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Abstract: The importance of remote voice communication has greatly increased during the COVID-19 pandemic. With 
that comes the problem of degraded speech quality because of background noise. While there can be many 
unwanted background sounds, this work focuses on dynamically suppressing keyboard sounds in speech 
signals by utilizing artificial neural networks. Based on the Mel spectrograms as inputs, the neural networks 
are trained to predict how much power of a frequency inside a time window has to be removed to suppress 
the keyboard sound. For that goal, we have generated audio signals combined from samples of two publicly 
available datasets with speaker and keyboard noise recordings. Additionally, we compare three network 
architectures with different parameter settings as well as an open-source tool RNNoise. The results from the 
experiments described in this paper show that artificial neural networks can be successfully applied to remove 
complex background noise from speech signals. 

1 INTRODUCTION AND 
RELATED WORK 

Recently, due to the COVID-19 pandemic, the role of 
remote communication using audio and visual 
transmission has significantly increased. However, 
the quality of speech usually remains not perfect, 
sometimes reasoned by limited speed of the network 
connection, but also by various background noises: 
keyboard sounds, another person speaking, street 
noise, etc. The suppression of complex background 
noise (like keyboard noise) is related to the topic of 
speech enhancement. Traditional methods can handle 
stationary background noise, for example white 
noise. Commonly applied algorithms are the Wiener-
Filtering, the MMSE Estimator, or the Bayesian 
Estimator (Loizou, 2013). They all provide different 
techniques to estimate the components of the clean 
short-time Fourier transform from a noisy input 
signal. The techniques above all assume that the noise 
signal is a stationary stochastic process that is 
predicted and then removed from the signal. This is 
not the case for keyboard typing sounds, because their 
frequency curve is more complex. Furthermore, 
different models of keyboards can sound entirely 
different, and also the speed and intensity of typing 

can vary significantly. For suppressing complex 
background noise in speech signals, there exist 
projects that utilize artificial neural networks. Krisp 
(Krisp, 2021) and NVIDIA RTX Voice (NVIDIA, 
2018) are both closed-source tools that work with 
neural networks using GPU acceleration to suppress 
keyboard noise in real time. These projects do not 
offer details about what network architectures are 
used and how they are trained. A similar open-source 
project is RNNoise (Valin, 2021), which uses a small 
recurrent neural network designed to run in embedded 
systems with low computational power and no GPU 
acceleration. Because of the low network complexity, 
RNNoise is expected to underperform the neural 
networks that will be proposed in this work. 
However, it can be trained on a custom dataset which 
allows for a direct comparison with the results of this 
work.  

In the following, we start with some backgrounds 
on audio signal processing (Section 2). Then, the used 
datasets and implemented network architectures are 
presented in Section 3. The results of several studies 
which compare the proposed networks and also apply 
RNNoise are discussed in Section 4. The most 
important findings are summarized in Section 5, and 
several ideas for future work are proposed in Section 
6. 
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2 AUDIO SIGNAL PROCESSING 

2.1 Signal Representation 

In order to process a speech signal and separate it 
from the background noise, a Short-Time Fourier 
Transform (STFT) is applied. It converts the audio 
signal into a representation where the power of 
different frequencies over time can be displayed 
(Loizou, 2013). A processed STFT spectrogram can 
be easily inverted to output the original signal. In this 
work, a STFT based on time frames of 512 samples 
with a step size of 256 samples is used. With a sample 
rate of 11025 Hz, this results in a window size of 
approximately 23.22 ms. The spectrogram is then 
projected to 128 Mel scale components, to take the 
non-linearity in human frequency recognition 
(Kathania et al., 2019) into account. 

To allow for potential real time application, the 
neural network only works on a small portion of the 
input Mel spectrogram. The current time window is 
selected together with the preceding 7 windows. This 
leads to a network input size of 8 × 128 (see Figure 
1). The network input is normalized using a 
logarithmic transform and then rescaled to a range of 
[0,1]. 
 

 
Figure 1: Example network input (8 × 128). 

