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Abstract: Quadratic Unconstrained Binary Optimization (QUBO) has become an important unifying model for formu-
lating combinatorial optimization problems. Since QUBO is NP-hard, it is common to apply heuristics to
them. Although a wider range of heuristics have been applied to QUBOs in the past, high performing QUBO
solvers using specialized hardware have been of interest in more recent years. These solvers use local search
algorithms such as Simulated Annealing, Quantum Annealing and Tabu Search to improve solution quality, but
few also include global search methods to explore the solution space. Since research around global search for
QUBO solvers is scarce, in this work we compare different variants implemented within a framework known
as scatter search. We compare two global search methods, both used to generate new solutions from known
solutions. The first method is path relinking which has been shown to deliver the best results in the literature
for hard QUBO problems when used in scatter search. The second method is uniform crossover and is widely
used in the field of Evolutionary Algorithms (EAs). We show that better performance can be achieved using
path relinking compared to uniform crossover on knapsack problem instances.

1 INTRODUCTION

Methods for solving combinatorial optimization prob-
lems have been of interest for many decades. These
problems occur in many real-world scenarios such
as vehicle routing (Toth and Vigo, 2001), synthetic
biology (Naseri and Koffas, 2020) and production
scheduling (Moreno et al., 2010). In classical oper-
ations research, many problem representations (e.g.
permutation, binary and integer vector) are used to
solve these problems. In more recent years, Quadratic
Unconstrained Binary Optimization (QUBO) prob-
lems have become a widely used model for repre-
senting well-known combinatorial optimization prob-
lems to make techniques from related fields applica-
ble. They are defined as

min
x∈{0,1}n

xT Qx =
n

∑
i=1

i

∑
j=1

qi jxix j (1)

where Q ∈ Rn×n is a symmetric matrix. There ex-
ist embeddings for many classical combinatorial op-
timization problems (Lucas, 2014). Because of their
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similarity to the Ising Model (Cipra, 1987), QUBO
formulations are often used to solve problems on
Ising machines such as D-Wave’s Quantum Annealer
(Johnson et al., 2011) and Fujitsu’s Digital Annealer
(Hiroshi et al., 2021). These solvers can outperform
many classical algorithms implemented on general-
purpose computers (Matsubara et al., 2020; Aramon
et al., 2019; Ayodele, 2022). Given their different ar-
chitecture, appropriate algorithms are needed to uti-
lize their unique properties.

This work contributes to research focused on cre-
ating effective algorithms for combinatorial optimiza-
tion problems represented as QUBO. We make use of
scatter search which has shown to present promising
performance (Samorani et al., 2019). Two variations
of it are compared to each other. One uses path relink-
ing, the other employs uniform crossover. Analysis
is done using knapsack problem instances. Time-to-
solution is considered for small problems. Solution
quality after a fixed time limit is taken into account
for larger instances.

The rest of this paper is structured as follows. A
review of literature is presented in Section 2. The
problem formulations are presented in Section 3. We
describe the algorithms used in this study in Section 4.
Used problem sets and experimental settings are pre-
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sented in Section 5. Results are analyzed in Section 6.
Finally, conclusions and further work are discussed in
Section 7.

2 PREVIOUS WORK

2.1 Fast Local Neighborhood
Evaluation

First of all, cost evaluations of single flip neighbours
of a solution can be simplified. That is, given a cur-
rent solution x ∈ {0,1}n, the cost of every x′ ∈ {0,1}n

which differs from x in exactly one entry can be eval-
uated without computing x′T Qx′ for every neighbor
(Glover and Hao, 2010). If we know the current cost
xT Qx , we can efficiently compute the cost of any sin-
gle flip neighbour x′ ∈ N(x). Let x and x′ differ at
index i ∈ {1, ...,n}, then E(x′) = xT Qx+∆i where ∆i
is given by

∆i = (1−2xi) ·qii +
n

∑
j=1, j 6=i

x j=1

qi j. (2)

More recently neighborhood evaluation was im-
proved with hardware-accelerated algorithms. GPUs
can be used in parallel to reduce the computational
cost for neighborhood evaluation to O(1) (Yasudo
et al., 2020). Fujitsu’s Digital Annealer uses custom
CMOS hardware to consider a flip of each variable
in parallel and thereby increase the acceptance rate
of new solutions in the simulated annealing process
(Aramon et al., 2019).

