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Abstract: Today’s smartphones have more and more features that so far were only assigned to personal computers. 
Every year these devices are composed of better and more efficient components. Everything indicates that 
modern smartphones are replacing ordinary computers in various activities. High computing power is required 
for tasks such as image processing, speech recognition and object detection. This paper analyses the 
performance of the OpenCL (Open Compute Language) environment on mobile devices, which is a library 
dedicated to high-speed parallel computing. This paper examines how smartphones can access a library that, 
as it turned out, is not officially supported on the Android platform, and briefly describes the evaluated library. 
As a part of the study, this API (Application Programming Interface) was tested in the context of the achieved 
computing power, memory flow rate, speed of matrix multiplication and the possibility of processing the 
image from the camera in real-time. The obtained results were presented in graphical format, described and 
commented. We also provide an insight on applications that use this API for teaching deep neural networks, 
image processing, etc. 

1 INTRODUCTION 

OpenCL (Open Compute Language) is a standard 
created by the Khronos group (Munshi, 2009), used 
to write programs that can be executed on various 
platforms such as CPU (Central Processing Unit), 
GPU (Graphics Processing Unit) or FPGA (Field 
Programmable Gate Array). The OpenCL 
specification defines an interface in C++ that allows 
an application to be programmed to execute specific 
code on a selected device (Seo et al., 2011; 
Jääskeläinen et al., 2015; Aydonat et al., 2017). 

The OpenCL standard is mainly used for parallel 
computations such as vector math and image 
processing (Tay, 2013; Fang et al., 2020). The device 
manufacturer is responsible for the implementation of 
the driver that issues the API (Application 
Programming Interface), according to the version 
defined in the specification. 

Due to the fact that the standard is open and most 
manufacturers have its implementation, it is possible 
to create a code that can be run regardless of the 
architecture or manufacturer of the central or graphics 
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processor. This is a major advantage compared to, 
e.g., CUDA (Compute Unified Device Architecture), 
which is an interface only implemented by NVidia 
(Karimi et al., 2010; Fang et al., 2011). The OpenCL 
standard is continuously developed and modified 
(Keryell et al., 2015). As a result, the API is defined 
in several versions. 

While performing tests, the latest version of the 
specification was version 3.0. Of course all versions 
are backwards compatible. Additionally, there are 
extensions, such as cl_khr_gl_sharing, defining the 
API to share objects between OpenCL and OpenGL. 
Such additional API is also specified by the Khonos 
group within a specific OpenCL version, but this is 
not obligatory. 

There are also manufacturer specific API 
extensions, such as cl_intel_mem_force_host_memory, 
which are available on Intel devices, or 
cl_qcom_android_native_buffer_host_ptr, available 
on Qualcomm’s Android processors. Such additional 
API complements the core, allowing the specification 
to better match to particular hardware. OpenCL on the 
Android platform (Gilski and Stefański, 2015) is 
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available only from the native C++ library, whereas 
on MacOS devices, this environment is not supported. 

2 APPLICATIONS UNITIZING 
OpenCL 

OpenCL is a library that can certainly be utilized in 
various Android applications. The lack of official API 
support on Android means that the amount of 
information about the possibilities of this library is 
limited. Such feedback would be particularly 
important for mobile developers. However, there are 
some information available, describing several 
possible applications (Wang et al., 2013; Ross et al., 
2014; Wang et al., 2016; Acosta et al., 2018). 

2.1 Tensorflow 

Tensorflow is a library used for ML (Machine 
Learning) and related AI (Artificial Intelligence) 
applications. This program is often used for DNN 
(Deep Neural Network) training. The process of 
training neural networks requires multiplication of 
many matrices. The very use of a learned model is 
also associated with the matrix multiplication 
process. Tensorflow is a software that can use various 
APIs used for calculations, such as: CUDA, SYCL or 
OpenCL. In case of Android, the main API used by 
Tensorflow is OpenCL. According to (Juhyun and 
Raman, 2020), the OpenCL API can improve 
performance by 100% compared to OpenGL. When 
optimizing the program using OpenCL, the tools 
provided by the GPU manufacturer Adreno proved to 
be helpful. Since the OpenCL API is not officially 
supported, the Tensorflow application polls the 
device for library availability at startup. When this 
library is not available, the engine running on the 
basis of the OpenGL API is loaded. 

