as the first step. Then
Tomcat, the server software, and MySQL 8.0 are
installed as the web service uses it. After performing
all these installations, the web service is bundled as a

Table 2: Checks performed by the rule engine.

Rule Threshold
Check if the transaction amount exceeds the daily transaction amount 500
Check if the daily transaction total exceeds the daily transaction total 1000
Check if the daily transaction count exceeds the daily transaction count 5
Check if the time difference of the subsequent daily transactions is greater than the minimum
time difference

5 seconds

Check if the distance of the subsequent daily transactions is lesser than the maximum distance 1000 km

3 Storage buckets are containers that can hold data so that
other GCP services can connect to these containers and
access the data.

4 Terraform is an infrastructure as code tool that enables the
infrastructure's safe and efficient building and
maintenance.

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

86

Web Application Resources (WAR) file and
deployed on the server. When the transaction details
are sent to the web service, it will validate the details
against the five rules depicted in Table 2, which are
created based on common factors used in fraud
detection models (Huoh 2017).

After validating the transaction against the rules,
the rule engine sends a status to the dataflow
component. Regardless of the status being valid or
invalid, it will be forwarded to the hosted ML model
via Dataflow to further processing. The web service
is developed using the Controller Service Repository
pattern, a widely used design pattern. It breaks the
business layer into the repository layer, which
connects to the database, and the service layer, where
actual business logic is implemented (Jones 2019).
Moreover, it provides a more flexible architecture and
allows to write unit tests quickly (Jones 2019).

3.3 Online Fraud Detection Platform

The final phase of creating the application is the
development of the microservice-based online fraud
detection platform using GCP products. It is designed
to handle real-time streaming transaction data,
process it immediately, and send the result to the
relevant notification services. The selection decision
for each service is discussed in the respective section.

3.3.1 Pub/Sub

In the fraud detection platform, transaction details
come from different services like desktop computers,
mobile phones, or laptops. Also, the final status of the
transaction should be sent to different sources which
initiated the transaction. Therefore, Pub/Sub
messaging is appropriate for this scenario as all the
initiating devices can send the transaction details to a
single topic. Furthermore, once the processing is
completed in the system, the same devices can
subscribe to a single topic to determine the conclusive
status of the transaction. Again, it is capable of
ingesting data to streaming pipelines like Dataflow.
Hence, Pub/Sub is selected, a real-time asynchronous
messaging service provided by GCP. It is utilized to
ingest transactions into the system and send the fraud
transaction notifications from the system. Foremost,
two topics and their respective subscripts are created
in the cloud project via Terraform script. Then the
Java code is written for message publishing and
subscribing.

Here a topic called transaction-topic exists and all
publishers are publishing transactions on this topic.
Furthermore, this topic has a subscription called

transaction-subscription, and Dataflow retrieves all
the messages from this subscription and processes
them either as fraud or legitimate. Then the fraud
transaction details are written to the fraud-status-
topic, and legitimate transaction details are written to
the transaction-status-topic. Then a cloud trigger can
be attached to the fraud-status-topic so that when a
new message comes, a notification (e.g., a SMS) can
be sent to the relevant parties.

3.3.2 Dataflow

Fraud detection should be done in real-time.
Therefore, a service capable of handling transaction
details in real-time, processing, and then sending the
response to the relevant parties is required to fulfil
this scenario. Dataflow comes in handy in this
situation, and it is a service of GCP capable of
processing different data patterns. It executes the
batch and streaming pipelines developed using
Apache Beam SDK, an open-source programming
model (Google 2022b). Therefore, Dataflow is used
in the project, and the message received from the
Pub/Sub is transferred to process it and take necessary
actions.

First, transactions should be ingested into the real-
time stream pipeline to start the streaming job. Then,
the transaction details are published to the described
transaction topic, and Dataflow gets them for further
processing. Therefore, Dataflow reads the messages
in the transaction topic as the first job.

After getting the transaction details, the actual
business process of identifying the transaction as
fraudulent or legitimate should be initiated. For that,
Dataflow invokes the Rule Engine hosted in the
Compute Engine. Then the response is retrieved from
the RESTful endpoint about the transaction validity
and whether the transaction is valid. This information
is kept in the memory to initiate the next step.

