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Abstract: The concept of big data hugely impacts today’s society and promises immense benefits when utilized correctly, 
yet the corresponding applications are highly susceptible to errors. Therefore, testing should be performed as 
much and rigorous as possible. One of the solutions proposed in the literature is the test driven development 
(TDD) approach. TDD is a software development approach with a long history but has not been widely 
applied in the big data domain. Nevertheless, a microservice-based test driven development concept has been 
proposed in the literature, and the feasibility of applying it in actual projects is explored here. For that, the 
fraud detection domain has been selected and a proof-of-concept online fraud detection platform is 
implemented, which processes real-time streaming data and filters fraudulent and legitimate transactions. 
After the implementation, an evaluation was carried out regarding test coverage and code quality. The 
automatic code analysis reports revealed that TDD had produced very reliable, maintainable, and secure code 
at the first attempt that is ready for production. Finally, the evaluation revealed that it is highly feasible to 
develop big data applications using the concept mentioned. However, choosing suitable services, tools, 
frameworks, and code coverage solutions can make it more manageable. 

1 INTRODUCTION 

Due to the ever-increasing importance of knowledge 
and information, the concept of big data (BD) hugely 
impacts today’s society and promises immense 
benefits when utilized correctly (Müller et al. 2018). 
While there are several slightly varying explanations 
of BD, the most prominent one is provided by the 
National Institute of Standards and Technology 
(NIST), which states that big data “consists of 
extensive datasets primarily in the characteristics of 
volume, velocity, variety, and/or variability that 
require a scalable architecture for efficient storage, 
manipulation, and analysis” (Chang and Grady 2019). 
The potential use cases for BD are manifold (Volk et 
al. 2020), leading to its adoption in numerous 
domains and industries. However, the corresponding 
applications are highly susceptible to errors. 
Therefore, testing should be performed as much and 
rigorous as possible. One of the solutions proposed in 
the literature is the test driven development (TDD) 

 
a  https://orcid.org/0000-0001-9957-1003 
b  https://orcid.org/0000-0002-4835-919X 

approach (Staegemann et al. 2020) that is further 
detailed in the following section. 

To assure a comprehensive quality assurance, the 
testing should be performed on all levels, namely 
method, subcomponent (a single microservice), 
component (a group of microservices that 
contentually belong together), and the system in its 
entirety. 

For the application of TDD in the BD domain, the 
use of microservices has been suggested (Staegemann 
et al. 2020). The core objective of those is to allow 
loosely coupled, self-contained modules or services 
that are created to solve one specific task, have their 
own resources and can be deployed separately. 
Several asynchronous communication patterns can be 
used among services and messaging; the event-driven 
approach and RESTful connections are some widely 
used patterns in software engineering. Also, since 
they are independent components, different 
programming languages can be used for the 
implementation (Shakir et al. 2021). 
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While the application of TDD in BD has already 
been demonstrated (Staegemann et al. 2022), the 
corresponding body of literature is still relatively 
sparse. Therefore, the publication at hand aims to 
expand it by presenting an additional use case from a 
complex and demanding domain. Therefore, fraud 
detection was chosen as the application area. 
Moreover, since cloud offerings such as the Google 
Cloud Platform (GCP), Amazon Web Services 
(AWS), and Microsoft Azure are highly popular, 
instead of building a solution completely from 
scratch, in this project, the GCP is used to explore the 
approach’s applicability when using a cloud provider 
and (at least partly) its provided tools (e.g. Pub/Sub 
and Dataflow). Consequently, the focus of this paper 
is also on the realization of the TDD itself and not on 
the optimization of the fraud detection algorithm’s 
accuracy. 

2 TEST DRIVEN DEVELOPMENT 

In the literature (Staegemann et al. 2021), the 
application of TDD is highlighted as a promising way 
to improve the quality of an implementation as long 
as the associated increase in development time and 
effort is considered an acceptable trade-off. 

The approach aims at improving the quality of the 
product under consideration by mainly influencing 
two aspects. On the one hand, it aims to increase test 
coverage, which helps to find and subsequently fix 
problems that occurred during the implementation of 
the artifact in question. On the other hand, TDD also 
influences the design process itself by leading to a 
more manageable and pre-planned structure that 
helps to avoid bugs and incompatibilities (Crispin 
2006; Shull et al. 2010). The main application area is 
software development, but the special case of 
implementing BD applications (Staegemann et al. 
2020), process modelling (Slaats et al. 2018), or 
developing ontologies (Davies et al. 2019; Keet and 
Ławrynowicz 2016) are also found in the literature.  