2.2 Metaheuristics for QUBO Problems

Although exact solving methods for QUBOs exist,
they are often unsuitable for large instances. Instead,
heuristic methods have been developed to find good
solutions within a reasonable amount of computa-
tion time (Kochenberger et al., 2014). Most popu-
lar methods tend to utilize either Simulated Anneal-
ing (SA) (Alkhamis et al., 1998) or Tabu Search
(TS) (Glover et al., 1998) as local search technique.
Based on that, you can distinguish between local
search based methods (e.g. Multi-Start Tabu Search
(Palubeckis, 2004)) and population based ones (e.g.
scatter search (Amini et al., 1999), Memetic algo-
rithms (Merz and Katayama, 2004)). An extensive
comparison of the most popular heuristic algorithms
for QUBO has been conducted in (Dunning et al.,
2018).

Heuristics are designed to find good-enough fea-
sible solutions within a limited amount of time when
the use of an exact solver is impractical because of the
complexity of the problem. Metaheuristics are more
general algorithms that can be applied to a broader
range of problems. They provide a high-level frame-
work to combine strategies and allow for a flexi-
ble foundation to find good optimization algorithms
(Sorensen et al., 2017). Depending on the class of
problem that is to be solved, metaheuristics can be
tailored to obtain solutions as fast as possible. Meta-
heuristics applied to QUBO formulations of combi-
natorial optimization problems include Ant Colony
Optimization (ACO) (Cao et al., 2018), Differential
Evolution (DE) (Deng et al., 2020), Estimation of
Distribution Algorithm (EDA) (Soloviev et al., 2021),
Genetic Algorithm (GA) (Supasil et al., 2021), Parti-
cle Swarm Optimization (PSO) (Fujimoto and Nanai,
2021), and scatter search (Samorani et al., 2019).
Scatter search has been shown to produce competitive
results for QUBO problems in (Samorani et al., 2019;
Wang et al., 2012), which is why we use it in this
study. Like many other evolutionary algorithms, scat-
ter search uses the concept of creating an offspring
solution from a set of parent solutions. These mech-
anisms are referred to as crossover methods or com-
bination methods. They are particularly used in GA,
DE and scatter search.

Uniform Crossover. Uniform crossover has been
reported as one of the most successful combination
methods for GAs (Picek et al., 2011; Umbarkar and
Sheth, 2015). It is still recognized as one of the
most powerful crossover operators in recent publica-
tions (Zainuddin et al., 2020). Although it has also
been used within the scatter search framework be-
fore (Hakli and Ortacay, 2019), its effectiveness for
QUBO problems in that setting is yet to be assessed.

Path Relinking. Path relinking is another combina-
tion method and has been successfully employed with
scatter search applied to QUBO problems. Differ-
ent variations of path relinking were used in (Wang
et al., 2012), namely greedy path relinking and ran-
dom path relinking. They only differ slightly and both
were shown to have a similar impact on performance
so we will restrict ourselves to greedy path relinking
for the purpose of this paper and only refer to it as
path relinking. The impact of parent selection, that is,
which solutions to combine through path relinking,
has been studied by some. A more sophisticated par-
ent selection based on clusters in the reference set was
used in (Samorani et al., 2019) to prevent redundant
combinations which produce similar offspring. A hy-
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brid approach in (Glover and Hao, 2010) utilized Tabu
Search within the evolutionary algorithm framework
and chose parents to perform path relinking based on
their quality and distance.

Both methods generate children which are simi-
lar to their parents. Path relinking relies on multiple
function evaluations for each step. Uniform crossover
randomizes bits and is therefore able to combine so-
lutions much faster. Given the reliable performance
of path relinking with scatter search for QUBO prob-
lems as well as the competitive performance of uni-
form crossover in evolutionary algorithms applied to
binary problems, this work seeks to address the fol-
lowing question. If given the same computation time,
will scatter search perform better using path relinking
or uniform crossover?