Here, the transaction fraud status is retrieved from
the machine learning model. Both algorithmic and
rule-based methods identify fraudulent transactions
in this online fraud detection platform. In the previous
step, the rule engine was invoked, and here the same
is done with the machine learning model, which is
hosted in the AI platform to predict whether the
transaction is fraudulent. Then the response retrieved
from the machine learning model is kept in memory,
and both the machine learning response and the rule
engine response are carried to the next step of the job.

The responses obtained from both models are
essential to identify the transaction as fraudulent or
legitimate. Furthermore, it is important to persist the
results and the transaction details for future use.

Exploring the Test Driven Development of a Fraud Detection Application using the Google Cloud Platform

87

Therefore, in the following step, transaction details
are written to the BigQuery table called
transaction_fraud_status_data_table for future
reference. For example, when the table row count
exceeds a certain threshold, a new machine learning
model can be trained using the old dataset and the
persisted data in the BigQuery ML table.

After saving the fraud status, it is essential to send
the transaction status to the platforms that initiated the
transactions, whether to continue processing or
terminate the process if the transaction is potentially
fraud suspicious. Therefore, filtering of the
transactions happens as the next step. First,
transactions are filtered as fraud or genuine, and in
this step, Dataflow produces a new message with
fraud transaction details along with the fraud status
and sends it to the topic called fraud-status-topic.

In the filtering process, if the transaction is
considered genuine based on the machine learning
response and rule engine response, Dataflow
produces a message with transaction details and
transaction status. It is published on a topic called
transaction-status-topic. Then the platforms
subscribed to this topic can retrieve the data and
continue processing the transaction.123 4

3.3.3 BigQuery

Fraud detection is a dynamic process that does not
have an ending. Organizations should continually
monitor fraud detection systems and make necessary
enhancements to the systems to adapt to the trends
(Wedge et al. 2019). Continuous monitoring, learning
from the incidents, and incorporating knowledge
gained from the past incident are essential. Therefore,
keeping track of indicants and their response should
be mandatory, and for this, BigQuery can play a
significant role. BigQuery is a data warehouse that is
cost-effective and scalable. Also, it is the input source
for most of the model creation services like BigQuery
ML and AutoML Tables. After invoking the rule
engine and machine learning model in this pipeline,
the transaction details with their validation and
prediction status are written to a BigQuery table for
future reference and use. In the project, a table called
transaction_fraud_status_data_table is created using
Terraform and writing data to the table is
implemented using Java inside the Dataflow
transform. The data written to tables can be harnessed
for different analytical purposes.

1
2
3
4
5 To save costs, this can be done using a small test dataset,

since only the connectivity but not the AutoML can and
need (since it is a proven component) to be tested.

3.4 The Testing

After the previous section introduced the developed
application, in the following, it is outlined how the
test driven approach has been realized.

3.4.1 TDD in the Machine Learning Model

Since the focus of the conducted project is on the
application of TDD, it is essential to understand the
test structure and test cases precisely. Therefore,
Python unittest is employed instead of Pytest as the
tests are easily understandable. Tests written for pre-
processing functions are executed locally in the
Eclipse IDE. However, this is not possible for all parts
of the application, leading to varying testing
approached outlined in the following. However, it is
impossible to run the AutoML Table's related tests
locally as they need to be executed in real
environments. Some of the GCP services like
Pub/Sub, Bigtable, and Spanner provide emulators
which provide the capability of developing and
testing the application locally in a simulated
environment (Google 2022c). However, since the
AutoML Tables do not have the emulation option,
tests were executed in the real environment5. Before
creating the AutoML Table model, datasets should be
imported to a storage bucket or a BigQuery table. In
the project, the datasets are uploaded to a storage
bucket called fraud_detection_data_bucket and then
imported to the AutoML Table. To create the storage
bucket and upload the CSV files, Terraform was used,
and before that, Chef InSpec6 tests (controls) were
written to verify the outputs. Chef InSpec GCP is a
resource pack that can be used to write tests for GCP
resources. Afterwards, the Terraform scripts are
written and executed, and then again, Chef InSpec
tests are executed to verify that the resource creation
is successful.

