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Abstract: Commonsense reasoning in artificial intelligence is the problem of inferring decisions and answers regarding
mundane situations. Several research groups have built large knowledge graphs with the goal of capturing
some aspects of commonsense knowledge. Using these knowledge graphs for problem solving and question
answering is a subject of active research. Our contribution is encoding and integrating knowledge graphs like
Quasimodo, ConceptNet, and Wordnet for symbolic reasoning. A major challenge in symbolic commonsense
reasoning is coping with contradictory and uncertain knowledge, which we handle by extending first order
logic with numeric confidences and default logic rules. To our knowledge this is the first large scale common-
sense knowledge base seriously using default logic. We give several examples of the proposed representation
and solving questions on the basis of the knowledge base built.

1 INTRODUCTION

Knowledge representation for commonsense reason-
ing is a non-trivial problem. (McCarthy, 1989) re-
marks that a knowledge representation language that
can be used to reason with generalized concepts is
”ambitious”, while (Davis, 2017) has a more direct
opinion that ”we do not, by any means, know how
to represent all or most of the commonsense knowl-
edge needed” in such reasoning tasks. The view in the
natural language processing community is far more
optimistic, e.g. (Trinh and Le, 2018) suggesting that
a deep neural model has good understanding of con-
text and common sense. More recent quantitative re-
sults of language models on difficult problems appear
to support that claim. However, skepticism has been
expressed due to well known ”statistical black box”
properties of numerical models. (He et al., 2021)
measure whether neural language models understand
the logical structure in CSR problems, concluding
that their ”reasoning ability could have been overesti-
mated”.

There is an emerging view that the synthesis
of different approaches in AI – logical, probabilis-
tic and machine learning – is required for common
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sense (Marcus, 2020), resulting in recent popularity
of neurosymbolic reasoning. Typically the approach
is to add symbolic reasoning capability to the neu-
ral model, see, for example, (Garnelo and Shanahan,
2019; Riegel et al., 2020; Arabshahi et al., 2021).
We approach the same goal of synthesis from the op-
posite direction: supplementing symbolic reasoning
with mechanisms for plausible reasoning as described
in (Davis, 2017).

Our goal is to develop a general question answer-
ing system. We have set a target of being able to rea-
son at the level of a small child. This includes tasks
like causal and spatial reasoning, counting and ma-
nipulating sets. By incrementally adding knowledge
in the form of common sense facts and inference rules
and identifying further gaps, we can empirically find
whether the target is realistic and what is the scope
of the knowledge base required in terms of size and
areas covered.

We are developing both a default logic reasoner
and a knowledge base. This paper focuses only on the
latter and presents the automated construction of the
knowledge base and the representation of uncertain
and contradictory knowledge using default logic.
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2 PLAUSIBLE REASONING

Our knowledge representation extends first order
logic (FOL) with numeric confidences and non-
monotonic rules with exceptions to enable plausible
reasoning. We will assume that the FOL statements
are converted to a conjunctive normal form.

We use a representation language that consists of
a limited set of predicates, describing common rela-
tions between entities, classes, properties and events.
The set of relations is similar to what is used in Con-
ceptNet (Speer et al., 2017).

We assign a numeric confidence to each clause in
the range 0 . . .1. Each derived clause will have a con-
fidence value based on the confidence of clauses used
in the derivation. Literals in a clause do not contain
confidence information: the latter is present only at
the level of clauses.

Example 1 (Confidence of clauses). We want to
express that Garfield refers to a cat with a 0.9 con-
fidence and that cats are tabby, with 0.7 confidence.
Additionally, there is already a weak indication that
garfield is tabby:

IsA(cat, X) → Property(tabby, X) : 0.7
IsA(cat, garfield) : 0.9
Property(tabby, garfield) : 0.1

We have built a system for plausible reasoning
with default logic rules. We give a brief overview of
the reasoner below. A more complete description can
be found in (Tammet et al., 2022).