2.2 OpenCV 

OpenCV (Open Source Computer Vision Library) is 
a library that implements many functionalities such as 
machine learning and image processing. Many of the 
algorithms provided by this library are performed on 
GPUs. The API used by OpenCV to run algorithms 
on the GPU is OpenCL. From (McIntosh-Smith, 
2020) we learn that using OpenCVT API, which 
utilizes OpenCL internally, improves the frame rate 
when modifying the camera image. The results 
achieved by the Sony Xperia Z3, when image 
modification was done with C/C++ code, was equal 

to 3-5 FPS. However, when using OpenCVT, the 
frame rate increased to 1113. 

2.3 Adobe 

Adobe is a software developer, focused on image and 
video processing. In case of Adobe products for 
Windows-operating devices, the OpenCL API is 
often used for GPU processing. In the case of 
applications developed for Android, the utilized API 
is Vulkan. However, according to (McIntosh-Smith, 
2020), Adobe products on Android use OpenCL  
C kernels. These kernels are compiled into 
intermediate code called SPIR-V (Standard, Portable 
Intermediate Representation – V) and then executed 
using the Vulkana API. 

2.4 Benchmarking Applications 

Most applications that clearly declare using OpenCL 
API are tests that measure performance of devices 
and their integrated hardware components. These 
programs are most often aimed at measuring 
computing power or obtaining basic information 
about a device, such as the number of execution units. 
Such data only inform about the specificity of the 
device under test. 

3 LINKING OPENCL WITH THE 
ANDROID PLATFORM 

Applications usually do not link directly to a driver 
having a complete API implementation. For this,  
an additional library is used that looks for driver 
implementations for all platforms on the device. 
Thanks to the use of such a loading library,  
the application can use any available platform 
supporting this API and is not rigidly connected to 
one driver in a specific version. 

Unfortunately, an Android binary version of such 
a library does not exist. One option is to link the 
native library to the driver that comes with the device. 
The disadvantage of this solution is the need to 
download the binary file with the OpenCL 
implementation and all its dependent drivers with 
respect to a specific device. This solution means that 
the compiled application will run only on the device 
for which the libraries were downloaded. Another 
solution is to download the sources with the code for 
the loading library, build the library, and link it to the 
application. The driver that will link the program with 
the OpenCL implementation has default paths that 
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can contain the OpenCL library, as shown in Figure 1 
(Ashbaugh, 2019). 

 
Figure 1: Linking the OpenCL library. 

The application can query each device about its 
properties, and then select the one on which the rest 
of the application will run on. It is also possible to 
define an environment variable having the location 
from which we want the driver to be loaded. The 
disadvantage of such a solution is the need to compile 
such a library, but thanks to this, we can build an 
application that will work on multiple devices. 

4 ABOUT THE STUDY 

Due to the constraints related to energy consumption, 
mobile devices are rarely used for larger computing 
tasks. Typically, the work of graphics processors is 
mainly used to support graphics applications. GPUs 
operate in a single instruction processing model of 
several memory elements, so-called SIMDs (Single 
Instruction, Multiple Data). As a result, one can 
perform an operation with a single instruction at a 
time, e.g., on several pixels from an image. 

4.1 Comparing Mobile GPUs 

The two main manufacturers of GPUs for mobile 
platforms are Qualcomm, which makes the Adreno 
chipset, and ARM, which produces a chipset called 
Mali. A direct comparison of pros and cons of Adreno 
and MAPI GPUs is described in Table 1. 

Table 1: Pros and cons of Adreno and Mali GPUs. 