2.3 Automated Parameter Optimization

When comparing different optimization algorithms,
benchmark results should not be biased by minor im-
plementation details or parameter tuning. Although
this is often discussed in literature (Beiranvand et al.,
2017; Eggensperger et al., 2019), many publications
on Ising machines and QUBO solvers do not de-
scribe their parameter selection process sufficiently
(Samorani et al., 2019; Şeker et al., 2020). Still,
parameter settings have shown to be an important
factor for metaheuristics (Huang et al., 2019). For
this reason, many hyper-parameter frameworks exist
for finding good sets of parameters for optimization
algorithms e.g. Autotune (Koch et al., 2018), Hy-
peropt (Bergstra et al., 2015), Irace (López-Ibáñez
et al., 2016) and more recently proposed Optuna (Ak-
iba et al., 2019). Optuna is an open source software
which uses Bayesian optimization to suggest a set of
parameters that lead to more promising performance
of the algorithm. Optuna has been designed for better
functionality and simplicity compared to other exist-
ing methods (Akiba et al., 2019). In this work, Op-
tuna has been used to derive sets of parameters that
lead to more promising results in the scatter search
algorithm. Sets of parameters derived are specific to
each solution combination method and problem size
(e.g. number of knapsack items). Details are provided
in Section 5.

3 PROBLEM DEFINITION

0-1 knapsack problems are naturally represented with
binary variables. The knapsack problem consists of
n items and a constraint. Each item i is defined by a
profit pi ∈ N and weight wi ∈ N. The aim is to find

a subset of items that lead to maximum profit without
exceeding the capacity of the knapsack W . We negate
the profits to obtain a minimization problem which is
more common to use.

min
x∈{0,1}n

f (x) =−
n

∑
i=1

pi xi (3)

subject to

(
n

∑
i=1

wixi

)
≤W, xi ∈ {0,1} (4)

In the QUBO formulation, slack variables are used
to encode the weight of a solution (Lucas, 2014). In-
stead, we will use a non-quadratic constraint function
g(x) and multiply it by a penalty weight α (Eq. (5)).
The total energy of said system will then be formed
by the total knapsack cost c(x) := f (x) from (3) and
the weighted penalty.

min
x∈{0,1}n

E(x) = c(x)+α ·g(x) (5)

where g(x) = max{
n

∑
i=1

wixi−W,0} (6)

Eq. (6) has been defined such that g(x) = 0 holds
for every feasible solution x but g(x) increases ac-
cording to the degree of infeasibility. Furthermore we
choose α = ∑

n
i=1 pi to ensure that no infeasible solu-

tion has a lower cost than a feasible one. This formu-
lation is similar to the Binary Quadratic Problem for-
mulation of the Digital Annealer (Hiroshi et al., 2021)
where inequality constraints can be defined without
using slack variables. Ising machines are physically
bound to a maximum number of variables which is
why slack variables are often not an appropriate tool
for larger problems (Yonaga et al., 2020). We use
this formulation to create a conventional setting and
align with mappings that are used in state-of-the-art
solvers. While this particular problem does not re-
quire a QUBO formulation (Eq. (3) does not contain
a quadratic term) we can use the same formulation to
compare combination methods for other problem sets.
The scatter search algorithm presented in this study is
therefore directly applicable to any combinatorial op-
timization problem formulated as QUBO regardless
of the presence or absence of quadratic terms.

4 ALGORITHM

4.1 Scatter Search Framework

The main idea of scatter search is as follows. First,
a set of elite solutions, called RefSet, is generated.
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Algorithm 1: Scatter Search Iteration Loop.

Input: energy function f , set of elite solutions RefSet, index tuples of previously combined solutions
UsedParents, number of children to consider as candidates K, minumum distance for updates
MinDist

Output: best found solution x∗

1 while stopping criteria not met do
2 if unused parents available then
3 Choose parents Pi,Pj ∈ RefSet, i 6= j
4 UsedParents.insert((i, j))
5 Children←− Combine(Pi, Pj)
6 Candidates←− select K best solutions from Children
7 Candidates←− Improve(Candidates)
8 for Candidate in Candidates do
9 if f (Candidate)< min f (RefSet) or

10 (Distance(Candidate,RefSet) ≥MinDist and f (Candidate)< max f (RefSet)) then
11 Replace worst elite solution xk with Candidate
12 Remove all entries containing k from UsedParents
13 x∗←− argmin f (RefSet)
14 else
15 RefSet←− Flush(RefSet)

To that end, a larger initial population is initialized.
Then, an update method is called to populate the ref-
erence set with elements from the initial population.
From then on, the reference set is maintained and up-
dated with newly generated solutions in an iterative
manner. Figure 1 illustrates the entire scatter search,
including the initial population step. Algorithm 1
shows the iteration loop, without the initial popula-
tion step. We will give a more detailed description of
our implementation for each method. Parameters are
written in italic and discussed in Section 5.