Our reasoner will multiply confidences while us-
ing modus ponens and cumulate the confidence of the
result with the given confidence 0.1, resulting with
Property(tabby, garfield) : 0.667

Inconsistencies in the knowledge base are handled
by (a) requiring that each derivation of an answer
contains clauses stemming from the question posed,
(b) performing searches both for the question and its
negation and returning the resulting confidence calcu-
lated as a difference of the confidences found by these
two searches.

We use the default logic of Reiter (Reiter, 1980)
for encoding rules with exceptions. Default logic ex-
tends classical logic with default rules of the form
α(x) : β1(x), ...βn(x) ` γ(x) where a precondition
α(x), justifications β1(x), ...βn(x) and a consequent
γ(x) are first order predicate calculus formulas whose
free variables are among x = x1, ...,xm. For every
tuple of individuals t = t1, ..., tn, if the precondition
α(t) is derivable and none of the negated justifica-
tions ¬β(t) are derivable, then the consequent γ(t)
can be derived. Without losing generality we assume

that α(x) and γ(x) are clauses and βi(x) are positive
or negative atoms.

We encode a default rule as a clause by
concatenating into one clause the precondi-
tion and consequent clauses and blocker atoms
$block(p1,¬β1), ...,$block(pn,¬βn) built from the
justifications.

Example 2 (Default logic rule). The “birds can fly”
default rule is represented as a clause

¬Bird(X)∨Fly(X)∨$block(0,¬(Fly(X)))

where X is a variable and ¬(Fly(X)) encodes the
negated justification. The first argument of the blocker
(0 above) encodes priority information. Blocker
atoms collect the substitutions applied during the
derivation of clauses.

Our approach to handling default rules is to delay
justification checking of blocker atoms until a first-
order proof is found and then perform recursively
deepening checks with diminishing time limits. If a
clause that contains only blocker atoms is derived dur-
ing the proof search, the proof is found, as without the
blockers it would be an empty clause.

Our system first produces a potentially large num-
ber of different candidate proofs and then enters a
recursive checking phase. When checking a blocker
with a given priority, it is not allowed to use default
rules with a lower priority. The main assumed use
of priorities is preferring rules associated with more
specific concepts to these of more general concepts,
as proposed in (Brewka, 1994). To this end we have
built a data structure and an efficient algorithm for
checking whether an English word ws occurs below
a more general word wg on a branch of Wordnet.

3 KNOWLEDGE GRAPHS

Quasimodo and ConceptNet are large knowledge
graphs with different goals and representation prin-
ciples. The main focus of our paper is on converting
them to a FOL representation augmented with default
rules and confidences, so that a question answering or
problem solving reasoner can use them together in a
single derivation.

The converted data sets are represented in JSON
using the specification proposed in (Tammet and Sut-
cliffe, 2021; Tammet, 2020). In this paper we will use
conventional FOL syntax for examples.

The commonsense knowledge base construction
consists of

1. Converting source relations or sentences to FOL
rules using a limited set of relations.

Knowledge Integration for Commonsense Reasoning with Default Logic

149



2. Assigning confidences to rules.

3. Adding blocker atoms to default rules.

4. Normalizing terms coming from heterogeneous
data sources.

5. Finding semantic similarities.

6. Adding general inference rules.

The resulting knowledge base consists of rules that
come directly from data sources (Sections 3.1–3.3)
and the added layer of similarity and general infer-
ence rules (Sections 3.4–3.5). The current knowl-
edge graphs are limited in terms of diversity and cov-
erage of commonsense knowledge, so we are look-
ing to grow our knowledge base using more sources
– ATOMIC20

20, large neural network language models
and raw text (Section 3.6).

3.1 Quasimodo

Quasimodo (Romero et al., 2019) gathers candidate
assertions from search engine auto-completion sug-
gestions and question answering forums like Reddit,
Quora etc. These are further corroborated using other
sources with the help of a learned regression model.
A ranking step adds typicality and plausibility.