Factor Adreno Mali
efficiency + –

price – +
API support + –

clock frequency – +
rendering – +

heat dissipation + –

The main pros and cons between those two can be 
expressed as: 

 Performance – Adreno devices achieve better 
performance results in most cases, e.g., when 
comparing the Adreno 660 and MaliG78 MP24 
models, the former achieves 1486 GFLOPS, 
while the latter only achieving 1076 GFLOPS. 

 Price – Qualcomm imposes higher licensing 
costs for its chipsets for device manufacturers. 
As a result, Mali systems are more likely to be 
found in cheaper devices. 

 API support – older Adreno devices have 
support for more APIs in newer versions.  
The latest Mali GPU models support a similar 
API list. 

 Clock frequency – in most cases, Mali CPUs 
run at higher clock rates than competitors,  
e.g., the Mali G51 processor runs at 1 GHz, 
whereas none of Adreno’s products achieves 
this value. 

 Rendering – Mali has a bigger advantage over 
Adreno, e.g., the Adreno 660 is able to render 
1524 million triangles per second, whereas the 
competing Mali G78 MP24 can render 2463 at 
the same time. 

 Heat dissipation – as Mali chipsets run at a 
higher clock speed, it may cause system 
overheat. Thanks to the lower temperature, 
Adreno chipsets may be considered as more 
efficient. 

As shown, users are quite limited, when it comes 
to selecting a device with, e.g., both high clock 
frequency and low heat production. 

4.2 Tested Mobile Devices 

The study involved a group of 5 mobile devices, 
coming from different manufacturers, as described  
in Table 2. The comparison of available build-in 
GPUs is described in Table 3, whereas, the 
comparison of supported APIs, in case of respective 
chipsets, is shown in Table 4. 

The HTC Desire 820 is definitely the device with 
the weakest parameters. Xiaomi Mi A2 Lite and 
Huawei P20 Lite have competitive parameters,  
but they have build-in components from different 
manufacturers. The most powerful are the Redmi 
Note 7, which has the fastest memory and the fastest 
working processor, and the Samsung Galaxy A70, 
which has the latest graphics processor. 
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Table 2: Principle technical specification of tested mobile 
devices. 

Device Release  
date 

CPU RAM GPU 

Xiaomi  
Mi A2  

Lite 

Q3  
2018 

8-core,  
2 GHz,  

Cortex-A53 

3 GB Adreno 
506 

HTC  
Desire  

820 

Q3  
2014 

4-core,  
1.7 GHz  

Cortex-A53  
+  

4-core,  
1 GHz  

Cortex-A53 

2 GB Adreno 
405 

Huawei  
P20  
Lite 

Q2  
2018 

4-core,  
2.36 GHz,  

Cortex-A53 
+ 

4-core,  
1,7 GHz  

Cortex-A53 

4 GB Mali 
T830 
MP2 

Samsung  
Galaxy  

A70 

Q1  
2019 

8-core,  
2 GHz,  

Kryo 460 

6 GB Adreno 
612 

Xiaomi  
Redmi  
Note 7 

Q1  
2019 

8-core,  
2.2 GHz  
Kryo 260 

6 GB Adreno 
512 

Table 3: Tested integrated GPUs. 

GPU Clock  
freq. 

Memory Memory  
type 

Comput. 
units

Adreno  
506 

650 
MHz 

128 kB 
+ 8 kB 

LPDDR3-
1866  

933 MHz  
7.4 GB/s 

96 

Adreno  
405 

550 
MHz 

256 kB LPDDR3-
1333  

665.5 MHz  
5.3 GB/s 

48 

Mali  
T830  
MP2 

900 
MHz 

128 kB LPDDR3  
933 MHz 

2 x 32 

Adreno  
612 

845 
MHz 

256 kB 
+ 16 kB 

LPDDR4X
-3732  

1866 MHz  
Dual 

channel  
16 bit  

14.9 GB/s 

128 

Adreno  
512 

850 
MHz 

256 kB 
+ 16 kB 

LPDDR4-
3732  

1866 MHz  
Quad 

channel  
16 bit  

29.8 GB/s 

128 

 

Table 4: Chipset compatibility with different APIs. 