4.2 Implementation Details

4.2.1 Initial Population

A population of P random binary vectors is created.
An improvement method (Section 4.2.4) is applied to
all of them. Then, the reference set update method
is invoked with every item in the population. The
process is repeated until the reference set contains
RefSize items.

4.2.2 Subset Generation

kParents pairs of parents are chosen at random (Line
3 of Algorithm 1). It is made sure that previously cho-
sen pairs are not selected again. If there are no pairs
left to choose we flush the reference set as described
in Section 4.2.7 (Line 15 of Algorithm 1).

4.2.3 Solution Combination

Given multiple pairs of parents, a combination
method (see below) is applied once to each pair to
generate children (Line 5 of Algorithm 1). The im-
provement method is only used on the best Consid-
erK children; the rest is neglected. Afterwards the
reference set update is called with every improved so-
lution.

Path Relinking. Starting from Pi, a restricted local
search is performed to find a direct path to Pj. Moves
are selected in a greedy manner and only variables in
which Pi differs from Pj are allowed to be flipped. We
make sure no bit is flipped more than once. This way,
we generate a set of solutions along a path from Pi to
Pj. The length of that path is equal to the Hamming
distance between Pi and Pj. The same procedure is
repeated to find a path from Pj to Pi. We ignore solu-
tions which only differ from either parent in less than
PathMinDist bits and return the set of solutions along
both paths.

Uniform Crossover. Given two parents Pi,Pj, a
new solution x is generated by choosing each variable
randomly from each parent.

xk ∈R {Pj[k],Pj[k]}, k = 1, ...,n (7)

In practice, we only need to consider variables in
which Pi and Pj differ and since x is a binary vector
we can simply randomize these entries. This combi-
nation method involves less computation steps than
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Figure 1: A flow chart of scatter search. Blue points represent solutions. Blue borders indicate methods that can be executed
with multiple inputs in parallel. The number of displayed solutions are chosen for illustration purposes only and vary in
practice.

path relinking but only produces one child. A child
generated by uniform crossover can be thought of as
a random item chosen from all solutions on shortest
paths between the parents.

4.2.4 Improvement Method

We employ Tabu Search as improvement method
(Line 7 of Algorithm 1). It evaluates a 1-flip neigh-
borhood and then chooses the next move in a greedy
manner. The last carried out moves are forbidden
for the next TabuTenure number of iterations. Tabu
Search returns the best soltution found after Itera-
tionCutoff moves without any improvement.

4.2.5 Reference Set Update

A candidate is compared against elite solutions from
the reference set. It is accepted if it has a Hamming
distance of at least MinDist from every elite solution
and its cost is lower than the worst item in the refer-
ence set (Lines 10 and 10 of Algorithm 1). Said item
will be replaced in case of a successful update. An
aspiration criterion allows an update if the distance
condition is not met but the candidate’s cost is lower
than the best known solution so far.

4.2.6 Multiprocessing

Some of the above-mentioned tasks are independent
of each other and can be performed in parallel. When
appropriate we use Python’s multiprocessing
package to

• generate random solutions for initial population,

• improve a set of candidates,

• combine different pairs of parents.
There is a maximum of MultiMax worker processes
in a pool at any given time. Jobs are completed in an
asynchronous manner and subsequent actions await
all results before they continue.

4.2.7 Flushing the Reference Set

It is possible that every combination of elite solutions
has been combined without any successful update to
the reference set. This is not a stopping criterion for
our algorithm. Instead, we flush the reference set
(Line 15 of Algorithm 1). The best known elite solu-
tion is maintained while the others are replaced with
newly generated and improved solutions. The process
is very similar to how the initial population is built.

4.2.8 Stopping Criteria

We return the best known solution after a fixed time
limit or if a given solution quality is met (i.e. a target
energy value is reached).