In the "traditional" way of software development, 
once a function or change is envisioned to be realized, 
it is implemented and then tested. In contrast, in the 
test-driven approach, the order of implementation and 
testing is reversed. That is, after the desired change is 
conceived, it is broken down into its smallest 
meaningful parts (Fucci et al. 2017). For these, one or 
more tests are written to ensure that the required 
functionality is provided. Then, the tests are executed 
and are expected to fail because the actual 
functionality is not yet implemented (Beck 2015). 
Only then is the productive code written to provide 

the new functionality. Factors such as the elegance of 
the code are not yet considered; instead, the simplest 
solution is sought. Once the code is ready, it must 
pass the previously written tests (Crispin 2006). If it 
is successful, the code is refactored to improve 
aspects such as readability or compliance with 
standards and best practices (Beck 2015). In the 
process, functionality is constantly validated against 
the tests. 

However, this approach not only affects test 
coverage, but also the design of the software by using 
small work packages instead of large tasks. In 
addition, this focus on incremental changes (Williams 
et al. 2003), which intertwines testing and 
implementation, provides more immediate feedback 
to the developer by resulting in short test cycles 
(Janzen and Saiedian 2005). Although most tests are 
written specifically for these small units, other tests 
such as integration, system, or acceptance tests can 
also be used in TDD (Sangwan and Laplante 2006). 
In addition, to fully exploit the potential of TDD 
without tying up the developer's attention by forcing 
him to manually execute the tests, TDD is often used 
in conjunction with test automation in a continuous 
integration (CI) context (Karlesky et al. 2007; Shahin 
et al. 2017). To ensure that the latest code addition or 
change does not negatively impact existing parts of 
the implementation, a CI server automatically starts 
and re-executes all applicable tests when a new code 
commit is registered by the versioning system. 

3 THE IMPLEMENTATION 

The developed solution consists of multiple 
microservices, and creating the application is divided 
into three major parts. The first step deals with the 
development of a machine learning model. It is used 
to identify a given transaction as fraudulent or 
genuine. Here, tasks like selecting suitable training 
data, pre-processing those data, creating the machine 
learning model, training the machine learning model, 
and deploying the machine learning model for online 
predictions are carried out. 
Afterwards, the rule engine, which validates the 
transaction is developed. There are different ways to 
identify fraud, and traditionally rule-based fraud 
detection approaches have been used before 
introducing machine learning application approaches 
(Mekterović et al. 2021). Rule-based systems use 
conditions, and if the corresponding state is matched, 
the transaction will be marked as fraud or potential 
fraud. Therefore, this work uses machine learning and 
rule engine-related fraud detection to improve 
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prediction accuracy. Further, by introducing a rule 
engine, it is also aimed to identify the feasibility of 
applying TDD in the rule engine microservice. 
Finally, the online fraud detection platform is 
developed. This is the place where the microservices 
are connected with each other for the final goal of 
identifying the transaction as fraudulent or not. An 
online fraud detection platform is a streaming 
application that initiates the analysis as soon as a 
transaction is received and sends the transaction 
status as the outcome. The design and implementation 
of the streaming pipeline are carried in this step. 

3.1 Machine Learning Model 

Fraud detection is a binary classification problem that 
categorizes the transaction as fraudulent or legitimate 
(Maniraj et al. 2019). The GCP platform provides 
several tools and services to build classification 
machine learning models. However, for building such 
a model, a suitable dataset is needed. Therefore, at 
first, a domain-specific dataset was chosen from 
Kaggle1 was selected for the project, which is one of 
the most popular online communities for people 
interested in machine learning and data science. This 
dataset contains a simulated credit card transaction 
database that was created using the Sparkov data 
generator2, and it contains legitimate and fraudulent 

transactions from 1st Jan 2019 to 31st Dec 2020. It 
covers credit cards of 1000 customers doing 
transactions with a pool of 800 merchants. The 
dataset's features are known, and the documentation 
of the dataset concerning the features is self-
explaining. The dataset contains fraudTest.csv and 
fraudTrain.csv, dividing the dataset into two parts. 
However, the dataset is highly imbalanced because 
fraudulent transactions are only 0.52% out of all the 
transactions. This data distribution needs extra 
attention when building the machine learning model 
because the classification machine learning model’s 
performance and accuracy strongly depend on the 
distribution of classes. 

3.1.1 Pre-processing 

The quality of machine learning models is highly 
dependent on the quality of the input provided for the 
model. Data is highly error-prone and needs cleaning 
and transformation before using them in the model 
training. Incomplete data, inconsistent data, and 
missing data are prevalent issues visible in datasets, 
and 70%-90% of project efforts are utilized for data 
wrangling, which is data understanding and 
transformation (Nauck 2019). 

Pre-processing is the first step carried out in the 
model creation, and the GCP has several tools that 
can be used for cleansing and transforming data. Yet,  

Table 1: The performed pre-processing steps. 