GPU Vulcan D3D OpenCL OpenGL
Adreno 

506
1.0 DX11 2.0 3.2 

Adreno 
405

N/A DX11 1.2 3.2 

Mali  
T830  
MP2

1.0 DX11 1.2 3.2 

Adreno 
612

1.1 DX12 2.0 3.2 

Adreno 
512

1.0 DX11 2.0 3.2 

5 PERFORMANCE TESTS 

The test procedure involved a number of parameters 
and factors, that would serve as a good benchmark of 
OpenCL capabilities on mobile devices. 

5.1 Computational Power Measurement 

It was performed with a test involving several kernels 
and vector data. For each of these kernels, the number 
of floating point operations performed should be the 
same and equal to 4096 for a single work item.  
For example, in the Float1 kernel, the mad operation 
will be performed 2048 times. This function consists 
of a single multiplication and addition. Similar 
kernels will be used to test other data types such as 
int, half and double, if these are supported by the 
device under test. 

The obtained results will be presented in the 
FLOPS (Floating-Point Operations Per Second) unit. 
In this test, the value in FLOPS will be obtained by 
multiplying the number of global work items by the 
number of floating-point operations performed in 
each of them, and then dividing the obtained value by 
the time in which they were performed. 

5.2 Memory Flow 

It describes how fast data is copied between different 
memory areas. A simple kernel was used for testing. 
In the executing kernel for a single item work,  
one memory location was copied from the src buffer 
to the dst buffer. The type of a single buffer element 
is defined at the compilation stage. In this example,  
it could be one of the vector versions of the float type. 

Two buffers were created in the test. The first had 
initial data and the second was empty. After executing 
the kernel, the second buffer will contain data from 
the first one. The collected time information from the 
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cl_event type object will allow to calculate the speed 
in bytes per second of memory transfer. Similarly, 
kernels using int, half or double data type memory 
buffers will also be tested. 

5.3 Kernel Execution Time 

An exemplary kernel is started up/executed, after 
which the values of 
CL_PROFILING_COMMAND_QUEUED and 
CL_PROFILING_COMMAND_START were read 
and noted. Their difference defines the time it takes 
to transfer the kernel to the device and start executing 
it. The kernel will be executed several times and the 
final result will be averaged. 

5.4 Memory Transfer with Build-in 
Functions 

Designed to transfer data to and from the memory 
buffer in OpenCL, we can use the following 
functions: 
 clEnqueueWriteBuffer – after executing this 

function, the data from the indicated memory 
will be written to the specified buffer, which 
can then be used in the executed kernel. 

 clEnqueueReadBuffer – copies the data 
backwards from the buffer to the indicated 
memory area, so we can read the data after 
executing the kernels on the device. 

 clEnqueueMapBuffer – the function returns a 
pointer to the memory where the memory was 
mapped from the buffer. 

 clEnqueueUnmapMemObject – this function 
will map the memory from the pointer  
returned from clEnqueueMapBuffer or 
clEnqueueMapImage to the indicated buffer or 
image. 

The above-mentioned functions will be performed 
a certain number of times, and data on the execution 
time will be collected from the event object. The 
averaged result of the function execution will show in 
what time the device is able to transfer data between 
the memory on the application side and the memory 
on the device side. 

5.5 Matrix Multiplication 

The product of matrices is a mathematical operation 
that can be easily divided into parts that can run in 
parallel. Each element of the result matrix can be 
computed independently from one another. A test has 
been implemented that enumerates each item in the 
resulting matrix as a separate work item. 

In the constructed test, the product of two matrices 
with a size of 1024x1024 is performed, in which we 
measure the time of multiplication. The operation will 
be performed several times, and the final value will 
be averaged. The experiment will be repeated for 
several sizes of local work groups. Depending on the 
properties of the device, the first embodiment will 
have the maximum possible value of the local work 
group in the X dimension. In the next embodiment, 
the value in the X dimension will be reduced twice, 
while in the Y dimension it will be increased twice. 
In subsequent iterations, the procedure remains the 
same until the group’s work size in the X dimension 
becomes 1. This test will illustrate how can the 
selection of work group’s size can affect the kernel 
execution time. 