2.2 Signal Separation 

The neural network has to output the clean 
spectrogram without background noise. While it is 
possible to directly output the Mel spectrogram 
values, we will use a mask to modify the magnitudes 
in the spectrogram. The magnitude mask is defined 
on the magnitudes of clean and noisy speech (Wang 
and Chen, 2018): 
 𝑀𝑀ሺ𝑡, 𝑘ሻ ൌ |𝑆ሺ𝑡, 𝑘ሻ||𝑁ሺ𝑡, 𝑘ሻ| (1)
 
S is defined as the spectrogram matrix of clean speech 
and N is the matrix overlaid with the background 
noise. The indices t and k are the time and frequency 
containers in these matrices. This magnitude mask is 
used as a target in the training process. After the 
network predicts the mask, it can be element-wise 
multiplied with the current time window of the input 
spectrogram to recover the clean speech signal. The 
values can be bounded between 0 and 1, because any 

values ൐ 1 would only introduce an unnecessary 
error. For |𝑁ሺ𝑡, 𝑘ሻ| ൌ 0, we can set this value to 1, 
because there would be no background noise in that 
container. 

3 EXPERIMENT SETUP 

3.1 Datasets 

For the training process, a suitable dataset of both 
speech and keyboard sound is needed. The speech 
signals should come from different speakers and the 
background noise should include multiple different 
keyboard sounds to train a network with a good 
general performance.  The TIMIT Speech-Corpus 
(Garofolo et al., 1993) was selected for the speech 
data. It consists of 6300 spoken sentences by 630 
different speakers of varying gender and origin. 
Roughly 10% of the total speech data (624 sentences 
by 24 speakers) were selected as the test set for the 
final evaluation. From the remaining sentences, 80% 
were used to train and 20% to validate the neural 
networks. The speakers from the test set were not part 
of the training set. For the background noise, a dataset 
from DCASE 2016 (Lafay, Benetos and Lagrange, 
2017) (Mesaros et al., 2018) was used. It contains 
multiple types of background noise, in particular 
typing sounds from 20 different keyboards. All audio 
data was sampled at a rate of 11025 Hz. To generate 
the noisy speech signals, every sentence in the TIMIT 
dataset was overlaid with typing noise from a random 
keyboard from the DCASE dataset. Every keyboard 
noise was scaled with respect to loudness using 
factors of ሼ1.0, 1.5, 2.0, 2.5ሽ and every sentence with ሼ1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0ሽ. This further 
increased the amount of available training data and 
introduces a higher variance in volumes. 

3.2 Neural Networks 

We have tested three different network architectures. 
First, a fully connected network consists of two 
hidden layers with 500 units each with ReLU 
activation and batch normalization. The output layer 
has 128 units and sigmoid activation to ensure that the 
mask values are between 0 and 1. This neural network 
is denoted below as NN500.  

Because the network input has a shape of 8 × 128, 
a Convolutional Neural Network (CNN) might 
perform better on two-dimensional data (Skansi, 
2018). The used network has 4 convolutional layers 
that each reduce the time dimensionality. In the 
frequency dimension, a kernel size of 10 is combined 
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with a stride of 1 in all layers. In the time dimension, 
the kernel sizes are set to (8, 4, 2, 2) and the strides to (1, 2, 2, 2). The kernel count is (32, 32, 16, 16) per 
layer. Combined with zero-padding, this reduces the 
shape to 1 × 128 during the convolutions. After the 
convolution layers, the flattened activations are fed 
through a fully connected hidden layer with ReLU 
activation that is tested with different numbers of 
neurons. The output layer again has 128 units and 
sigmoid activation. The fully connected hidden layer 
is tested with {128, 250, 500, 750} neurons. These 
architectures are denoted as CNN128, ..., CNN750.  

Third, a Redundant Convolutional Neural 
Network (RCNN) is proposed, because it was shown 
in (Park and Lee, 2017) that it can achieve 
comparable results in speech enhancement with a 
smaller network size. The network is built using 5 
redundant blocks that each has 3 convolution layers 
(Park and Lee, 2017). Each block has (18, 30, 8) 
kernels at a kernel size of (9, 5, 9). With a stride of 1 
and zero-padding, there is no dimension reduction 
between the blocks. The redundant convolutions 
reduce the time dimension of the input in the first 
block and thus have significantly less parameters than 
the CNNs. Just like in the traditional CNNs, the 
flattened activations are fed through a fully connected 
hidden layer with ReLU activation that is tested with {128, 250, 500} neurons. The magnitude mask is 
output using a layer with 128 units and sigmoid 
activation. The RCNN architectures are denoted as 
RCNN128, ..., RCNN500. Additionally, we test a 
RCNN without a fully connected hidden layer, 
denoted as RCNN.  