The latest version 4.3 of Quasimodo has a size
of roughly one gigabyte and contains over 6 million
rows of triples augmented with negative/positive sign
s, salience score σ, source information etc (Table 1).
Triple elements are snippets of natural language texts,
not formal or standardized predicate/argument struc-
tures. If s = 1 then the relation is negative. The
salience score σ indicates whether the given property
is typically associated with the given subject. Some of
the salience scores do not match our common knowl-
edge well.

We convert Quasimodo to logic by mapping each
relation to a predicate. We generate three types of
rules: class membership, known relations and generic
subject-verb-object relations.

Class membership rules cover both the taxonomy
of classes and instance membership. Quasimodo does
not contain many instances: most of its knowledge
concerns classes. In this paper, we use IsA for class
membership rules. Known relations are mapped to a
small set of predicates with a known meaning, for ex-
ample Location and HasA, the latter meaning posses-
sion of something. The Quasimodo relations ”live”,
”be in” and ”be on” are mapped to the Location pred-
icate. The advantage of using known relations is that
we can create general inference rules for them (see
Section 3.5).

All other relations are represented as a generic
subject-verb-object (SVO) relation. For example, in

Table 1, ”fly” does not have a matching predicate in
our representation language and the row will be en-
coded as an SVO. Reasoning with the SVO predicates
is still possible, but requires that the vocabulary used
in terms is limited or allows fuzzy matching.

If the Quasimodo relation is negative, then we
negate the conclusion of the rule. The plausibility
score is taken directly ”as is” to be the confidence of
the rule.

We treat everything except taxonomy rules as de-
fault rules. We use a taxonomy graph describing the
hierarchy of classes. If the subject of the rule is is
present in our taxonomy graph, we create a blocker
atom for this rule.

The taxonomy graph is derived from the hyper-
nym and hyponym relations of Wordnet. We create a
directed graph and remove all edges which are one-
directional, e.g. where word wi is a hypernym of w j
but w j is not a hyponym of wi. This is sufficient to
make an acyclic graph. We delete all nodes that have
no remaining edges. We then assign the topological
sort order of the graph by the hyponym relation as the
identifier of the word. When making a blocker atom,
we assign the identifier of the word (synset) match-
ing the subject of the rule from the taxonomy as the
blocker priority number.

If word wg, with the identifier g is more general
than word ws, then g < s. This is used as a heuristic
during the proof search. If g > s then wg is not more
general. Otherwise, a short search on the taxonomy
graph by the the hypernym relation is needed to con-
firm that wg is more general.

We describe how we parse longer text fragments
from Quasimodo in Section 3.3.
Example 3 (Logical rules from Quasimodo). A tax-
onomy relation:

IsA(bird,penguin) : 0.96
A known relation, also present in Table 1. The num-
ber 84487 is the identifier of ”penguin” from the tax-
onomy graph. This rule means that we have 0.99 con-
fidence that penguins do not fly, unless there is some
more specific penguin that has this capability:

IsA(penguin,X)→ (¬Capability(fly,X)∨
$block(84487,Capability(fly,X))) : 0.99

An generic subject-verb-object relation ”eat” with no
blocker. This rule contains a compound noun ”leop-
ard seal” encoded as one term:
IsA(leopard seal,X)→ SVO(penguin,eat,X) : 0.92

3.2 ConceptNet

ConceptNet (Speer et al., 2017) is another triple-
based knowledge graph. The English subset consists
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Table 1: Excerpt of Quasimodo data.