5 EXPERIMENTAL PROTOCOL

The experiments were performed on Ubuntu 20.04.4
LTS with Python 3.7.11 and an AMD Ryzen 9 3950X
CPU.
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Table 1: List of Parameters.

Name Description

P initial population size
RefSize reference set size
TabuTenure (Init) number of iterations a move is tabu for initial population
IterationCutoff (Init) maximum number of TS iterations without update for initial population
MinDist minimum distance of candidate to reference set
kParents maximum combinations in each iteration
PathMinDist minimum distance from either parent to be considered as candidate
ConsiderK number of best children chosen as candidates
TabuTenure (Comb) number of iterations a move is tabu for candidate improvement
IterationCutoff (Comb) maximum number of TS iterations without update for candidate improvement
MultiMax maximum number of worker processes in a pool

5.1 Parameters

Table 1 lists all parameters. We use Optuna (Akiba
et al., 2019) to find good parameter settings for each
combination method. Optuna iteratively samples con-
figurations from a given parameter space and evalu-
ates them. Using this data, it estimates promising val-
ues for each parameter and decides which configura-
tion to try out next. We set a fixed time limit of 6 hours
for parameter optimization. Performance is evaluated
on a subset of two instances with one run per instance
for practical reasons. The time limit for each instance
was 5 minutes. Each trial with a new configuration
should not take too long on its own, otherwise Optuna
will not be able to sufficiently explore the parameter
space. A shorter optimization period would make it
more likely to distort the data through very good/bad
configurations found by chance. We tried to minimize
this effect through a long optimization phase within
practical limits. Two sets of parameters are used for
Tabu Search. One for the initial population step and
another one when it is used as improvement method
for new candidates. This way, Optuna will be able to
balance the intensity of each improvement phase.

5.2 Datasets

The knapsack instances were taken from (Pisinger,
2005). There are different groups of 1-dimensional
knapsack instances. We use weakly correlated in-
stances with an item count of n = 50,100,200,500.
Despite its name, this type of knapsack problem has
a very strong correlation between profit and weight
of an item which makes it realistic. The return of an
investment is proportional to the sum invested within
some small variations in most real world applications
(Pisinger, 2005).

5.3 Benchmarks

The aim of this work is not to be competitive with
other state-of-the-art implementations but to make a
comparison of combination methods for the scatter
search algorithm. Python alone is reason enough to
expect better performance from other algorithms im-
plemented in faster languages like C++. We refer
to (Wang et al., 2012) for an extensive comparison
of path relinking with several state-of-the-art alterna-
tives on random QUBO and MaxCut problems where
it was found to be very effective. For this reason, we
only consider relative performance in this work.

The experiments were conducted as follows. Pa-
rameter optimization was done separately for each
problem size. The best configuration found was then
used to measure performance. 5 problem instances
per size were each tackled 5 times. Runs were initial-
ized with different random seeds. The time limit per
run was 5 minutes.

6 RESULTS AND DISCUSSION

Benchmark results are presented in Table 2. Instance
filenames are listed alongside their number of knap-
sack items and the combination method in the first
three columns. Columns ‘mean time’ and ‘std time’
respectively show mean and standard deviation of the
time to reach an optimal solution. We also con-
sider the percentage of the optimal objective value
found within the time limit. Columns ‘mean pct’ and
‘std pct’ respectively show its mean and standard de-
viation. We additionally report the average time to
reach 100%, 99%, 95% and 90% of the optimal ob-
jective in the last four columns. These averages only
consider runs which reached the target. Although a
time limit of 5 minutes was set for each individual run
of the algorithm, it was possible to exceed this limit

ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications

138



by up to 2 seconds due to implementation limitations.
Uniform crossover repeatedly exhibits extremely

poor performance on two out of five of the smallest in-
stances. Figure 3 shows that this is consistent across
multiple runs on the same problem. Path relinking
on the other hand shows less variance and outper-
forms uniform crossover on all but one instance with
50 knapsack items. It should be noted that uniform
crossover arrives considerably faster at suboptimal so-
lutions (90%, 95%) but fails to maintain its conver-
gence rate. The same can be observed for larger in-
stances. Figure 2 shows that path relinking scales bet-
ter with problem size. The difference is already ap-
parent for 200 knapsack items but is more significant
for 500 items. Solution quality for path relinking on
these problems is more than 2.5% higher on average
at the end of our 5-minute time limit.

