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Abstract: In this contribution, we propose a novel approach to automated fuzzy rule base generation based on underlying
observational data. The core of this method lies in adding information to a particular fuzzy rule in the form of
attached weight given as a value extracted from a relational data model. In particular, we blend two approaches
to receive particular models that overcome their specific drawbacks.

1 INTRODUCTION

Weighted fuzzy rules have been used intensively in
fuzzy modeling since the early days of the field.
Weights were applied to various parts of fuzzy rules:
to input variables, antecedents, consequences, or
whole rules; see, e.g., (Nauck, 2000; Ishibuchi and
Nakashima, 2001; Alcalá et al., 2003; delaOssa et al.,
2009). Learning techniques for weighted fuzzy rules
usually involve optimization methods such as neu-
ral networks, evolutional computing, or genetic algo-
rithms to find the best possible fuzzy rules together
with their associated weights. This typical approach
is repeated also in various recent works, e.g. (Bemani-
N. and Akbarzadeh-T., 2019; Shiny Irene et al., 2020;
Navarro-Almanza et al., 2022).

In this contribution, we focus on weighted fuzzy
rules formalized by the so-called normal forms intro-
duced in (Perfiljeva, 2004). Normal forms-based for-
malization covers the wide spectrum of the weighted
fuzzy rules mentioned above. Their relationship was
described and studied in (Daňková, 2007).

Furthermore, we deal with observed data that are
considered as positive ones, i.e. the given data are
the prototypical representatives of a relationship be-
tween input and output spaces. In the standard fuzzy
sets framework, where the scale for the truth values
is [0,1], we assign F(c,d) = 1 to the observed data
(c,d) and the relationship F .

Having positive sample data at our disposal, we
can freely build fuzzy rules for each data using
the sample-based generation of fuzzy rules provided
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in (Hájek, 1998) and called Hájek’s approach within
this paper.

At this stage, we can face the problem of a huge
number of rules that need to be further reduced for
a final computation efficiency and a rule-base trans-
parency. We propose to solve this problem by com-
bining the Hájek approach with normal forms, where
we can fix a number of fuzzy rules in the fuzzy rule-
base to keep a sample-based learned information as
small and compact as needed.

The paper is organized as follows. In Section 2,
we recall a formalization of the basic fuzzy relational
models from (Hájek, 1998) and provide some selected
properties. The normal conjunctive and disjunctive
norms are presented in Section 3 together with similar
results as in the preceding section. Next, in Section 4,
we introduce special normal forms based on positive
samples that blend the approach of Hájek and the nor-
mal forms and provide their basic selected theoretical
results. Finally, we summarize the results and propose
some future directions in Section 5.

2 SAMPLE-BASED FUZZY
RULES

As already stated in the Introduction, there is a
vast amount of methods for generating fuzzy rules.
Mostly, they can be characterized as the result of
expert knowledge, generated from observed data, or
their combination. A method based on observed data
formalized in (Hájek, 1998) automatically generates
a particular fuzzy rule using fuzzy similarity relations
for each input data. In the following, let us recall
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Hájek’s approach:

• Consider a complete residuated lattice of the form

L = ⟨L,&,→,∧,∨,0,1⟩,

with the lattice operations (∧,∨), the residuated
pair (&,→), the bottom and top elements 0 and 1,
respectively. Additionally, define

x ↔ y = (x → y)& (y → x).

• Let X1,X2 ̸= /0 and ≈ j be a similarity relation on
X j, j = 1,2, that is,

(x ≈ j x) = 1,
(x ≈ j y)≤ (y ≈ j x),

(x ≈ j y)& (y ≈ j z)≤ (x ≈ j z),

for all x,y,z ∈ X j.

• Let (ci,di) ∈ X1 × X2, for i ∈ I, where I =
{1,2, . . . ,n}.

• Moreover, let the following properties be valid for
a binary fuzzy relation F on X1 ×X2:

– Extensionality of F :

(x ≈1 x′)& (y ≈2 y′)& F(x,y)≤ F(x′,y′), (1)

for all x,x′ ∈ X1,y,y′ ∈ X2.
– Functionality of F :

(x ≈1 x′)& F(x,y)& F(x′,y′)≤ (y ≈2 y′), (2)

for all x,x′ ∈ X1,y,y′ ∈ X2.
– Positive samples of F :∧

i∈I

F(ci,di) = 1. (3)

• Define:

MamdF(x,y) =
∨
i∈I

(
(x ≈1 ci)& (y ≈2 di)

)
, (4)

RulesF(x,y) =
∧
i∈I

(
(x ≈1 ci)→ (y ≈2 di)

)
, (5)

for all x ∈ X1,y ∈ X2.
We call MamdF and RulesF relational data mod-
els.