3.4.2 TDD in the Rule Engine

During the development of the rule engine, TDD is
used, and JUnit Jupiter and spring-restdocs-mockmvc
libraries are used to write the tests. They are the
general libraries used in writing tests in Spring Boot
RESTful web service applications. Since the
Controller Service Repository pattern is used, the
repository tests are first created, and then the
repository layer is implemented. Afterwards, the

6 https://github.com/inspec/inspec-gcp

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

88

service tests are written mocking the repository layer,
and then the service layer is implemented. Finally,
controller tests are written mocking the service and
repository, and then the controller is implemented,
which has the POST endpoint. After writing the code,
the controller is tested using POSTMAN.

Following the local testing, the code is bundled as
a WAR file (a collection of Java classes and all
necessary resources to be deployed on a server) and
deployed in the compute engine. Before creating the
compute engine virtual machine instance in the GCP,
the Chef InSpec test is written for testing the resource
creation. Subsequently, the compute engine instance
is created using Terraform. After creating the virtual
machine, the Chef InSpec test was executed to verify
the resource exists in GCP with specific properties
(e.g., machine type). Then in the VM, Java, Tomcat,
and MySQL are installed to be able to run the web
service and the WAR file is deployed. After
deployment, POSTMAN was used to send the
requests to the REST API and verify that the
deployment was successful.

3.4.3 TDD in the Online Fraud Detection
Platform

Corresponding to the description of the platform, its
testing also comprises three components, namely
Pub/Sub, Dataflow, and BigQuery. Prior to the
creation of the Pub/Sub topics and subscriptions,
Chef InSpec tests are written to assure the resource
exists in the GCP project. Before executing the
Terraform scripts they failed but were passed after
running it. Then, before writing the Java code to
publish and subscribe messages, JUnit tests were
written for every function. The tests are executed
locally and in the actual environment. GCP provides
a Pub/Sub emulator, which helps develop and test
applications locally without connecting to the actual
production environment. The emulator supports the
creation of topics and subscriptions, publishing
messages, and subscribing messages (Google 2022a).

Dataflow is the streaming platform that integrates
all other services and produces the final result. First,
it receives input data from the Pub/Sub, and finally,
the result is written to BigQuery and relevant Pub/Sub
notification channels. Different services use different
data formats, and Dataflow transforms them
accordingly to be used in the job. Handling different
data formats and transforming them is complex and
highly error prone. Thus, it is essential to test all these
transformation steps to verify that no issues are
introduced during the process. Furthermore,
Dataflow integrates all the services, and it is essential

to verify that all the integrations happen successfully
without any issues. Consequently, transformations
and integrations need thorough testing. The Apache
Beam SDK supports these two types of local testing,
testing transformers that transform input data to
another format to be processed in the next step and
testing the end-to-end pipeline (The Apache Software
Foundation 2021). It has a runner called
DirectRunner, which runs the pipeline locally on a
small scale. In the project, an instance of TestPipeline
is created, primarily used for testing transformers. All
the data transformations are tested using PAssert
statements, which can verify the content inside
collections. Once all the PTransforms are tested, the
end-to-end pipeline testing was done, using a test that
executes all the PTransforms in the pipeline. This
verifies that all the integrations are working without
any issue. However, all these above tests are executed
locally, and it is necessary to test the entire pipeline
in the actual environment. Therefore finally, a test has
been written to execute the entire pipeline in the
actual GCP project and verify the successful
execution via asserting the pipeline result state.

 Dataflow writes the transaction details and the
fraud status to the BigQuery table for future reference
in the online fraud detection platform. First, verifying
that the transaction fraud data table exists in the GCP
environment is necessary. Hence, as the first step, the
Chef InSpec test is written to verify the table's
existence. Initially, the test failed before executing
Terraform script, which creates the BigQuery table,
and it was passed after the resource had been created.

Once it is assured that the table exists in the
cloud, it is essential to test the functionality
of converting the transaction details to a table row.
In the Dataflow job, transaction details are converted
to a table row, the input for a BigQuery table,
and written using the following properties:
BigQueryIO.Write.CreateDisposition.CREATE_NE
VER and
BigQueryIO.Write.CreateDisposition.WRITE_APPE
ND.