Regardless of the combination method, problem
instances vary significantly in their difficulty. Per-
formance data on files knapPI 2 100 1000 2 and
knapPI 2 100 1000 4 illustrates this point very well.
The first problem was solved by both algorithms in
less than 4 seconds on average while the latter was
not solved within 5 minutes in any of the 10 runs.
There also seem to be a few instances which are es-
pecially unfavorable for a particular method but there
was only one such example (knapPI 2 100 1000 1)
for path relinking in our dataset.

Interestingly, a reference set with only two so-
lutions is found to be ideal for path relinking. To-
gether with the flush functionality described in sec-
tion 4.2.7 it maintains the best known solution and ex-
plores the solution space along paths to random new
points. This is true independent of the problem size.
Optuna always found a reference set of size two to be
the best. Uniform crossover on the other hand tends
to work best with small reference sets between two
and five solutions and does not utilize local search as
much. Instead, it rapidly combines the given set of
elite solutions in order to improve them. This is feasi-
ble for small knapsack problems where the solutions
space is not as large and can be explored in this fash-
ion within a reasonable amount of time. However, it
does not scale well with larger solution spaces.

Our results suggest that path relinking can explore
the solution space more efficiently and is able to reach
better solutions within the same time limit. This is
despite its higher cost per combination step. Uniform
crossover converges fast and is able to quickly achieve
mediocre solutions but fails to strategically combine
found solutions to effectively promote exploration.

Figure 2: Percentage of optimum energy reached within a
time limit of 5 mins. Each point refers to one run. Points
in the lower right of the plot correspond to a better perfor-
mance of path relinking over uniform crossover.
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Figure 3: Time-to-solution for knapsack instances with 50
items. Each point corresponds to one run. Filenames are
truncated for readability.

7 CONCLUSION AND FURTHER
WORK

This work presents a scatter search algorithm for solv-
ing QUBO formulations of optimization problems. It
features a method of combining local optimal solu-
tions to generate new offspring solutions. We com-
pared two such methods, namely path relinking and
uniform crossover. The approach of path relinking
was shown to outperform uniform crossover in this
setting when applied to the 1-dimensional knapsack
problem. Our results suggest that this will also be the
case for other optimization problems where uniform
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Table 2: Comparing path relinking and uniform crossover in scatter search algorithm: mean and standard deviation percent-
age optimal cost, mean and standard deviation execution time and mean time to reach 100%, 99%, 95% and 90% of the
optimal cost within 5 minutes stopping criteria. Combination method with superior performance for each problem instance is
highlighted in bold.

size mean pct std pct mean time std time tt 100 tt 99 tt 95 tt 90
filename method

knapPI 2 50 1000 1 path relinking 50 100.00 0.00 3.65 2.43 3.63 2.42 0.99 0.62
uniform crossover 50 100.00 0.00 50.86 46.01 50.84 28.38 0.63 0.37

knapPI 2 50 1000 2 path relinking 50 100.00 0.00 4.03 3.01 4.01 4.01 1.29 0.72
uniform crossover 50 100.00 0.00 1.88 3.20 1.86 1.86 0.35 0.35

knapPI 2 50 1000 3 path relinking 50 100.00 0.00 5.56 3.94 5.46 5.46 0.74 0.47
uniform crossover 50 100.00 0.00 26.10 24.17 26.08 26.08 0.29 0.22

knapPI 2 50 1000 4 path relinking 50 100.00 0.00 1.30 0.59 1.27 1.13 0.54 0.43
uniform crossover 50 100.00 0.00 6.91 5.98 6.89 0.30 0.23 0.23

knapPI 2 50 1000 5 path relinking 50 100.00 0.00 1.49 1.34 1.48 1.48 0.70 0.49
uniform crossover 50 100.00 0.00 2.16 2.87 2.13 2.13 0.64 0.31

knapPI 2 100 1000 1 path relinking 100 100.00 0.00 27.06 28.18 27.04 8.47 3.42 3.42
uniform crossover 100 100.00 0.00 5.99 7.11 5.99 4.88 1.45 1.45