Subject Relation Object s σ

bird can flying 1 0.99
bird fly over the acropolis 1 0.99
birds eye be protected from winds when flying 0 0.38
penguin can fly 1 0.99
penguin can fly 0 0.42
penguin has property unable to fly 0 0.76

of ca 21 million edges. It is built from the earlier Open
Mind Common Sense project by adding data obtained
Wiktionary, WordNet, DBPedia, crowd-sourced hu-
man input and several other sources. The edges
(triples) use a pre-determined set of 36 relations. The
majority of triples use a vague RelatedTo relation, fol-
lowed by mostly linguistic FormOf, DerivedForm, IsA
and Synonym. The percentage of more specific re-
lations is relatively low. In comparison, Quasimodo
contains more detailed knowledge, although it also
contains more erroneous facts and requires further
natural language processing for effective use. The
ConceptNet relations also have a weight parameter,
which appears to be not well maintained. There are
no negative facts.

As an example, ConceptNet contains nine IsA re-
lations for penguin (animal, bird, seabird, weapon etc)
and just three additional non-linguistic relations – At-
Location (zoo and Antarctica) and Desires (enough to
eat).

We convert ConceptNet using the same approach
as Quasimodo, using edge weights as rule confi-
dences. The main difference is that ConceptNet al-
ready has a limited set of relations which are easy to
map to predicates.

3.3 Text Fragments

All parts of Quasimodo triples may contain text frag-
ments that require natural language parsing to inter-
pret properly. Given the Quasimodo triple (mutual
friend, show up, on facebook), we could encode it as
SVO(on f acebook,show up,mutual f riend). This
representation is poor, because we can not infer any-
thing about ”friend” or ”Facebook”, which the triple
clearly is about. The words ”show”, ”up”, ”on”, cur-
rently split between multiple elements, may be better
represented as a generic relation of one object being
contained by another. Our goal is to encode the triple
as:

IsA(friend,X)∧Property(mutual,X)→
Location(facebook,X)

This represents the structural transformation. We do
not propose any particular mapping to predicates, e.g.

the predicates Property and Location may change in
the course of our ongoing work. For brevity, we omit-
ted the confidence and the blocker clause.

The existing solutions to extract relations from
text fall under three categories: triple extraction (An-
geli et al., 2015; Gashteovski et al., 2017; West et al.,
2021), parsing from a controlled language (Fuchs
et al., 2008) and full first order logic extraction (Basile
et al., 2016). There are tool kits that do not offer a
ready-made solution but can be used to write an ap-
plication to do the required translation, e.g. Deep-
Dive (Zhang, 2015). The triple extraction tools like
OpenIE (Angeli et al., 2015) are not practical here,
because their output is similar to Quasimodo triples,
requiring still further parsing. Using a controlled lan-
guage would merely shift the problem to translating
from natural language to controlled language. That
leaves the solutions that directly output first order
logic.

The gold standard in translating raw text to full
first order logic is Boxer (Bos, 2008), more recently
packaged into a full text to meaning representation
pipeline KNEWS (Basile et al., 2016). The Boxer
translation of the example triple is

∃A,B,C,D,E
a1up(A)∧ r1Manner(C,A)∧ r1on(C,B)∧
n1facebook(B)∧ r1Actor(C,E)∧ v1show(C)∧
n1friend(E)∧a1mutual(D)∧ r1Theme(D,E)

The output is essentially a graph like a syntactic parse
tree. The edges represent semantic rather than syntac-
tic relations. The structure is still different from our
desired representation and further translation would
be needed. The Boxer pipeline processed 1000 rules/s
on our test system which is fast enough for convert-
ing large triple sets and 3 times faster than our own
pipeline.

Because the output of existing semantic pars-
ing solutions requires further, potentially non-trivial
translation, we have opted to implement the seman-
tic interpretation ourselves based on an out-of-the box
syntactic parser. About 5 million relation triple ele-
ments, or 27% of Quasimodo are text fragments con-
sisting of multiple words. The grammatical structures
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Figure 1: Cumulative distribution of grammatical structures
in knowledge graphs. The vertical axis is the fraction of the
triples covered by the top n most common structures.

Table 2: Most common grammatical structures of the object
in Quasimodo as constituency parse trees. wi are placehold-
ers for words.