Example 2.1. Consider the data given in Figure 1,
where X1 = [0,6] and X2 = [0,50], moreover, define

Sk(x,y) = 0∨ (1− k|x− y|),

for all x ∈ X1, y ∈ X2, k ∈ R.
Furthermore, let ≈1 ≡ S1.7,≈2 ≡ S0.2. Then the

relational The models MamdF in the standard alge-
bras of Łukasiewicz, Product and Gödel are shown in
Figures 2, 3, and 4, respectively. The relational model

RulesF in the standard algebras of Łukasiewicz alge-
bra is in Figure 5. Models RulesF for the remaining
algebras are omitted since their values are 0 nearly
everywhere.

But if we change ≈2 as follows: ≈2≡ S0.02, we
obtain relational models RulesF in the standard alge-
bras of Łukasiewicz, Product and Gödel as shown in
Figures 6, 7, and 8, respectively.

Figure 1: Input data.

Figure 2: MamdF for the input data from Figure 1 in
Łkasiewicz standard algebra.

Figure 3: MamdF for the input data from Figure 1 in the
Product standard algebra.
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Figure 4: MamdF for the input data from Figure 1 in Gödel
standard algebra.

Figure 5: RulesF for the input data from Figure 1
in Łukasiewicz standard algebra.

Figure 6: RulesF for the input data from Figure 1
in Łukasiewicz standard algebra with a finer similarity.

In (Hájek, 1998), we can find many interesting
properties, e.g.,

MamdF(x,y)≤ F(x,y), (6)

Figure 7: RulesF for the input data from Figure 1 in the
product standard algebra with a finer similarity.

Figure 8: RulesF for the input data from Figure 1 in Gödel
standard algebra with a finer similarity.

F(x,y)≤ RulesF(x,y), (7)∨
i∈I

(x ≈1 ci)
2 ≤ MamdF(x,y)↔ F(x,y), (8)

∨
i∈I

(x ≈1 ci)
2 ≤ F(x,y)↔ RulesF(x,y), (9)

∨
i∈I

(x ≈1 ci)
2 ≤ MamdF(x,y)↔ RulesF(x,y). (10)

for all x ∈ X1,y ∈ X2. Hence, MamdF is below F
and RulesF is above F . The quality of approxima-
tion is expressed here using the equivalence relation
↔, which is dual to pseudometric.

Due to Lemma 7.2.10, the relational data model
MamdF is extensional and functional. Contrary to
MamdF , the relational data model RulesF is not func-
tional (see Remark 7.2.11 in (Hájek, 1998)). How-
ever, it can be proved that RulesF is extensional.

Proposition 2.2. Let F,≈1,≈2 be as above.
Then the fuzzy relation RulesF is extensional.
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Proof. We have to prove the following inequality

(x ≈1 x′)& (y ≈2 y′)& RulesF(x,y)≤ RulesF(x′,y′),

for all x,x′ ∈ X1,y,y′ ∈ X2.
We start from the left-hand side of the above in-

equality:

(x ≈1 x′)&(y ≈2 y′)&
∧
i∈I

(
(x ≈1 ci)→ (y ≈2 di)

)
≤

(x ≈1 x′)& (y ≈2 y′)& [(x ≈1 ci)→ (y ≈2 di)] =

(x ≈1 x′)& [1 → (y ≈2 y′)]& [(x ≈1 ci)→ (y ≈2 di)]≤
(x ≈1 x′)& [(x ≈1 ci)→ ((y ≈2 y′)& (y ≈2 di))]≤

(x ≈1 x′)& [(x ≈1 ci)→ ((y′ ≈2 di)]

From the transitivity of ≈1, it follows

x ≈1 x′ ≤ (x′ ≈1 ci)→ (x ≈1 ci).

Thus, we obtain

(x ≈1 x′)& (y ≈2 y′)&
∧
i∈I

(
(x ≈1 ci)→ (y ≈2 di)

)
≤ [(x′ ≈1 ci)→ (x ≈1 ci)]& [(x ≈1 ci)→ ((y′ ≈2 di)]

≤ (x′ ≈1 ci)→ (y′ ≈2 di),

for all x,x′ ∈ X1,y,y′ ∈ X2 and i ∈ I. From this the
extensionality of RulesF follows directly.

3 WEIGHTED FUZZY RULES
FOR EXTENSIONAL FUZZY
RELATIONS

Unfortunately, Hájek’s approach without any further
fuzzy rule reduction method is suitable only for a
small number of data samples. One of the possible
solutions is to fix the number of rules and use quanti-
fiers of Fuzzy General Unary Hypotheses Automaton
(FGUHA) methods (Holeňa, 1998; Ralbovský, 2009)
(a generalization of the GUHA methods (Hájek and
Havránek, 1978)) to confirm or reject each particular
fuzzy rule designed. Examples of successful solutions
to real-world problems in various fields of vague na-
ture can be found in (Turunen, 2008).