5.6 Using OpenCL to Filter the Image 
from CameraAPI 

It involved using a custom-build application to 
display an image from the camera on the screen of an 
Android OS device that passes textures from OpenGL 
to the camera object as previewTexture. The texture 
passed to the camera will be updated every frame. 
Refreshing the image object will cause a method to be 
called, which will render the obtained image and 
display it. This code will call the vertex shader and 
then the fragment shader, so that two triangles will be 
displayed filled with the image’s content. 

This will make the image from the camera 
displayed on the screen of the device. It will help 
verify how much the OpenCL kernels that are being 
executed, using the displayed image, will affect the 
number of displayed frames per second. 

Images will be processed in four different ways, 
that is: 
 convert camera image to RGB in the 

application; 
 max Rgb filter; 
 grayscale preview; 
 average filter. 

Next, obtained results will be shown and 
discussed. 

6 RESULTS 

This chapter describes the results of several tests, 
carried out on 5 mobile devices. 
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6.1 Computing Power 

Figures 2-4 present the performance of the tested 
devices in terms of the number of operations per 
second, including different data types. Figure 2 shows 
the number of possible calculations on half numbers 
per second, expressed in GHOPS (Giga Half 
Operations Per Second), for vector versions of this 
type. 

 
Figure 2: Processing power for type half. 

According to obtained results, the Adreno 
processors use vector types to increase the number of 
operations per second. For these processors,  
the results are listed according to their numbers.  
The HTC 820 with the Adreno 405 is the worst,  
and the Samsung A70 with the Adreno 612 is the best.  
In the case of the Mali processor, regardless of the 
size of the variable type, the number of operations 
remains at the same level. For comparable models 
Xiaomi Mi A2 Lite and Huawei P20 Lite, the device 
fares better than Xiaomi. 

Figure 3 presents the number of possible 
operations on int numbers per second, expressed  
in GIOPS (Giga Integer Operations Per Second),  
for vector versions of this type. 

 
Figure 3: Computing power for the int type. 

In case of operations performed on integers,  
the Mali processor is the best. Using vector types 
slightly improves performance, which is around  

26 GIOPS. In case of Adreno chipsets, similarly as  
in Mali, the performance is significantly improved by 
using the int2 and int4 types. However, when using 
the int8 and int16 types, performance drops. In this 
case also the order from worst to best goes according 
to their numbers, preferably Adreno 612, worst 
Adreno 405. 

Figure 4 presents the number of possible 
operations on float numbers per second, expressed in 
GFLOPS (Giga Floating Point Operations Per 
Second), for vector versions of this type. 

 
Figure 4: Calculation power for float type. 

In performance tests, the Mali T830 2MP chipset 
proves to be by far the worst for single-precision float 
operations. The performance of this GPU for vector 
types is similar to that of a type with a single value. 
However, it is weaker for the float16 type by 40%.  
In the case of Adreno chipsets, the situation is similar 
to the half type, the use of vector types increases 
performance. For the float16 type, it can be seen that 
the value of operations per second is approx. half less 
than for the half16 type. 

Figure 5 presents the number of possible 
calculations of the half type, per second, expressed in 
GDOPS (Giga Double Operations Per Second) for 
vector versions of this type. 

 
Figure 5: Processing power for the double type. 

Huawei P20 Lite, as the only one of the tested 
devices, has support for double-precision floating-
point types. Evidently, the use of vector types 
double2 and double4 improves performance by 100% 
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compared to the double type. Operations on double8 
type improve performance by 17% compared to 
double, while operations on double16 type decrease 
performance by 57% compared to double. 

6.2 Memory Flow 

Figures 6-8 present the memory flow of different data 
types concerning tested devices. 

 
Figure 6: Memory flow for half type. 

 
Figure 7: Memory flow for type int. 

 
Figure 8: Memory flow for float. 