knapPI 2 100 1000 2 path relinking 100 100.00 0.00 3.33 0.58 3.32 3.32 3.32 3.32
uniform crossover 100 100.00 0.00 1.68 0.15 1.67 1.67 1.67 1.67

knapPI 2 100 1000 3 path relinking 100 99.61 0.36 251.10 109.59 55.05 120.14 3.51 3.51
uniform crossover 100 99.07 0.53 259.64 90.63 97.50 111.26 1.76 1.76

knapPI 2 100 1000 4 path relinking 100 99.52 0.21 300.11 0.01 - 67.63 2.65 2.65
uniform crossover 100 99.52 0.21 300.13 0.06 - 178.17 1.64 1.64

knapPI 2 100 1000 5 path relinking 100 98.97 0.66 300.08 0.05 - 136.54 5.17 3.37
uniform crossover 100 98.68 0.33 300.16 0.14 - 217.38 7.56 1.50

knapPI 2 200 1000 1 path relinking 200 99.79 0.29 266.28 40.36 243.69 132.43 30.51 4.71
uniform crossover 200 99.58 0.36 300.25 0.14 - 157.02 44.03 44.03

knapPI 2 200 1000 2 path relinking 200 99.64 0.00 300.19 0.13 - 59.64 6.45 6.45
uniform crossover 200 97.75 0.51 300.19 0.17 - - 57.74 48.19

knapPI 2 200 1000 3 path relinking 200 97.11 0.19 300.22 0.28 - - 37.12 5.94
uniform crossover 200 97.23 0.77 300.21 0.06 - - 71.26 62.16

knapPI 2 200 1000 4 path relinking 200 99.12 0.25 300.13 0.07 - 211.29 98.64 6.52
uniform crossover 200 95.74 0.73 300.15 0.13 - - 155.22 56.36

knapPI 2 200 1000 5 path relinking 200 97.56 0.56 300.14 0.11 - - 153.32 118.42
uniform crossover 200 95.31 0.54 300.18 0.13 - - 211.04 44.25

knapPI 2 500 1000 1 path relinking 500 96.22 0.80 300.78 0.41 - - 100.99 100.91
uniform crossover 500 93.11 0.87 300.12 0.04 - - - 26.65

knapPI 2 500 1000 2 path relinking 500 95.37 0.77 300.15 0.09 - - 271.37 183.04
uniform crossover 500 91.38 0.17 300.18 0.09 - - - 27.78

knapPI 2 500 1000 3 path relinking 500 95.38 0.00 301.12 1.41 - - 262.32 31.98
uniform crossover 500 92.25 0.15 300.15 0.06 - - - 24.51

knapPI 2 500 1000 4 path relinking 500 92.55 0.00 301.83 1.61 - - - 253.97
uniform crossover 500 89.96 0.28 300.22 0.08 - - - 123.35

knapPI 2 500 1000 5 path relinking 500 92.08 0.00 300.10 0.05 - - - 259.19
uniform crossover 500 90.83 0.32 300.11 0.05 - - - 126.63

crossover is unlikely to scale well with the number of
variables.

There are multiple topics for future consideration.
First of all, this comparison can be made with differ-
ent problem formulations. The penalty coefficient α

from our energy function in equation (6) is a vibrant
topic in research (Diez Garcı́a et al., 2022; Verma
and Lewis, 2020). It would be interesting to see how
the two combination methods compare with better ad-
justed penalty coefficients. The effectiveness of the
combination methods for other optimization problems
would also be a topic of interest. The Tabu Search
could be expanded to employ k-flip moves (Chen,
2015) and make the proposed algorithms more appli-
cable to permutation problems. QUBO formulations
where the penalty term g(x) defined in equation (5) is

quadratic but no slack variables are needed (e.g. TSP
formulation described in (Lucas, 2014)) could use the
same energy function but utilize the fast flip-cost eval-
uation from (2). Other variations of scatter search
could also result in better performance. Since uniform
crossover is just one popular combination method
among many, other methods such as n-point crossover
or reduced surrogate crossover could be considered in
the same way. Parameter optimization could also be
greatly improved. Trial times present a challenge and
it is unclear how a different number of solver runs per
trial would have affected our results. Pruning and rac-
ing techniques could be applied to stop less promising
trials early and achieve better performance (Birattari,
2009).
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