In the subsequent section, we propose another
novel solution to the problem, where we add to each
fixed fuzzy rule a special weight based on the given
sample data. Since both relational models are exten-
sional, we can use the so-called normal forms intro-
duced in (Perfiljeva, 2004). First, recall the definition
of normal forms.
Definition 3.1. Let G be a fuzzy binary relation on
X1×X2, X1, X2, ≈1, ≈2 be as above, and p j ∈ X1,q j ∈
X2, for j ∈ J, where J = {1,2. . . . ,k}. Then

• The disjunctive normal form for G is defined as

DNFG(x,y) =∨
j∈J

(
(x ≈1 p j)& (y ≈2 q j)& G(p j,q j)

)
, (11)

for all x ∈ X1,y ∈ X2.
• The conjunctive normal form for G is defined as

CNFG(x,y) =∧
j∈J

(
((x ≈1 p j)& (y ≈2 q j))→ G(p j,q j)

)
, (12)

for all x ∈ X1,y ∈ X2.

Observe that the relational model MamdF can be
identified with DNFG, provided G(x,y) = F(x,y), for
all x ∈ X1,y ∈ X2, I = J, and (ci,di) = (pi,qi), for
all i ∈ I. An analogous observation cannot be made
for RulesF and CNFG. Because the relational model
RulesF is based on functionality, while CNFG is based
on extensionality.

The values G(p j,q j), j ∈ J serve as weights of
particular fuzzy rules. In fact, it works as some kind
of shift (and rotate) operator because for each fuzzy
rule in DNFG, it holds

(p j ≈1 x)& (q j ≈2 y)& G(p j,q j)≤ G(p j,q j), (13)

for all j ∈ J, x ∈ X1, y ∈ X2, and analogously, for each
fuzzy rule in CNFG, it holds

G(p j,q j)≤ (p j ≈1 x)&(q j ≈2 y)→G(p j,q j), (14)

for all j ∈ J, x ∈ X1, y ∈ X2. Roughly speaking, apply-
ing the weights to fuzzy rules as done in normal forms
gradually switches on or off the particular fuzzy rules.

Figures 9–14 demonstrate the behavior described
above. Figure 11 shows the aggregation of fuzzy sets
from Figures 9 and 10 in the Łukasiewicz algebra.
The weight 0.5 lowers the values of DNF below 0.5
as shown in Figure 12. Analogously, the same weight
rotates and shifts the values of DNF above 0.5, see
Figure 14. And Figure 13 demonstrates the duality of
DNF and CNF.

Figure 9: x ≈1 c.
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Figure 10: y ≈2 d.

Figure 11: (X ≈1 c) & (y ≈2 d) in Łukasiewicz standard
algebra.

Figure 12: (X ≈1 c)& (y ≈2 d)& 0.5 in Łukasiewicz stan-
dard algebra.

If G is an extensional binary fuzzy relation, then
the following inequalities hold; see (Perfiljeva, 2004):

DNFG(x,y)≤ G(x,y), (15)
G(x,y)≤ CNFG(x,y), (16)

Figure 13: (X ≈1 c)&(y≈2 d)→ 0 in Łukasiewicz standard
algebra.

Figure 14: (X ≈1 c)& (y ≈2 d)→ 0.5 in Łukasiewicz stan-
dard algebra.

∨
i∈I

[(ci ≈1 x)2 & (y ≈1 di)
2]≤ DNFG(x,y)↔ G(x,y),

(17)∨
i∈I

[(ci ≈1 x)2 & (y ≈1 di)
2]≤ CNFG(x,y)↔ G(x,y),

(18)

∨
i∈I

[(ci ≈1 x)2 & (y ≈1 di)
2]≤

DNFG(x,y)↔ CNFG(x,y), (19)

for all x ∈ X1,y ∈ X2
The above-listed inequalities seem to be analo-

gous to the results of Hájek’s but they are more gen-
eral. Since the fuzzy relation G is not functional, we
have to lower estimate the above equivalences by the

A Novel Approach to Weighted Fuzzy Rules for Positive Samples

213



respective degrees of similarity in domain X2. How-
ever, in the case of Hájek’s approach, it is sufficient
to take into consideration only the respective simi-
larities in the domain X1. More properties on ap-
proximate reasoning with normal forms can be found
in (Daňková, 2007).

4 WEIGHTED FUZZY RULES
FROM THE RELATIONAL
DATA MODELS

Obviously, normal forms cannot be applied directly
for given input data. Naturally, the question arises of
how to obtain weights inside normal forms based on
observational positive data? In this section, we pro-
pose a particular solution to this question.