As in the case of testing computing power, when 
examining the speed of data flow between allocations, 
it can be seen that for the Mali chipset we do not see 
much benefit from the use of vector types. For the types 
hlaf1, half2 and half16, it achieves better results than 

the Adreno 405 chipset. In other cases, it proved to be 
the worst. Among devices with Adreno GPUs, it can 
be seen that the worst results are obtained for the half 
type, and the best for the half4 type. 

Unlike computing power, the Adreno 512 chipset 
performs best. Most likely, it achieves a higher result 
by using a better type of memory. The data flow 
results for the types float and int reach similar values 
to those for the vector types half. Copying single 
values of the half type is worse compared to 32-bit 
types. The best results are achieved by the Xiaomi 
Redmi Note 7, which has an Adreno 512 GPU and the 
best memory type among all tested LPDDR4 devices, 
with a frequency of 1866 MHz and a bandwidth of up 
to 29.8 GB/s. 

 
Figure 9: Memory flow for type double. 

As shown in Figure 9, the memory transfer speed, 
when using the double type, does not differ from the 
types half int or float. 

6.3 Waiting Time for Execution 

Figure 10 present the waiting time for execution,  
the average time from queuing to starting execution 
on the GPU. The shorter the time obtained, the better 
the achieved result. 

 
Figure 10: Waiting time for execution. 

Surprisingly, the Samsung Galaxy A70 is the 
worst, which was tested on the latest OpenCL driver 
among available devices. The second best result was 
achieved by HTC Desire 820, the oldest device with 
the oldest driver. The time measured in this test is the 
period from placing the task in the OpenCL queue,  
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by the system’s kernel driver, to the device on which 
it will be executed. So it depends more on the 
implementation of individual drivers or system kernel 
than on the device itself. 

6.4 Application-to-Device Memory 
Transfer 

Figure 11 shows the data transfer rate from the device 
to the application. 

 
Figure 11: ClEnqueueReadBuffer execution time. 

This type of transfers are performed using 
functions defined by the OpenCL library. 
clEnqueueReadBuffer copies the exact number of 
bytes, so the transfer is most likely done with the  
8-bit data type. The graph shows the dependencies 
analogous to the test with data flow inside the device. 

Figure 12 presents the data writing speed for 
allocation in OpenCL. In case of Adreno chipsets,  
it shows values that are impossible to achieve in the 
types of memory used in devices. 

 
Figure 12: ClEnqueueWriteBuffer execution time. 

The assumed maximum memory flow in case of 
the Samsung Galaxy A70 is 14.9 GB/s. These values 
were collected using clEvent objects. Evidently the 
values collected during clEnqueueWriteBuffer, 
shown in Figure 12, are wrong. To be sure, the test 
was repeated, measuring the time with system 
functions on the host side. The obtained results are 
presented in Figure 13. The values are similar to those 
obtained in previous tests with the memory flow 
within the device. 

 
Figure 13: ClEnqueueWriteBuffer execution time 
Application time. 

To be sure, the other tests using time measurement 
on the application side were repeated. All times 
coincided with those measured using clEvent objects. 
Figure 14 shows the time it takes to map device-side 
memory to application-side memory. 

 
Figure 14: Map unMap execution time. 

The values obtained for Adreno processors, 
similarly to the previous test, seem to be incorrect,  
but when repeated with the time measurement on the 
application side, they returned similar results. 

Adreno processors use shared system memory. 
Most likely, the clEnqueueMapBuffer function 
returns a direct pointer to the memory that is used by 
the device when executing kernels. The time needed 
for memory mapping and unmapping is the short time 
for the driver to return a pointer to the memory used 
by the OpenCL allocation. In the case of Huawei P20 
Lite device with the Mali T830 MP chipset,  
the memory is not shared. It is clear that the Mali GPU 
maps memory much slower. Despite the lack of 
sharing, the mapping process is much faster than 
reading from the buffer with clEnqueueReadBuffer. 
Probably the pointer to which the cache is mapped is 
located in a more advantageous place of the physical 
memory than the memory allocated to the application 
by the system. 
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6.5 Matrix Multiplication 

Figures 15 and 16 show the dependence of the size of 
the local work group on the time in which two 
matrices will be multiplied, in this case both of the 
size of 1024x1024. It can be seen that the size of the 
local work group affects the task execution time of 
matrix multiplication. 