Step Activity 
1 Scan raw dataset to check if there are any missing values in the TARGET column, is_fraud, and 

remove the rows where the TARGET is missing.
2 Search columns with a high number of missing values and remove those where half of the rows have 

missing values.
3 Delete duplicate rows and columns with a single value as they do not add value to the machine 

learning model’s creation. 
4 Categorical data columns are transformed into numerical. (Even though this was not used for the 

fraud detection dataset as the finally used AutoML Tables can handle absolute values, the tests and 
implementation are available for this pre-processing step.)

5 Missing values are imputed using the strategy mean in sklearn.impute.SimpleImputer, which replaces 
the missing values with the mean of each column.

6 Perform outlier removal using the Inter Quartile Range mechanism, the most trusted mechanism for 
removing unusual data points [4]. (The inter quartile range depicts a measure in descriptive statistics 
that tells the middle range of the dataset.)

7 Select the top features for the machine learning model by calculating correlations between the 
columns and the target. Apart from the above automatic pre-processing, manual pre-processing is 
also done to remove duplicate columns like merchant latitude and merchant longitude as longitude 
and latitude columns are already present.

8 Add a new data column named data_split (explained in the following section) 
9 Write the cleaned data to a CSV file.

 

 
1 https://www.kaggle.com/kartik2112/fraud-detection 2 https://github.com/namebrandon/Sparkov_Data_Generation 
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when applying TDD, internal constraints would have 
increased the complexity and, therefore, another 
approach was needed. Using Python libraries like 
sklearn, pandas, and numpy to process and transform 
data is another popular and widely used method in 
machine learning, and it was well suited for TDD. 
Hence, the following cleansing and transformation 
steps were carried out using the abovementioned 
libraries, following the steps outlined in Table 1. 

3.1.2 Machine Learning Model 

After pre-processing, the second step of building the 
machine learning model is selecting a suitable GCP 
tool and implementing the fraud detection 
classification model. AutoML Tables is a popular 
GCP tool that automatically builds and deploys a 
machine learning model (Google 2022a). It has a 
simplified process, and it automatically selects the 
best model for the dataset provided. Furthermore, it 
maximizes the quality of the model by increasing the 
accuracy, and decreasing the Root Mean Square Error 
(RMSE), without manual intervention for feature 
engineering, assembling, etc. (Google 2022a). 
BigQuery ML is also another candidate for model 
creation. However, since the main focus is on 
increasing the model quality rather than model 
experimentation, the AutoML Tables are used. 

In AutoML Tables, the dataset is split 
automatically with 80% for training, 10% for 
validation, and the other 10% for testing. 
Nevertheless, AutoML recommends a manual split 
for highly unbalanced datasets as an automatic split 
may result in fewer samples of the minority class for 
the testing split (Google 2022a). Therefore, a new 
column was added to the dataset called data_split, 
which contains three categorical values TRAIN, 
VALIDATE and TEST, constructing a custom split 
during model creation. 

Finally, the updated pre-processed fraud dataset 
CSV file is uploaded to a storage bucket 3 via 

Terraform 4 to be able to access AutoML Tables. 
After uploading the CSV file, to create an AutoML 
Table dataset and create the model, Python SDK was 
used as Terraform still does not support AutoML 
Tables. Once the model is created, it is deployed (for 
this purpose, the google-cloud-automl_v1beta1 
Python module was used) in the Artificial Intelligence 
(AI) platform for online prediction. The GCP AI 
platform supports creating, training, and hosting the 
built machine learning model. Furthermore, it 
supports monitoring the online predictions and 
maintaining the model and versions. 

3.2 Rule Engine 

After creating the machine learning model and 
deploying it in the AI platform for online prediction, 
the second step was implementing the rule engine. 
There are two main models, rule-based and 
algorithmic models that are used to detect fraud. In 
rule-based models, multiple conditions identify the 
transaction as fraudulent or legitimate. This project 
uses the rule engine as a microservice hosted in a 
compute engine. It is the first component of the 
platform where the online transaction gets validated, 
and it has several rules for unusual attributes. In real-
time, when a transaction is initiated, Pub/Sub will 
create a message and pass it to Dataflow. Then 
Dataflow will invoke the rule engine application. 

The rule engine was developed as a RESTful web 
service using Spring Boot. It has a POST endpoint 
called “/api/isTransactionValid” and invoking the 
endpoint with the transaction details will return the 
transaction validity. It must be deployed on a server 
to use the web service. Therefore, a virtual machine 
is created in Compute Engine as the first step. Then 
Tomcat, the server software, and MySQL 8.0 are 
installed as the web service uses it. After performing 
all these installations, the web service is bundled as a  

Table 2: Checks performed by the rule engine. 

Rule Threshold
Check if the transaction amount exceeds the daily transaction amount 500 
Check if the daily transaction total exceeds the daily transaction total 1000
Check if the daily transaction count exceeds the daily transaction count 5 
Check if the time difference of the subsequent daily transactions is greater than the minimum 
time difference 

5 seconds

Check if the distance of the subsequent daily transactions is lesser than the maximum distance 1000 km

3  Storage buckets are containers that can hold data so that 
other GCP services can connect to these containers and 
access the data. 