All neural networks are trained using an ADAM 
Optimizer (Bock and Weiß, 2019) with a learning rate 
of 0.0001 and a batch size of 128 for 100 epochs. For 
the loss function, the mean squared error of the 
magnitude masks is used.  

4 EVALUATION OF 
EXPERIMENTS 

4.1 Initial Training 

Table 1 presents the overview of several evaluation 
measures estimated for the test set. Columns 2 and 3 
show the Mean Squared Errors (MSE) for the 
generated masks (Eq. 2) and the respective 
spectrograms (Eq. 3). The best results with respect to 𝑀𝑆𝐸௠௔௦௞ and 𝑀𝑆𝐸௦௣௘௖ are achieved by CNN750. The 
remaining CNN architectures all perform marginally 
better than the redundant convolution networks. 

RCNN250 reaches the lowest error out of the tested 
RCNNs. To show the differences between the 
examined network models, their output can be 
visually compared. 
 𝑀𝑆𝐸௠௔௦௞ = 1𝑇𝐾෍෍ቀ𝑀𝑀(𝑡, 𝑘)௄

௞ୀ଴
்
௧ୀ଴− 𝑀𝑀෢ (𝑡, 𝑘)ቁଶ 

(2)

𝑀𝑆𝐸௦௣௘௖ = 1𝑇𝐾෍෍(|𝑁(𝑡, 𝑘)|௄
௞ୀ଴

்
௧ୀ଴− |𝑆(𝑡, 𝑘)|)ଶ 

(3)

 𝑀𝑀෢  represents the magnitude mask of the clean 
target signal. In Figures 2 to 5, example Mel 
spectrograms generated by the best and worst 
network are displayed. Figure 2 presents the 
spectrogram of the mixed signal, and Figure 3 the 
target output (speech without keyboard noise). When 
comparing the outputs to the target outputs, we can 
see that the simple network in Figure 4 only partially 
removes the keyboard noise. The best network so far, 
CNN750 shows better visual results in Figure 5. In the 
output spectrogram, there is only a little keyboard 
sound left. Even though it is still hearable in the 
signal, the volume of the typing noise has 
significantly decreased. 
 Because even the best network in the initial 
experiments did not fully remove the keyboard noise, 
further investigation of the network error was 
necessary. The assumption was used that the human 
perception of errors in spectrograms is not symmetric. 
As it was proposed in (Loizou, 2005), a positive error (|𝑁(𝑡, 𝑘)| − 𝑆(𝑡, 𝑘)| > 0) has a larger effect on 
perception than a negative error (|𝑁(𝑡, 𝑘)| −𝑆(𝑡, 𝑘)| < 0). A positive error means that there is 
background noise remaining in the signal and a 
negative error means that the speech signal has lost 
power in that frequency container. To analyze these 
errors, the metrics 𝑀𝑆𝐸௡௢௜௦௘ (positive error) and 𝑀𝑆𝐸௦௣௘௘௖௛ (negative error) are introduced: 
 𝑀𝑆𝐸௡௢௜௦௘ = 1𝑇𝐾෍෍max {0, (|𝑁(𝑡, 𝑘)|௄

௞ୀ଴
்
௧ୀ଴− |𝑆(𝑡, 𝑘)|)ଶ} 

 

(4) 
 

𝑀𝑆𝐸௦௣௘௘௖௛ = 1𝑇𝐾෍෍min {0, (|𝑁(𝑡, 𝑘)|௄
௞ୀ଴

்
௧ୀ଴− |𝑆(𝑡, 𝑘)|)ଶ} 

(5) 
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Table 1: Evaluation of different networks on the test set. The best values for CNNs and RCNNs are highlighted. 