 
Figure 15: Matrix multiplication (Max Lws 1024). 

 
Figure 16: Matrix Multiplication (Max Lws 256). 

All devices have their worst time when the local 
group size on the X dimension is 1, and in the Y 
dimension it has the maximum possible value for the 
device. The poor result for this setup is most likely 
due to reading distant memory cells within the work 
group. A single row of the matrix takes 4 kB, so the 
elements from the index (0,0) and (0,1) are separated 
by 4 kB. In addition, 4 kB is the distance of the virtual 
address, and physically depending on the size of the 
memory pages. These items can be located in 
different parts of the physical memory. The entire 
matrix takes up 4 MB of memory, and 3 such matrices 
are used when performing the multiplication. Mobile 
GPUs do not have such a large dedicated memory, 
and certainly not that much cache memory,  
so reloading the memory each time for each element 
of a local group is very expensive and extends the 
execution of the kernel. 

For devices with Adreno 405, 506 and 612 
chipsets, the most optimal local work group size 
seems to be 32x32. When we multiply matrix A by 
matrix B, we are multiplying the row of the first 

matrix by the column of the second matrix.  
When accessing the memory of matrix B within a 
single work group element, we also need to access 
distant memory elements. Most likely, when the 
group size of the Y dimension is equal to 32,  
the memory used by a thread within the local group is 
available in dedicated GPU memory. 

Xiaomi Redmi Note 7 performed the matrix 
multiplication the fastest, most likely due to the best 
memory type among the tested phones. The costs of 
accessing and reading the memory were the lowest. 
The second fastest device was the Huawei P20 Lite 
with a GPU from Mali. The test used an integer type 
data matrix. As previously verified, this device can 
perform the most operations of this type in a given 
time. 

6.6 OpenCL with CameraAPI 

Figure 17 shows how the use of OpenCL to process 
camera data in real-time affects the number of 
displayed frames per second. 

 
Figure 17: Conversion to RGB. 

The first column (Media) in the graph shows the 
FPS values that devices achieve when displaying 
texture obtained from CameraAPI using the OpenGL 
environment. This texture has an image encoded in 
the NV21 media format. 

Unfortunately, the OpenCL API allows sharing 
resources from OpenGL only in the RGBA (Red 
Green Blue Alpha) format, so it is impossible to split 
the texture returned by CameraAPI. A transformation 
from NV21 to RGBA is needed. 

The second column of the graph shows how does 
the FPS look like when the conversion to RGBA is 
done on the application side. All devices are 
negatively affected by such an operation. A clear drop 
in the displayed frames per second in each case is 
visible. 

The third column describes a situation when the 
conversion is performed in the OpenCL environment. 
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This clearly improves performance on devices with 
Adreno GPUs. These phones reach the values from 
the first column, including the error of measurement. 
A Huawei phone with a Mali chipset does not 
improve the result. Most likely for this device the 
time needed to copy data for allocation in OpenCL 
and kernel processing is as expensive as the lack of 
parallelization of conversion on the CPU side. 

The last column shows the results for the case 
where in the OpenCL kernel we save directly a shared 
image, which is then displayed. This way we will save 
time for two copies. First from OpenCL allocation to 
application side memory and second from application 
to OpenGL texture. The graph does not show that it had 
any impact on the number of displayed frames. Most 
likely, the other optimizations would not bring any 
performance improvements. The bottleneck that 
prevents a certain number of frames from being 
exceeded is either on the CameraAPI side, which is not 
able to deliver more frames per second, or the OpenGL 
environment, which cannot display more frames. 