4  Terraform is an infrastructure as code tool that enables the 
infrastructure's safe and efficient building and 
maintenance. 
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Web Application Resources (WAR) file and 
deployed on the server. When the transaction details 
are sent to the web service, it will validate the details 
against the five rules depicted in Table 2, which are 
created based on common factors used in fraud 
detection models (Huoh 2017). 

After validating the transaction against the rules, 
the rule engine sends a status to the dataflow 
component. Regardless of the status being valid or 
invalid, it will be forwarded to the hosted ML model 
via Dataflow to further processing. The web service 
is developed using the Controller Service Repository 
pattern, a widely used design pattern. It breaks the 
business layer into the repository layer, which 
connects to the database, and the service layer, where 
actual business logic is implemented (Jones 2019). 
Moreover, it provides a more flexible architecture and 
allows to write unit tests quickly (Jones 2019). 

3.3 Online Fraud Detection Platform 

The final phase of creating the application is the 
development of the microservice-based online fraud 
detection platform using GCP products. It is designed 
to handle real-time streaming transaction data, 
process it immediately, and send the result to the 
relevant notification services. The selection decision 
for each service is discussed in the respective section. 

3.3.1 Pub/Sub 

In the fraud detection platform, transaction details 
come from different services like desktop computers, 
mobile phones, or laptops. Also, the final status of the 
transaction should be sent to different sources which 
initiated the transaction. Therefore, Pub/Sub 
messaging is appropriate for this scenario as all the 
initiating devices can send the transaction details to a 
single topic. Furthermore, once the processing is 
completed in the system, the same devices can 
subscribe to a single topic to determine the conclusive 
status of the transaction. Again, it is capable of 
ingesting data to streaming pipelines like Dataflow. 
Hence, Pub/Sub is selected, a real-time asynchronous 
messaging service provided by GCP. It is utilized to 
ingest transactions into the system and send the fraud 
transaction notifications from the system. Foremost, 
two topics and their respective subscripts are created 
in the cloud project via Terraform script. Then the 
Java code is written for message publishing and 
subscribing.  

Here a topic called transaction-topic exists and all 
publishers are publishing transactions on this topic. 
Furthermore, this topic has a subscription called 

transaction-subscription, and Dataflow retrieves all 
the messages from this subscription and processes 
them either as fraud or legitimate. Then the fraud 
transaction details are written to the fraud-status-
topic, and legitimate transaction details are written to 
the transaction-status-topic. Then a cloud trigger can 
be attached to the fraud-status-topic so that when a 
new message comes, a notification (e.g., a SMS) can 
be sent to the relevant parties. 

3.3.2 Dataflow 

Fraud detection should be done in real-time. 
Therefore, a service capable of handling transaction 
details in real-time, processing, and then sending the 
response to the relevant parties is required to fulfil 
this scenario. Dataflow comes in handy in this 
situation, and it is a service of GCP capable of 
processing different data patterns. It executes the 
batch and streaming pipelines developed using 
Apache Beam SDK, an open-source programming 
model (Google 2022b). Therefore, Dataflow is used 
in the project, and the message received from the 
Pub/Sub is transferred to process it and take necessary 
actions. 

First, transactions should be ingested into the real-
time stream pipeline to start the streaming job. Then, 
the transaction details are published to the described 
transaction topic, and Dataflow gets them for further 
processing. Therefore, Dataflow reads the messages 
in the transaction topic as the first job. 

After getting the transaction details, the actual 
business process of identifying the transaction as 
fraudulent or legitimate should be initiated. For that, 
Dataflow invokes the Rule Engine hosted in the 
Compute Engine. Then the response is retrieved from 
the RESTful endpoint about the transaction validity 
and whether the transaction is valid. This information 
is kept in the memory to initiate the next step. 

Here, the transaction fraud status is retrieved from 
the machine learning model. Both algorithmic and 
rule-based methods identify fraudulent transactions 
in this online fraud detection platform. In the previous 
step, the rule engine was invoked, and here the same 
is done with the machine learning model, which is 
hosted in the AI platform to predict whether the 
transaction is fraudulent. Then the response retrieved 
from the machine learning model is kept in memory, 
and both the machine learning response and the rule 
engine response are carried to the next step of the job. 

The responses obtained from both models are 
essential to identify the transaction as fraudulent or 
legitimate. Furthermore, it is important to persist the 
results and the transaction details for future use. 
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Therefore, in the following step, transaction details 
are written to the BigQuery table called 
transaction_fraud_status_data_table for future 
reference. For example, when the table row count 
exceeds a certain threshold, a new machine learning 
model can be trained using the old dataset and the 
persisted data in the BigQuery ML table. 