Network MSEmask MSEspec MSEnoise MSEspeech MIS 
NN500 0.071 1.855 ‧ 10−5 1.267 ‧ 10−5 5.885 ‧ 10−6 9.245 ‧ 10−6 

CNN128 0.031 7.039 ‧ 10−6 2.076 ‧ 10−6 4.963 ‧ 10−6 3.539 ‧ 10−6 
CNN250 0.028 6.629 ‧ 10−6 1.915 ‧ 10−6 4.713 ‧ 10−6 3.331 ‧ 10−6 
CNN500 0.026 6.127 ‧ 10−6 1.745 ‧ 10−6 4.382 ‧ 10−6 3.078 ‧ 10−6 
CNN750 0.025 5.798 ‧ 10−6 1.656 ‧ 10−6 4.143 ‧ 10−6 2.913 ‧ 10−6 
RCNN 0.080 1.830 ‧ 10−5 1.129 ‧ 10−5 7.014 ‧ 10−6 9.146 ‧ 10−6 

RCNN128 0.045 1.324 ‧ 10−5 8.040 ‧ 10−6 5.201 ‧ 10−6 6.595 ‧ 10−6 
RCNN250 0.033 7.316 ‧ 10−6 2.707 ‧ 10−6 4.609 ‧ 10−6 3.669 ‧ 10−6 
RCNN500 0.035 9.242 ‧ 10−6 2.926 ‧ 10−6 6.315 ‧ 10−6 4.646 ‧ 10−6 

 

 
Figure 2: Example input spectrogram. 

 
Figure 3: Example target output spectrogram. 

As listed in columns 4 and 5 in Table 1, these errors 
show similar results as before. CNN750 is still the 
best performing CNN network and RCNN250 is the 
best RCNN network which is marginally worse than 
the CNNs. For all neural networks, the 𝑀𝑆𝐸௡௢௜௦௘ is 
lower than the 𝑀𝑆𝐸௦௣௘௘௖௛.  

 
Figure 4: Example output spectrogram of NN500. 

 
Figure 5: Example output spectrogram of CNN500. 

The different perceptual meaning of these errors 
can also be expressed by another evaluation measure, 
the modified Itakura-Saito Divergence (MIS) 
(Loizou, 2005). It was designed to represent this 
effect using an additional exponential term: 
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𝑀𝐼𝑆 = 1𝑇𝐾෍෍ exp(|𝑁(𝑡, 𝑘)|௄
௞ୀ଴

்
௧ୀ଴− |𝑆(𝑡, 𝑘)|)− (|𝑁(𝑡, 𝑘)| − |𝑆(𝑡, 𝑘)|)− 1 

(6)

 
Table 1, column 6 shows that the 𝑀𝐼𝑆 of the trained 
network models validated on the test set also shows 
similar results compared to other evaluation 
measures. 

4.2 Adapting the Loss Function 

In the following, the different effects of 𝑀𝑆𝐸௡௢௜௦௘ and 𝑀𝑆𝐸௦௣௘௘௖௛ were applied to the loss function to further 
improve the results. In Equation 7, the MSE of the 
magnitude masks is separated and the positive part is 
weighted with a hyperparameter α: 
 𝐿 = 1𝐾෍max ൛0, (𝑀𝑀(𝑘) −𝑀𝑀෢ (𝑘))ଶൟ௄

௞ୀ଴ ∙ 𝛼൅ min ൛0, (𝑀𝑀(𝑘)−𝑀𝑀෢ (𝑘))ଶൟ 
(7)

 
Based on the preliminary experiments, the adapted 
loss function was used with values 4.0 and 8.0 for α. 
Besides the new loss, the neural networks were 
trained using the same setup as before. In Table 2, the 
evaluation measures for the networks trained with the 
new loss function with α =  8.0 are shown. It can be 
observed that the values for 𝑀𝑆𝐸௡௢௜௦௘ are much lower 
than with the original loss function reported in Table 
1. Now, CNN500 achieves the best error with respect 
to 𝑀𝑆𝐸௡௢௜௦௘. On the other hand, 𝑀𝑆𝐸௦௣௘௘௖௛ is higher 
for all networks, which indicates a tradeoff in speech 
quality. But because this error is less important for the 
perceived speech quality (Loizou, 2005), the 
decreased 𝑀𝑆𝐸௡௢௜௦௘ might have the advantage of 
almost complete removal of the background noise. 
The modified Itakura-Saito Divergence slightly 
increases for most networks which can be explained 
by the overall higher error 𝑀𝑆𝐸௦௣௘௘௖௛. The network 
CNN500 which had the lowest value of 𝑀𝑆𝐸௡௢௜௦௘ also 
reaches the best value in 𝑀𝐼𝑆. The visualized 
example output in Figure 6 shows the improvement 
compared to the initial loss function. There is almost 
no keyboard noise visible in the output spectrogram. 
It is noticeable that the areas in the spectrogram where 
no speech is present are displayed much darker.  