The Apache beam SDK provides some classes like
FakeBigQueryServices (a fake implementation of
BigQuery's query service), FakeDatasetService (a
fake dataset service that can be serialized for use in
testReadFromTable), FakeJobService (a fake
implementation of BigQuery's job service.), which
simulate the real environment without connecting to
the GCP project to test the BigQuery related
functionalities locally. Therefore, JUnit tests are
written using the above libraries to test the BigQuery
table writing options.

Exploring the Test Driven Development of a Fraud Detection Application using the Google Cloud Platform

89

4 DISCUSSION

By implementing the above-described project, it has
been shown that the application of TDD in the given
context is possible. However, to further evaluate its
use, several aspects, such as the test coverage or the
code quality, are regarded in the following, which is
succeeded by some further observations.

4.1 Evaluation

While it is not feasible to specify each developed test
case, as it would go beyond the scope, Table 3 gives
a quantitative overview of the distribution of the
tested aspects (those might, in turn, have more than
one test case devoted to them).

In machine learning, testing as many aspects as
possible is recommended (Nauck 2019), therefore,
for the machine learning model, the tests comprise,
inter alia, data quality and completeness, feature
quality, and checks regarding data errors and
consistency.

Dataflow is the main component of the online
fraud detection model, and many tests have been
written for it. Thorough pipeline testing is crucial to
building effective data processing; testing the
transformation functions and the end-to-end pipeline
are the most critical steps for building a pipeline. In
this project, tests are written for every transformation
function, composite transformation function, and
finally, test the end-to-end pipeline as suggested in
the Apache Beam documentation (The Apache
Software Foundation 2021).

The rule engine is created using the controller,
service, and repository design pattern. It is essential
to write tests for all three layers independently and
then finally test as a whole. Therefore, tests are
written for each layer mocking the other interacting
layers, and finally, the entire system is tested using
POSTMAN.

Overall, as shown in Table 4, the four testing levels
(method, subcomponent, component, system) that are
outlined in (Staegemann et al. 2020) could all be
covered, emphasizing the feasibility of the
proposition.

While the indicators of code coverage are
somewhat tangible, assessing the code quality is less
clear. There are various metrics in code quality, and
different projects use different metrics based on their
context.

For example, in TDD, overall quality,
maintainability (Madeyski 2010; Shrivastava and
Jain 2011), number of bugs (Borle et al. 2018;
Khanam and Ahsan 2017), reliability, and code
coverage by tests (Causevic et al. 2012; Madeyski
2010) are some of the widely used metrics. There are
many online tools available to measure the code
quality, and in this project, SonarQube is used, an
open-source code review tool developed by Sonar
Source. The tool has a free community version, and it
can be installed locally to inspect the local project's
code. It supports analyzing both Java and Python
source code used in the project. Therefore, it was well
suited for this context. Furthermore, SonarQube has
numerous static code analysis tools supporting code
quality and code security, considering aspects
such as complexity, duplications, detected issues,

Table 3: The implemented test cases.

Service Type of test case Tested aspects

Machine Learning Model
Pre-processing test cases 16
Model creation test cases 12
Infrastructure test cases 2

Rule Engine

Infrastructure test cases 3
Controller test cases 2

Service test cases 23
Repository test cases 14

Pub/Sub General 4

Dataflow
General 1

Data transforming test cases 15
Pipeline test cases 5

BigQuery General 3
Infrastructure test cases 4

Online Fraud Detection Platform General 4
Total 108

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

90

Table 4: The test levels.

Testing Level Testing Process
Method Unit tests are written for each microservice to assure the algorithm's correctness. They

covered each feature like pre-processing and machine learning model creation. Furthermore,
tests are composed for infrastructure creation and availability. Unit tests are written for each
layer mocking the other dependencies in the rule engine microservice. In the fraud detection
application, tests are created to verify dataflow pipeline creation, BigQuery table insertions,
push notification sending, and subscriptions.