After saving the fraud status, it is essential to send 
the transaction status to the platforms that initiated the 
transactions, whether to continue processing or 
terminate the process if the transaction is potentially 
fraud suspicious. Therefore, filtering of the 
transactions happens as the next step. First, 
transactions are filtered as fraud or genuine, and in 
this step, Dataflow produces a new message with 
fraud transaction details along with the fraud status 
and sends it to the topic called fraud-status-topic. 

In the filtering process, if the transaction is 
considered genuine based on the machine learning 
response and rule engine response, Dataflow 
produces a message with transaction details and 
transaction status. It is published on a topic called 
transaction-status-topic. Then the platforms 
subscribed to this topic can retrieve the data and 
continue processing the transaction.123 4 

3.3.3 BigQuery 

Fraud detection is a dynamic process that does not 
have an ending. Organizations should continually 
monitor fraud detection systems and make necessary 
enhancements to the systems to adapt to the trends 
(Wedge et al. 2019). Continuous monitoring, learning 
from the incidents, and incorporating knowledge 
gained from the past incident are essential. Therefore, 
keeping track of indicants and their response should 
be mandatory, and for this, BigQuery can play a 
significant role. BigQuery is a data warehouse that is 
cost-effective and scalable. Also, it is the input source 
for most of the model creation services like BigQuery 
ML and AutoML Tables. After invoking the rule 
engine and machine learning model in this pipeline, 
the transaction details with their validation and 
prediction status are written to a BigQuery table for 
future reference and use. In the project, a table called 
transaction_fraud_status_data_table is created using 
Terraform and writing data to the table is 
implemented using Java inside the Dataflow 
transform. The data written to tables can be harnessed 
for different analytical purposes.  

 
1  
2  
3  
4  
5 To save costs, this can be done using a small test dataset, 

since only the connectivity but not the AutoML can and 
need (since it is a proven component) to be tested. 

3.4 The Testing 

After the previous section introduced the developed 
application, in the following, it is outlined how the 
test driven approach has been realized. 

3.4.1 TDD in the Machine Learning Model 

Since the focus of the conducted project is on the 
application of TDD, it is essential to understand the 
test structure and test cases precisely. Therefore, 
Python unittest is employed instead of Pytest as the 
tests are easily understandable. Tests written for pre-
processing functions are executed locally in the 
Eclipse IDE. However, this is not possible for all parts 
of the application, leading to varying testing 
approached outlined in the following. However, it is 
impossible to run the AutoML Table's related tests 
locally as they need to be executed in real 
environments. Some of the GCP services like 
Pub/Sub, Bigtable, and Spanner provide emulators 
which provide the capability of developing and 
testing the application locally in a simulated 
environment (Google 2022c). However, since the 
AutoML Tables do not have the emulation option, 
tests were executed in the real environment5.  Before 
creating the AutoML Table model, datasets should be 
imported to a storage bucket or a BigQuery table. In 
the project, the datasets are uploaded to a storage 
bucket called fraud_detection_data_bucket and then 
imported to the AutoML Table. To create the storage 
bucket and upload the CSV files, Terraform was used, 
and before that, Chef InSpec6 tests (controls) were 
written to verify the outputs. Chef InSpec GCP is a 
resource pack that can be used to write tests for GCP 
resources. Afterwards, the Terraform scripts are 
written and executed, and then again, Chef InSpec 
tests are executed to verify that the resource creation 
is successful. 

3.4.2 TDD in the Rule Engine 

During the development of the rule engine, TDD is 
used, and JUnit Jupiter and spring-restdocs-mockmvc 
libraries are used to write the tests. They are the 
general libraries used in writing tests in Spring Boot 
RESTful web service applications. Since the 
Controller Service Repository pattern is used, the 
repository tests are first created, and then the 
repository layer is implemented. Afterwards, the 

6 https://github.com/inspec/inspec-gcp 
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service tests are written mocking the repository layer, 
and then the service layer is implemented. Finally, 
controller tests are written mocking the service and 
repository, and then the controller is implemented, 
which has the POST endpoint. After writing the code, 
the controller is tested using POSTMAN. 

Following the local testing, the code is bundled as 
a WAR file (a collection of Java classes and all 
necessary resources to be deployed on a server) and 
deployed in the compute engine. Before creating the 
compute engine virtual machine instance in the GCP, 
the Chef InSpec test is written for testing the resource 
creation. Subsequently, the compute engine instance 
is created using Terraform. After creating the virtual 
machine, the Chef InSpec test was executed to verify 
the resource exists in GCP with specific properties 
(e.g., machine type). Then in the VM, Java, Tomcat, 
and MySQL are installed to be able to run the web 
service and the WAR file is deployed. After 
deployment, POSTMAN was used to send the 
requests to the REST API and verify that the 
deployment was successful. 