First, let us summarize the requirements:
• ≈ j be a similarity relation on X j, j = 1,2.

• (ci,di) ∈ X1 ×X2, for i ∈ I.

• (p j,q j) ∈ X1 ×X2, for j ∈ j.

• F be a binary fuzzy relation on X1 ×X2.

• D = {(ci,di)}i∈I be a set of positive data, that is,
F(ci,di) = 1 for all i ∈ I.
Notice that (ci,di), for i ∈ I are input data for

Mamd and Rules, while (p j,q j), j ∈ J are nodes in
which we construct normal forms.

As shown in Section 2, the relational data models
Mamd and Rules given by (4) and (5), respectively,
are extensional; consequently, all the results valid for
the normal forms pass to the following normal forms:

DNFMamdF , (20)
DNFRulesF , (21)
CNFMamdF , (22)
CNFRulesF , (23)

that will be called weighted fuzzy rules for positive
samples.

In the following, we list the valid properties for the
introduced weighted fuzzy rules, i.e., the particular
normal forms, derived from (15)–(19).

DNFMamdF (x,y)≤ MamdF(x,y), (24)
MamdF(x,y)≤ CNFMamdF (x,y), (25)

DNFRulesF (x,y)≤ RulesF(x,y), (26)
RulesF(x,y)≤ CNFRulesF (x,y), (27)

∨
j∈J

(x ≈1 p j)
2 & (y ≈2 q j)

2 ≤

DNFMamdF (x,y)↔ CNFMamdF (x,y). (28)

∨
j∈J

(x ≈1 p j)
2 & (y ≈2 q j)

2 ≤

DNFRulesF (x,y)↔ CNFRulesF (x,y). (29)

for all x ∈ X1,y ∈ X2.
Moreover, if F is extensional and functional, then

we can use Hájek’s results (6)–(10), and we obtain:

DNFMamdF (x,y)≤ F(x,y), (30)
F(x,y)≤ CNFRulesF (x,y), (31)

∨
j∈J

(x ≈1 p j)
2 & (y ≈2 q j)

2 &
∨
i∈I

(x ≈1 ci)
2 ≤

DNFMamdF (x,y)↔ F(x,y), (32)

∨
j∈J

(x ≈1 p j)
2 & (y ≈2 q j)

2 &
∨
i∈I

(x ≈1 ci)
2 ≤

F(x,y)↔ CNFRules(x,y). (33)

for all x ∈ X1,y ∈ X2.
Many more interesting results on approximate in-

ference with DNFMamdF and CNFMamdF are obtained
directly from the results on normal forms published
in (Daňková, 2007).

Let us provide an illustrative example for the data
given in Figure 15 and the weighted fuzzy rules for
positive samples of the form DNFMamdF . We consider
11 nodes

{(pi,qi)}10
i=0 = {(5.4 · i, i2)}10

i=0.

The resulting DNFMamdF for the three basic algebras
are shown in Figures 16–18. The respective weights
are as follows:

LL LP LG

0.81 0.81 0.81
0.91 0.91 0.93
0.95 0.96 0.96
0.94 0.94 0.96
0.86 0.87 0.93
0.99 0.99 0.99
0.84 0.85 0.92
0.92 0.92 0.95
0.9 0.9 0.94
0.8 0.81 0.87

0.99 0.99 0.99

where LL denotes Łukasiewicz algebra, LP the prod-
uct algebra, and LG the Gödel algebra.

5 CONCLUSION

In this contribution, we presented a novel approach
to the construction of weighted fuzzy rules based
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Figure 15: Input data.

Figure 16: DNFMamdF in Łukasiewicz algebra.

Figure 17: DNFMamdF in Product algebra.

on positive samples. We combine Perfilieva’s nor-
mal forms and the relational data models proposed
by Hájek. It allows us to fix a number of weighted
fuzzy rules and overcome the problem of a huge un-
clear fuzzy rule basis. Additionally, all theoretical re-
sults known in both approaches are applicable for the
special normal forms, too, as was presented some se-
lected results in the preceding section.

In this phase of research, only theoretical results

Figure 18: DNFMamdF in Gödel algebra.

are at the disposal. Therefore, it is now the next
step to test the proposed method. Clearly, the num-
ber of weighted fuzzy rules can be optimized as well
as the position of nodes in which the special normal
forms will be constructed. Intuitively, in the case
of DNFMamdF ,DNFRulesF , the nodes (p j,q j), j ∈ J
closer to the data points (ci,di), i ∈ I will propagate
a better approximation in the sense of the degree of
equivalence. In contrast to the previous fact, the more
distant the nodes are from the given data in CNFMamdF
and CNFRulesF , the better the approximation (higher
degree of equivalence).
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