Subcomponent Complete pre-processing and AutoML Tables functionality can be considered
subcomponents of the machine learning part, and these are covered using the collection of
unit tests. In other parts, the collection of unit tests can also be considered subcomponent
tests when summed up. For example, the subcomponents tests will be all tests related to the
layers of the rule engine, BigQuery table functionality, Pub/Sub functionality, and Dataflow
functionality.

Component The communication between the microservices is tested using Dataflow Pipeline, and
different scenarios are written to verify that fraud transactions are identified accurately. In
addition, the POSTMAN tool was used to test whether the REST endpoint is working
correctly in the rule engine.
While(Staegemann et al. 2020) has mentioned the assurance of the performance
requirements like processing speed and capacity with benchmarking. However, no tests are
written separately for speed and capacity as they can be directly monitored via GCP reports.

System Finally, system tests are written considering the end-user requirements to validate the system
as a single unit. The Cucumber framework was used to verify that the system works as
expected.

maintainability, quality gates, reliability, security,
size, and test coverage. In the following, the analysis
the initial code quality of the projects without fixing
any issues highlighted in the analysis.
Concerning the analysis for the rule engine,
QUALITY GATE STATUS=PASSED assures that it is
production ready.

Moreover, the analysis report reveals that its
maintainability and security are at the highest level.
In the report, two issues are visible, related to
asserting dissimilar types.

However, those are minor issues that can be fixed
quickly and do not impact the actual fraud detection
logic when reviewed. Furthermore, the analysis
shows 121 lines to cover. Yet, when reviewed, they
are Plain Old Java Object (POJO) classes, servlet
initialization code, and object transformation code
that are not generally covered via tests and have a
very low priority in testing. Therefore, the test
coverage of the actual business logic can also be
considered at a higher level.

The machine learning model is created using
Python and SonarQube does not directly support the
code coverage and analysis. Hence, the Coverage
Tool is incorporated to assess the code coverage. The
Code Coverage Tool generates a coverage XML
which records the code coverage by tests and is then
imported to SonarQube to view the complete
analysis. For the analysis, thirty-seven python tests
are executed via the tool. According to the results, the

machine learning model creation project is also
QUALITY GATE STATUS=PASSED which assures
that the project is production-ready at the first
development version without modifications.

Additionally, reliability, security, and
maintainability ratings are at the highest level, being
rated with an A, according to the analysis. The
analysis report shows a code coverage of 67.2%, but
when checking the not covered lines, some of them
are Chef InSpec controls files, which are the tests for
Terraform scripts, and some of the lines shown in the
analysis are print statements that do not need the tests.
So finally, 173 lines needed to be covered, which
show as 485 in the report. When excluding the files
whose tests are not essential, code coverage increased
to 78.9%, which is good coverage for the first
attempt. Further, it is very close to the code coverage
rating A level, which is 80%.

The online fraud detection platform was also
developed as a Java application, and according to the
analysis, it also shows as QUALITY GATE
STATUS=PASSED. That reveals it is ready to be
deployed in production. However, the analysis shows
seven bugs, but five are related to exception handling,
which can be fixed easily when deep into the issue.
The other two issues are also not critical and can be
fixed easily. Security is an essential aspect of fraud
detection systems as it deals with sensitive data,
which needs higher protection. Measuring the
security aspects with the code coverage tool, the

Exploring the Test Driven Development of a Fraud Detection Application using the Google Cloud Platform

91

analysis shows ten security hotspots. When checking
the detailed analysis, all of them are generated
because of the statement e.printStackTrace(). In the
analysis, maintainability shows as a rating A, which
is one of the factors expected to be achieved via TDD.
The test case count is different from the actual count
as Cucumber tests and Inspect GCP controls are not
picked up by the coverage tool. Three hundred sixty-
nine lines needed to be covered in the code coverage,
but when checked, some lines are covered via
TestPipeline tests. They are not identified via the code
coverage tools due to its handling in Apache Beam
SDK. Therefore, considering the above fact, the
precise lines to be covered are less than 100, which
could be achieved quickly.