3.4.3 TDD in the Online Fraud Detection 
Platform 

Corresponding to the description of the platform, its 
testing also comprises three components, namely 
Pub/Sub, Dataflow, and BigQuery. Prior to the 
creation of the Pub/Sub topics and subscriptions, 
Chef InSpec tests are written to assure the resource 
exists in the GCP project. Before executing the 
Terraform scripts they failed but were passed after 
running it. Then, before writing the Java code to 
publish and subscribe messages, JUnit tests were 
written for every function. The tests are executed 
locally and in the actual environment. GCP provides 
a Pub/Sub emulator, which helps develop and test 
applications locally without connecting to the actual 
production environment. The emulator supports the 
creation of topics and subscriptions, publishing 
messages, and subscribing messages (Google 2022a). 

Dataflow is the streaming platform that integrates 
all other services and produces the final result. First, 
it receives input data from the Pub/Sub, and finally, 
the result is written to BigQuery and relevant Pub/Sub 
notification channels. Different services use different 
data formats, and Dataflow transforms them 
accordingly to be used in the job. Handling different 
data formats and transforming them is complex and 
highly error prone. Thus, it is essential to test all these 
transformation steps to verify that no issues are 
introduced during the process. Furthermore, 
Dataflow integrates all the services, and it is essential 

to verify that all the integrations happen successfully 
without any issues. Consequently, transformations 
and integrations need thorough testing. The Apache 
Beam SDK supports these two types of local testing, 
testing transformers that transform input data to 
another format to be processed in the next step and 
testing the end-to-end pipeline (The Apache Software 
Foundation 2021). It has a runner called 
DirectRunner, which runs the pipeline locally on a 
small scale. In the project, an instance of TestPipeline 
is created, primarily used for testing transformers. All 
the data transformations are tested using PAssert 
statements, which can verify the content inside 
collections. Once all the PTransforms are tested, the 
end-to-end pipeline testing was done, using a test that 
executes all the PTransforms in the pipeline. This 
verifies that all the integrations are working without 
any issue. However, all these above tests are executed 
locally, and it is necessary to test the entire pipeline 
in the actual environment. Therefore finally, a test has 
been written to execute the entire pipeline in the 
actual GCP project and verify the successful 
execution via asserting the pipeline result state. 

 Dataflow writes the transaction details and the 
fraud status to the BigQuery table for future reference 
in the online fraud detection platform. First, verifying 
that the transaction fraud data table exists in the GCP 
environment is necessary. Hence, as the first step, the 
Chef InSpec test is written to verify the table's 
existence. Initially, the test failed before executing 
Terraform script, which creates the BigQuery table, 
and it was passed after the resource had been created.  

Once it is assured that the table exists in the  
cloud, it is essential to test the functionality  
of converting the transaction details to a table row.  
In the Dataflow job, transaction details are converted 
to a table row, the input for a BigQuery table,  
and written using the following properties: 
BigQueryIO.Write.CreateDisposition.CREATE_NE
VER and 
BigQueryIO.Write.CreateDisposition.WRITE_APPE
ND. 

The Apache beam SDK provides some classes like 
FakeBigQueryServices (a fake implementation of 
BigQuery's query service), FakeDatasetService (a 
fake dataset service that can be serialized for use in 
testReadFromTable), FakeJobService (a fake 
implementation of BigQuery's job service.), which 
simulate the real environment without connecting to 
the GCP project to test the BigQuery related 
functionalities locally. Therefore, JUnit tests are 
written using the above libraries to test the BigQuery 
table writing options. 
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4 DISCUSSION 

By implementing the above-described project, it has 
been shown that the application of TDD in the given 
context is possible. However, to further evaluate its 
use, several aspects, such as the test coverage or the 
code quality, are regarded in the following, which is 
succeeded by some further observations. 

4.1 Evaluation 

While it is not feasible to specify each developed test 
case, as it would go beyond the scope, Table 3 gives 
a quantitative overview of the distribution of the 
tested aspects (those might, in turn, have more than 
one test case devoted to them). 

In machine learning, testing as many aspects as 
possible is recommended (Nauck 2019), therefore, 
for the machine learning model, the tests comprise, 
inter alia, data quality and completeness, feature 
quality, and checks regarding data errors and 
consistency. 

Dataflow is the main component of the online 
fraud detection model, and many tests have been 
written for it. Thorough pipeline testing is crucial to 
building effective data processing; testing the 
transformation functions and the end-to-end pipeline 
are the most critical steps for building a pipeline. In 
this project, tests are written for every transformation 
function, composite transformation function, and 
finally, test the end-to-end pipeline as suggested in 
the Apache Beam documentation (The Apache 
Software Foundation 2021). 

The rule engine is created using the controller, 
service, and repository design pattern. It is essential 
to write tests for all three layers independently and 
then finally test as a whole. Therefore, tests are 
written for each layer mocking the other interacting 
layers, and finally, the entire system is tested using 
POSTMAN. 