Table 2: Evaluation measures estimated for the test set 
using the adapted loss function (α =  8.0). The best values 
are highlighted. 

Network MSEnoise MSEspeech MIS 
NN500 2.788 ‧ 10−6 3.841 ‧ 10−5 2.130 ‧ 10−5 

CNN128 4.140 ‧ 10−7 1.149 ‧ 10−5 6.017 · 10−6 
CNN250 3.675 ‧ 10−7 1.102 ‧ 10−5 5.758 · 10−6 
CNN500 2.594 ‧ 10−7 1.164 ‧ 10−5 2.164 · 10−6 
CNN750 3.123 ‧ 10−7 9.723 ‧ 10−6 5.072 · 10−6 
RCNN 1.050 ‧ 10−6 1.021 ‧ 10−5 5.686 · 10−6 

RCNN128 4.408 ‧ 10−7 1.442 ‧ 10−5 7.512 · 10−6 
RCNN250 6.649 ‧ 10−7 1.079 ‧ 10−5 5.784 · 10−6 
RCNN500 6.420 ‧ 10−7 9.354 ‧ 10−6 5.040 · 10−6 

 
As this is just normal noise from the recording, the 
significant parts of the speech signal remain. The 
newly trained networks remove that part from the 
spectrogram, which increases the error of speech 𝑀𝑆𝐸௦௣௘௘௖௛. Even though the error is increased, the 
visualization shows that the speech signal is still 
preserved in the output. 
 

 
Figure 6: Example output spectrogram of CNN500 trained 
with the adapted loss function (α =  8.0). 

4.3 Combination of Different Noise 
Types 

In the experiments so far, the neural networks were 
only trained to suppress keyboard noise. To test 
whether the proposed network architectures can also 
work on multiple background noise types, a new 
training dataset was created. This dataset was 
generated using the same procedure as described in 
Section 3.1, but instead of keyboard noise, 20 
different door knocking sounds from the DCASE 
2016 (Lafay, Benetos and Lagrange, 2017) (Mesaros 
et al., 2018) dataset were selected. The resulting door 
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knock dataset has the same size as the keyboard 
training, validation, and test sets together. They were 
randomly mixed to create a combined dataset. In 
these experiments, only the three traditional 
convolutional neural networks were trained on the 
combined training dataset using the adapted loss 
function α =  8.0. In Table 3, the trained networks 
are evaluated on the keyboard validation set and in 
Table 4 on the door knock validation set. 

Table 3: Evaluation measures of the combined networks 
estimated for the test set for keyboard noise. 

Network MSEnoise  MSEspeech  MIS  
CNN128 4.986 ‧ 10−7 1.177 ‧ 10−5 6.202 ‧ 10−5 
CNN250 3.790 ‧ 10−7 1.157 ‧ 10−5 5.041 · 10−6 
CNN500 3.350 ‧ 10−7 1.090 ‧ 10−5 5.685 · 10−6 

Table 4: Evaluation measures of the combined networks 
estimated for the test set for door knock noise. 

Network MSEnoise  MSEspeech  MIS  
CNN128 2.254 ‧ 10−6 6.800 ‧ 10−5 3.663 ‧ 10−5 
CNN250 1.402 ‧ 10−6 6.729 ‧ 10−5 3.581 · 10−5 
CNN500 1.382 ‧ 10−6 6.188 ‧ 10−5 3.297 · 10−5 

 
In general, it can be observed that the keyboard noise 
has a lower error than door knocking. Compared to 
the previous training on keyboard noise with the 
adapted loss function, the 𝑀𝑆𝐸௡௢௜௦௘ slightly increases 
while the 𝑀𝑆𝐸௦௣௘௘௖௛ slightly decreases. All in all, the 
combination of two different noise types does work. 
It delivers comparable validation errors while using 
the same neural network for two different background 
sounds. 