Figure 18 shows the effect of filters executed in 
OpenCL kernels on the number of displayed frames 
per second. It can be seen that when using simple 
filters such as max rgb or transforming to grayscale, 
it does not affect the number of frames displayed, 
possibly due to a bottleneck that occurs somewhere in 
the time from collecting the camera preview to 
displaying it. 

 
Figure 18: Image filtering results. 

On the other hand, the use of an averaging filter, 
which accesses many pixels in the kernel, has a 
significant impact on performance. In this case,  
the phone with the Adreno 512 GPU, which uses the 
best type of memory among the tested ones, fares the 
best. 

7 SUMMARY 

The purpose of this work was to analyze the OpenCL 
environment on mobile platforms. It has been verified 

that among the most popular mobile systems,  
only Android has the ability to support this API. 
Several tests were designed and performed to check 
the capabilities of Android devices together with the 
OpenCL library in terms of performance and 
cooperation with OpenGL, especially when 
processing the image from the device’s camera.  
The tests were performed with a set of 5 smartphones, 
and included a custom-build software. 

The lack of official support for OpenCL by the 
Android system turned out to be a challenge in the 
implementation part. Despite this fact, GPU 
manufacturers for mobile devices continue to develop 
software that implements the functionality of the 
OpenCL API. In order to use a library, one must either 
directly connect the application with a specific 
dynamic library, or load it while the code is running. 
In the case of the first solution, the application can be 
run only on the device from which the library is 
permanently connected with the program. In the latter 
case, the library is dynamically loaded. The OpenCL 
interface on the Android platform is available only 
from the native code in C++. In order to use it in the 
application code, it is necessary to execute the 
OpenCL part of the native library or to utilize an 
additional driver that will be an overlay for C++ 
functions. 

As part of the tests, it was evaluated how much 
computing power do individual devices have using 
the OpenCL API. It was clearly observed that the 
devices with integrated chipsets manufactured by 
Adreno responded similarly to the change of data 
type, and with the use of larger vector types, their 
computing power increased. However, in case of Mali 
chipsets, when using vector types, the computing 
power remained at the same level. Mali GPUs ware 
able to perform more calculations on integer types, 
while Adreno ware better at operations on floating 
point types. It was verified that the sizes of local work 
groups significantly affect the time of performing 
matrix multiplication, which requires reading 
memory cells that are distant from each other. 
Devices achieve their best times when the group sizes 
in the X and Y dimensions are equal. In case of such 
groups, when performing matrix multiplication, 
threads within a local group could access elements 
from the cache memory. In this case, costly cache 
allocation transfers occur less frequently. In this test, 
the key role is to access memory quickly, so the better 
type of memory the devices had, the better they 
handled this task. 

As part of the work, the device’s capabilities for 
modifying the view from the camera with OpenCL 
were also checked. It turned out that the view from 
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the camera is delivered in the NV21 format, which the 
OpenCL API does not define. Therefore, in order to 
use the camera image in the executing kernel, it had 
to be transformed to RGBA format. The conversion 
significantly affected only the device with the Mali 
GPU. In case of devices with the Adreno GPU,  
the process of transforming the image to RGBA 
format and entering it into the displayed texture did 
not affect the number of displayed FPS.  
After applying a set of filters, like grayscale 
conversion or max rgb filter, the number of images 
presented per second did not change. On the other 
hand, the use of an averaging filter, in which it was 
necessary to read and average the value of 25 pixels 
to calculate the value of one pixel, significantly 
reduced the number of displayed frames, for some 
devices even by more than a half. 

At the end, there is limited information on using 
the OpenCL API in utility applications. Each of the 
GPU manufacturers for Android devices has an 
implementation of such a driver, which suggests that 
it is more often used than just for testing the device’s 
capabilities. The problem with finding information 
about the use of this API by various applications is 
most likely due to the fact that mobile developers 
usually do not publish a list of all used APIs, 
frameworks or versions of the programming 
language. Future studies could involve checking how 
to determine power consumption in case of kernel 
execution. Another direction would be to evaluate 
how would OpenCL perform on a variety of devices 
with integrated Intel, AMD or NVidia GPUs. 
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