Overall, as shown in Table 4, the four testing levels 
(method, subcomponent, component, system) that are 
outlined in (Staegemann et al. 2020) could all be 
covered, emphasizing the feasibility of the 
proposition. 

While the indicators of code coverage are 
somewhat tangible, assessing the code quality is less 
clear. There are various metrics in code quality, and 
different projects use different metrics based on their 
context.  

For example, in TDD, overall quality, 
maintainability (Madeyski 2010; Shrivastava and 
Jain 2011), number of bugs (Borle et al. 2018; 
Khanam and Ahsan 2017), reliability, and code 
coverage by tests (Causevic et al. 2012; Madeyski 
2010) are some of the widely used metrics. There are 
many online tools available to measure the code 
quality, and in this project, SonarQube is used, an 
open-source code review tool developed by Sonar 
Source. The tool has a free community version, and it 
can be installed locally to inspect the local project's 
code. It supports analyzing both Java and Python 
source code used in the project. Therefore, it was well 
suited for this context. Furthermore, SonarQube has 
numerous static code analysis tools supporting code 
quality and code security, considering aspects  
such as complexity, duplications, detected issues, 
 

Table 3: The implemented test cases. 

Service Type of test case Tested aspects 

Machine Learning Model 
Pre-processing test cases 16 
Model creation test cases 12 
Infrastructure test cases 2 

Rule Engine 

Infrastructure test cases 3 
Controller test cases 2 

Service test cases 23 
Repository test cases 14 

Pub/Sub General 4 

Dataflow 
General 1 

Data transforming test cases 15 
Pipeline test cases 5 

BigQuery General 3 
Infrastructure test cases 4 

Online Fraud Detection Platform General 4 
Total  108 
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Table 4: The test levels. 

Testing Level Testing Process 
Method Unit tests are written for each microservice to assure the algorithm's correctness. They 

covered each feature like pre-processing and machine learning model creation. Furthermore, 
tests are composed for infrastructure creation and availability. Unit tests are written for each 
layer mocking the other dependencies in the rule engine microservice. In the fraud detection 
application, tests are created to verify dataflow pipeline creation, BigQuery table insertions, 
push notification sending, and subscriptions.

Subcomponent Complete pre-processing and AutoML Tables functionality can be considered 
subcomponents of the machine learning part, and these are covered using the collection of 
unit tests. In other parts, the collection of unit tests can also be considered subcomponent 
tests when summed up. For example, the subcomponents tests will be all tests related to the 
layers of the rule engine, BigQuery table functionality, Pub/Sub functionality, and Dataflow 
functionality. 

Component The communication between the microservices is tested using Dataflow Pipeline, and 
different scenarios are written to verify that fraud transactions are identified accurately. In 
addition, the POSTMAN tool was used to test whether the REST endpoint is working 
correctly in the rule engine. 
While(Staegemann et al. 2020) has mentioned the assurance of the performance 
requirements like processing speed and capacity with benchmarking. However, no tests are 
written separately for speed and capacity as they can be directly monitored via GCP reports.

System Finally, system tests are written considering the end-user requirements to validate the system 
as a single unit. The Cucumber framework was used to verify that the system works as 
expected. 

 
maintainability, quality gates, reliability, security, 
size, and test coverage. In the following, the analysis 
the initial code quality of the projects without fixing 
any issues highlighted in the analysis. 
Concerning the analysis for the rule engine, 
QUALITY GATE STATUS=PASSED assures that it is 
production ready. 

Moreover, the analysis report reveals that its 
maintainability and security are at the highest level. 
In the report, two issues are visible, related to 
asserting dissimilar types. 

However, those are minor issues that can be fixed 
quickly and do not impact the actual fraud detection 
logic when reviewed. Furthermore, the analysis 
shows 121 lines to cover. Yet, when reviewed, they 
are Plain Old Java Object (POJO) classes, servlet 
initialization code, and object transformation code 
that are not generally covered via tests and have a 
very low priority in testing. Therefore, the test 
coverage of the actual business logic can also be 
considered at a higher level. 

The machine learning model is created using 
Python and SonarQube does not directly support the 
code coverage and analysis. Hence, the Coverage 
Tool is incorporated to assess the code coverage. The 
Code Coverage Tool generates a coverage XML 
which records the code coverage by tests and is then 
imported to SonarQube to view the complete 
analysis. For the analysis, thirty-seven python tests 
are executed via the tool. According to the results, the 

machine learning model creation project is also 
QUALITY GATE STATUS=PASSED which assures 
that the project is production-ready at the first 
development version without modifications. 