4.2 Further Observations

Many tools and services are available in GCP for
developing big data applications. However, not all
tools support TDD for different reasons, like not
having well-defined APIs and the design of the
service being unsuitable for TDD. Consequently,
tools should be evaluated before using them in big
data applications, and only the most suitable tools
should be used for the purpose. Further, the GCP only
provides limited support to test apps locally, and the
provided emulators are also in the beta stage (Google
2022a). For this reason, most tests are executed in the
actual production environment, and they incur costs.
Furthermore, it will create the same resource multiple
times, which is not demanded. Thus, not having a test
environment to test the big data application is a
limitation that needs to be resolved in the future.

After implementing the big data application, code
coverage tools have been used to evaluate the project.
For example, in the evaluation report of the fraud
detection application, it was noticeable that the code
related to Apache beam SDK transforms and
function-related classes was marked as not covered in
the report. However, those functions are covered
using multiple tests and the code coverage tool was
not always able to identify them accurately because
of the structure of the code. Therefore, it is evident
that code coverage tools cannot identify some of the
complex code structures of big data applications.
Hence, extra attention should be needed to select
suitable tools for big data applications before
selecting the tools.

The online fraud detection platform consists of
different microservices. They are developed using
different languages and using different frameworks.
Because of this, a single test library is not sufficient
for writing tests. In traditional projects, the JUnit and

mocking libraries are sufficient to write all tests.
However, different libraries are needed for big data
applications due to their complexity. JUnit, unittest,
Apache beam testing libraries, and BigQuery fake
services are used to write tests in this project.
Consequently, the developers should have the
competencies to handle all these libraries.

Finally, in the literature it is considered best
practice to execute all tests again after a single test
failure. However, it was not feasible due to the
incurring costs, and, therefore, the process was
altered by executing only relevant feature tests after a
test failure.

5 CONCLUSION

With today’s society being more and more data
driven, the concept of BD also gains significance.
However, while the correct utilization promises
immense benefits, assuring the quality of the
corresponding systems is a challenging task. Aiming
to facilitate it, the application of TDD in the BD
domain has been suggested. Therefore, a project was
conducted to further explore the general concept,
show it in a fraud detection use case, and also
examine it in the context of cloud provider services
(such as the GCP in this case). In doing so it was
shown that it is not only possible, but also yields good
results regarding the test coverage and code quality,
further substantiating the concept.

However, there were also some open challenges
and starting points for future research that became
apparent during the project. As indicated in the
previous section, proper tooling is still an open issue
that has plenty of potential for improvement. Further,
some of the tests, like overfitting and underfitting, are
not covered in the projects because they are not
directly retrievable via AutoML responses. However,
covering these types of tests adds more value to
increase the quality, and in the future, research can be
carried out to find a way to retrieve these values. For
example, model hyperparameters-related information
is logged in AutoML logs, and they can be analyzed
to retrieve model training data. Finally, in this work,
the feasibility of TDD is explored by applying it in
the fraud detection domain. However, this approach
for big data can be applied to other use cases so that
more comprehensive insights can be gained, and
collective insights will help for a better TDD process
design.

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

92

REFERENCES

Beck, K. (2015). Test-Driven Development: By Example,
Boston: Addison-Wesley.

Borle, N. C., Feghhi, M., Stroulia, E., Greiner, R., and
Hindle, A. (2018). “Analyzing the effects of test driven
development in GitHub,” Empirical Software
Engineering (23:4), pp. 1931-1958 (doi:
10.1007/s10664-017-9576-3).

Causevic, A., Punnekkat, S., and Sundmark, D. (2012).
“Quality of Testing in Test Driven Development,” in
Proceedings of the 2012 Eighth International
Conference on the Quality of Information and
Communications Technology, Lisbon, Portugal.
03.09.2012 - 06.09.2012, IEEE, pp. 266-271 (doi:
10.1109/QUATIC.2012.49).

Chang, W. L., and Grady, N. (2019). “NIST Big Data
Interoperability Framework: Volume 1, Definitions,”
Special Publication (NIST SP), Gaithersburg, MD:
National Institute of Standards and Technology.

Crispin, L. (2006). “Driving Software Quality: How Test-
Driven Development Impacts Software Quality,” IEEE
Software (23:6), pp. 70-71 (doi: 10.1109/MS.2006.157).