4.4 Comparison with RNNoise 

In a further experiment, we have compared the 
previous results to the open-source software RNNoise 
(Valin, 2021). RNNoise uses a smaller recurrent 
neural network running on different features, as 
explained in (Valin, 2018). The software comes with 
a pre-trained network, but to get a better comparison 
of the architectures, RNNoise was trained on the 
dataset with keyboard noise from Section 3.1 using 
the method from (Valin, 2018). The resulting network 
was evaluated on the test set for keyboard noise and 
compared to the network CNN500 trained with the 
adapted loss function (α =  8.0). The evaluation 
measures are listed in Table 5. Note that RNNoise 
only consists of 88,007 parameters while the CNN500 
has 1,149,992. RNNoise reaches higher errors than 
the convolutional neural network in all measures. It 
must be stated that RNNoise uses a much smaller 

network which justifies the worse performance. A 
noticeable result is that RNNoise has a significantly 
lower 𝑀𝑆𝐸௡௢௜௦௘  compared to the other measures. The 
error is smaller than the error of the networks that 
were trained using the 𝑀𝑆𝐸 loss function in the initial 
training. 

Table 5: Evaluation measures of RNNoise and CNN500 (α =  8.0) estimated for the test set for keyboard noise. 

 RNNoise CNN500 
MSEspec 2.196 ‧ 10−4 1.190 ‧ 10−5 
MSEnoise 9.154 ‧ 10−7 2.594 · 10−7 
MSEspeech 2.187 ‧ 10−4 1.164 · 10−5 

MIS 1.166 ‧ 10−4 2.164 · 10−6 
 
The results of RNNoise were also visually compared 
to the network CNN500, as exemplarily shown in 
Figures 7 and 8. RNNoise manages to only partially 
remove the keyboard sound. The neural network from 
this work can outperform RNNoise, as there is almost 
no keyboard sound visible in the Mel spectrogram. 
 

 
Figure 7: Example output spectrogram of RNNoise. 

 
Figure 8: Example output spectrogram of CNN500 trained 
with the adapted loss function (α =  8.0). 
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5 CONCLUSIONS 

In this work, keyboard sounds were dynamically 
suppressed in speech signals using artificial neural 
networks. The inputs to the networks were small time 
frames of the Mel spectrograms, and the target was to 
predict a magnitude mask that can remove the 
background noise from the input signal. In the first 
experiments, the background signal was only partially 
suppressed and remained in the output signal at a 
much lower volume. The best results were achieved 
using convolutional neural networks. 

The adaptation of the loss function, in order to 
reach a better suppression of the keyboard noise, led 
to a significantly better removal of the background 
noise. Especially in the visual comparison of the 
output spectrograms with the results from the initial 
experiments, the improvement was recognized. 
Further, we explored whether the proposed neural 
networks can work on multiple different background 
noise types. A combined dataset was created with 
keyboard and door knocking sounds mixed together. 
The networks trained on the combined training set 
showed only marginally higher errors than the 
previous experiments.  

Finally, the results achieved in this work were 
compared to the open-source tool RNNoise. It was 
determined that the convolutional neural network 
from the experiments outperforms RNNoise. This 
might be justified because RNNoise uses a much 
smaller network.  

In conclusion, this topic is not new and has been 
researched for some time. The problem in academic 
research is that algorithms and procedures which are 
already established in the commercial software are 
not freely accessible. For this reason, own algorithms 
and procedures have to be researched and developed 
in the academic field. This paper presents a system for 
removing complex background noises from speech 
signals using the example of computer keyboard 
noise. Thus, it is possible to develop a non-cost 
software in a short time adapted to own background 
noises. To assess the quality of our solution, further 
experiments and different background noises are 
necessary. 

6 FUTURE WORK 

Some of the network hyperparameters were not 
varied in the experiments. It can be further 
investigated whether the number of the Mel 
frequency containers can be reduced without a 

significant impact on the quality of the output. A 
lower number of containers per time window would 
also drastically decrease the network size and 
computation time. Further, the network architectures 
can be even automatically learned using neural 
architecture search (Elsken, Metzen and Hutter, 
2019). It is expected that the error values as well as 
the network size can be decreased by systematically 
exploring new architectures. Also, different loss 
functions can be used. The adapted loss from this 
work has to be tested with more fine-grained values 
of α, but there might be more suitable loss functions. 
 For an application of such a system, more noise 
types must be taken into account. It was shown that 
two different types can be combined, but the training 
data could be extended, for example, with fan noise, 
baby screaming, or traffic sounds. When transferring 
speech signals over the Internet in real time, a packet 
loss can occur. The proposed system could be trained 
to predict the missing time windows from the 
previous ones. As an extension of the work, run time 
measurements of the presented method can be carried 
out. Thus, various comparisons can be made with 
other NN-based or traditional methods. 
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