Additionally, reliability, security, and 
maintainability ratings are at the highest level, being 
rated with an A, according to the analysis. The 
analysis report shows a code coverage of 67.2%, but 
when checking the not covered lines, some of them 
are Chef InSpec controls files, which are the tests for 
Terraform scripts, and some of the lines shown in the 
analysis are print statements that do not need the tests. 
So finally, 173 lines needed to be covered, which 
show as 485 in the report. When excluding the files 
whose tests are not essential, code coverage increased 
to 78.9%, which is good coverage for the first 
attempt. Further, it is very close to the code coverage 
rating A level, which is 80%. 

The online fraud detection platform was also 
developed as a Java application, and according to the 
analysis, it also shows as QUALITY GATE 
STATUS=PASSED. That reveals it is ready to be 
deployed in production. However, the analysis shows 
seven bugs, but five are related to exception handling, 
which can be fixed easily when deep into the issue. 
The other two issues are also not critical and can be 
fixed easily. Security is an essential aspect of fraud 
detection systems as it deals with sensitive data, 
which needs higher protection. Measuring the 
security aspects with the code coverage tool, the 
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analysis shows ten security hotspots. When checking 
the detailed analysis, all of them are generated 
because of the statement e.printStackTrace(). In the 
analysis, maintainability shows as a rating A, which 
is one of the factors expected to be achieved via TDD. 
The test case count is different from the actual count 
as Cucumber tests and Inspect GCP controls are not 
picked up by the coverage tool. Three hundred sixty-
nine lines needed to be covered in the code coverage, 
but when checked, some lines are covered via 
TestPipeline tests. They are not identified via the code 
coverage tools due to its handling in Apache Beam 
SDK. Therefore, considering the above fact, the 
precise lines to be covered are less than 100, which 
could be achieved quickly. 

4.2 Further Observations 

Many tools and services are available in GCP for 
developing big data applications. However, not all 
tools support TDD for different reasons, like not 
having well-defined APIs and the design of the 
service being unsuitable for TDD. Consequently, 
tools should be evaluated before using them in big 
data applications, and only the most suitable tools 
should be used for the purpose. Further, the GCP only 
provides limited support to test apps locally, and the 
provided emulators are also in the beta stage (Google 
2022a). For this reason, most tests are executed in the 
actual production environment, and they incur costs. 
Furthermore, it will create the same resource multiple 
times, which is not demanded. Thus, not having a test 
environment to test the big data application is a 
limitation that needs to be resolved in the future. 

After implementing the big data application, code 
coverage tools have been used to evaluate the project. 
For example, in the evaluation report of the fraud 
detection application, it was noticeable that the code 
related to Apache beam SDK transforms and 
function-related classes was marked as not covered in 
the report. However, those functions are covered 
using multiple tests and the code coverage tool was 
not always able to identify them accurately because 
of the structure of the code. Therefore, it is evident 
that code coverage tools cannot identify some of the 
complex code structures of big data applications. 
Hence, extra attention should be needed to select 
suitable tools for big data applications before 
selecting the tools. 

The online fraud detection platform consists of 
different microservices. They are developed using 
different languages and using different frameworks. 
Because of this, a single test library is not sufficient 
for writing tests. In traditional projects, the JUnit and 

mocking libraries are sufficient to write all tests. 
However, different libraries are needed for big data 
applications due to their complexity. JUnit, unittest, 
Apache beam testing libraries, and BigQuery fake 
services are used to write tests in this project. 
Consequently, the developers should have the 
competencies to handle all these libraries.  

Finally, in the literature it is considered best 
practice to execute all tests again after a single test 
failure. However, it was not feasible due to the 
incurring costs, and, therefore, the process was 
altered by executing only relevant feature tests after a 
test failure. 

5 CONCLUSION 

With today’s society being more and more data 
driven, the concept of BD also gains significance. 
However, while the correct utilization promises 
immense benefits, assuring the quality of the 
corresponding systems is a challenging task. Aiming 
to facilitate it, the application of TDD in the BD 
domain has been suggested. Therefore, a project was 
conducted to further explore the general concept, 
show it in a fraud detection use case, and also 
examine it in the context of cloud provider services 
(such as the GCP in this case). In doing so it was 
shown that it is not only possible, but also yields good 
results regarding the test coverage and code quality, 
further substantiating the concept. 

However, there were also some open challenges 
and starting points for future research that became 
apparent during the project.  As indicated in the 
previous section, proper tooling is still an open issue 
that has plenty of potential for improvement. Further, 
some of the tests, like overfitting and underfitting, are 
not covered in the projects because they are not 
directly retrievable via AutoML responses. However, 
covering these types of tests adds more value to 
increase the quality, and in the future, research can be 
carried out to find a way to retrieve these values. For 
example, model hyperparameters-related information 
is logged in AutoML logs, and they can be analyzed 
to retrieve model training data. Finally, in this work, 
the feasibility of TDD is explored by applying it in 
the fraud detection domain. However, this approach 
for big data can be applied to other use cases so that 
more comprehensive insights can be gained, and 
collective insights will help for a better TDD process 
design. 
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