Davies, K., Keet, C. M., and Lawrynowicz, A. (2019).
“More Effective Ontology Authoring with Test-Driven
Development and the TDDonto2 Tool,” International
Journal on Artificial Intelligence Tools (28:7) (doi:
10.1142/S0218213019500234).

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juristo,
N. (2017). “A Dissection of the Test-Driven
Development Process: Does It Really Matter to Test-
First or to Test-Last?” IEEE Transactions on Software
Engineering (43:7), pp. 597-614 (doi:
10.1109/tse.2016.2616877).

Google. (2022a). “AutoML Tables-Dokumentation,”
available at https://cloud.google.com/automl-tables/
docs, accessed on May 9 2022.

Google. (2022b). “Dataflow Documentation,” available at
https://cloud.google.com/dataflow/docs, accessed on
May 10 2022.

Google. (2022c). “Testing apps locally with the emulator,”
available at https://cloud.google.com/pubsub/docs/
emulator, accessed on May 10 2022.

Huoh, Y.-J. (2017). “Algorithmic and rules-based fraud
models: A high-level look at two fraud models
employed by financial service providers,” available at
https://fin.plaid.com/articles/algorithmic-and-rules-
based-fraud-models/, accessed on May 9 2022.

Janzen, D., and Saiedian, H. (2005). “Test-driven
development concepts, taxonomy, and future direction,”
Computer (38:9), pp. 43-50 (doi:
10.1109/MC.2005.314).

Jones, M. (2019). “The Repository-Service Pattern with DI
and ASP.NET 5.0,” available at
https://exceptionnotfound.net/the-repository-service-
pattern-with-dependency-injection-and-asp-net-core/,
accessed on May 9 2022.

Karlesky, M., Williams, G., Bereza, W., and Fletcher, M.
(2007). “Mocking the Embedded World: Test-Driven
Development, Continuous Integration, and Design

Patterns,” in Embedded Systems Conference, San Jose,
California, USA. 01.04.2007 - 05.04.2007, UBM
Electronics.

Keet, C. M., and Ławrynowicz, A. (2016). “Test-Driven
Development of Ontologies,” in The Semantic Web.
Latest Advances and New Domains, H. Sack, E.
Blomqvist, M. d'Aquin, C. Ghidini, S. P. Ponzetto and
C. Lange (eds.), Cham: Springer International
Publishing, pp. 642-657 (doi: 10.1007/978-3-319-
34129-3_39).

Khanam, Z., and Ahsan, N. (2017). “Evaluating the
Effectiveness of Test Driven Development: Advantages
and Pitfalls,” International Journal of Applied
Engineering Research (12:18), pp. 7705-7716.

Madeyski, L. (2010). “The impact of Test-First
programming on branch coverage and mutation score
indicator of unit tests: An experiment,” Information and
Software Technology (52:2), pp. 169-184 (doi:
10.1016/j.infsof.2009.08.007).

Maniraj, S. P., Saini, A., Ahmed, S., and Sarkar, S. D.
(2019). “Credit Card Fraud Detection using Machine
Learning and Data Science,” IJERT (International
Journal of Engineering Research & Technology)
(08:09) (doi: 10.17577/IJERTV8IS090031).

Mekterović, I., Karan, M., Pintar, D., and Brkić, L. (2021).
“Credit Card Fraud Detection in Card-Not-Present
Transactions: Where to Invest?” Applied Sciences
(11:15), p. 6766 (doi: 10.3390/app11156766).

Müller, O., Fay, M., and Vom Brocke, J. (2018). “The
Effect of Big Data and Analytics on Firm Performance:
An Econometric Analysis Considering Industry
Characteristics,” Journal of Management Information
Systems (35:2), pp. 488-509 (doi: 10.1080/
07421222.2018.1451955).

Nauck, D. (2019). “Test-Driven Machine Learning,”
available at https://www.infoq.com/presentations/tdd-
ml/, accessed on May 9 2022.

Sangwan, R. S., and Laplante, P. A. (2006). “Test-Driven
Development in Large Projects,” IT Professional (8:5),
pp. 25-29 (doi: 10.1109/MITP.2006.122).

Shahin, M., Ali Babar, M., and Zhu, L. (2017). “Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices,” IEEE Access (5), pp. 3909-3943 (doi:
10.1109/ACCESS.2017.2685629).

Shakir, A., Staegemann, D., Volk, M., Jamous, N., and
Turowski, K. (2021). “Towards a Concept for Building
a Big Data Architecture with Microservices,” in
Proceedings of the 24th International Conference on
Business Information Systems, Hannover,
Germany/virtual. 14.06.2021 - 17.06.2021, pp. 83-94
(doi: 10.52825/bis.v1i.67).

Shrivastava, D. P., and Jain, R. C. (2011). “Unit test case
design metrics in test driven development,” in
Proceedings of the 2011 International Conference on
Communications, Computing and Control Applications
(CCCA), Hammamet, Tunisia. 03.03.2011 - 05.03.2011,
IEEE, pp. 1-6 (doi: 10.1109/CCCA.2011.6031205).

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M.,
and Erdogmus, H. (2010). “What Do We Know about

Exploring the Test Driven Development of a Fraud Detection Application using the Google Cloud Platform

93

Test-Driven Development?” IEEE Software (27:6), pp.
16-19 (doi: 10.1109/MS.2010.152).

Slaats, T., Debois, S., and Hildebrandt, T. (2018). “Open to
Change: A Theory for Iterative Test-Driven Modelling,”
in Business Process Management, M. Weske, M.
Montali, I. Weber and J. Vom Brocke (eds.), Cham:
Springer International Publishing, pp. 31-47 (doi:
10.1007/978-3-319-98648-7_3).

Staegemann, D., Volk, M., Byahatti, P., Italiya, N.,
Shantharam, S., Chandrashekar, A., and Turowski, K.
(2022). “Implementing Test Driven Development in the
Big Data Domain: A Movie Recommendation System
as an Exemplary Case,” in Proceedings of the 7th
International Conference on Internet of Things, Big
Data and Security, Online Streaming/Prague.
22.04.2022 - 24.04.2022, pp. 239-248 (doi:
10.5220/0011085600003194).

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2020). “Exploring the Applicability of Test Driven
Development in the Big Data Domain,” in Proceedings
of the ACIS 2020, Wellington, New Zealand.
01.12.2020 - 04.12.2020.

Staegemann, D., Volk, M., Lautenschläger, E., Pohl, M.,
Abdallah, M., and Turowski, K. (2021). “Applying Test
Driven Development in the Big Data Domain – Lessons
From the Literature,” in Proceedings of the 2021
International Conference on Information Technology
(ICIT), Amman, Jordan. 14.07.2021 - 15.07.2021,
IEEE, pp. 511-516 (doi: 10.1109/ICIT52682.
2021.9491728).

The Apache Software Foundation. (2021). “Test Your
Pipeline,” available at https://beam.apache.org/
documentation/pipelines/test-your-pipeline, accessed
on May 10 2022.

Volk, M., Staegemann, D., Trifonova, I., Bosse, S., and
Turowski, K. (2020). “Identifying Similarities of Big
Data Projects–A Use Case Driven Approach,” IEEE
Access (8), pp. 186599-186619 (doi: 10.1109/ACCESS.
2020.3028127).

Wedge, R., Kanter, J. M., Veeramachaneni, K., Rubio, S.
M., and Perez, S. I. (2019). “Solving the False Positives
Problem in Fraud Prediction Using Automated Feature
Engineering,” in Machine Learning and Knowledge
Discovery in Databases, U. Brefeld, E. Curry, E. Daly,
B. MacNamee, A. Marascu, F. Pinelli, M. Berlingerio
and N. Hurley (eds.), Cham: Springer International
Publishing, pp. 372-388 (doi: 10.1007/978-3-030-
10997-4_23).

Williams, L., Maximilien, E. M., and Vouk, M. (2003).
“Test-driven development as a defect-reduction
practice,” in Proceedings of the 14th ISSRE, Denver,
Colorado, USA. 17.11.2003 - 20.11.2003, IEEE, pp.
34-45 (doi: 10.1109/ISSRE.2003.1251029).

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

94