Constituency tree Count

(NP (JJ w1) (NN w2)) 147574
(NP (NN w1) (NN w2)) 141173
(NP (JJ w1) (NNS w2)) 72167
(NP (NN w1) (NNS w2)) 47692

in these fragments have long-tailed distributions (Fig-
ure 1), where a small number of common patterns
cover the majority of fragments. For example, there
are a total of 69178 distinct structures in the object
element, but the most common 100 structures cover
approximately 60% of the cases. The most common
structures are noun phrases (Table 2). The object and
subject elements share the same common structures,
but for the relation the vast majority of structures are
clauses containing a verb phrase.

The distribution of structures allows us to inter-
pret a large fraction of the fragments by recognizing
relatively few distinct patterns. Our fragment parser
tokenizes and tags the input using the Stanza NLP
pipeline (Qi et al., 2020). We pre-process the result-
ing consituency parse trees by simplifying them and
detecting compound nouns. If an n-gram of tokens
matches a dictionary word from Wiktionary (Ylonen,
2022), or if Stanza’s NER recognizes a sequence of
tokens as a named entity, the tokens will be concate-
nated into a single noun chunk. We then match the
parse tree to grammatical structure patterns. For ex-
ample, if the object of a triple matches the pattern (NP
(JJ w1) (NN w2)) then the object will be w2, with the
added property or qualifier w1.

Currently we have implemented 19 patterns for
subjects and objects and 9 patterns for relations. Our
parser matched 82% of multi-word subjects and ob-
jects and 40% of multi-word relations in Quasimodo.

The coverage can be developed further by adding pat-
terns, but with diminishing returns.

Example 4 (Fragment parsing). The negative Quasi-
modo fact ”Norhern Ireland,have,rugby team” is en-
coded as:

IsA(northern ireland,X)→¬HasA(sk(X),X)∧
IsA(team,sk(X))∧
Property(rugby,sk(X))

”Northern Ireland” is a named entity, encoded as
one term. The fragment ”rugby team” is split by the
parser. The rule is skolemized because new variables
introduced to the right hand side must be existentially
bound to a left hand side variable.

3.4 Term Normalization and Similarity

The objects, properties and other elements of the
knowledge base we reason about can have multiple
textual representations. If some facts are about bird
and others about birds, for the inference engine these
are disjoint pieces of knowledge. To effectively in-
tegrate multiple knowledge bases, we need to inform
the reasoner that both bird and birds refer to the same
class. Because we use a limited set of predicates, in
our knowledge base the multiple representations oc-
cur as terms. We normalize the terms, choosing a
single representation for what we consider the same
concept. We use English language lemmatization and
reduction to Wordnet synsets using Stanza (Qi et al.,
2020) and nltk (Bird et al., 2009).

Some concepts are different but similar. For ex-
ample, we know that dog and wolf are the same in
many ways. This can be useful for extending our rea-
soning capabilities – if we are missing the fact that
wolves have fur, we may infer than from similarity to
dogs. There are also terms that we should normalize,
but cannot because they are not present in Wordnet.
Indirect semantic similarity helps recognizing such
synonyms.

Similarity-based inferences cannot be statically
resolved before the proof search. Consider the fol-
lowing knowledge:

IsA(south pole,X)→ Property(cold,X) : 0.9
IsA(south pole,X)→ Property(dry land,X) : 0.9
IsA(north pole,X)→¬Property(dry land,X) : 0.98

Knowing that North Pole and South Pole are similar,
it is correct to infer that North Pole is cold. It is not
correct to infer that there is dry land at North Pole.
This can only be discovered during the proof search,
particularly because the negative Property fact may
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itself be a product of proof search and not be statically
present.

We generate facts Similar(term j, termi) : si j where
term j are the terms in k-neighborhood of termi and
si j is the semantic similarity. We include terms that
appear in subject and object. We exclude multi-
word text fragments which we failed to parse cor-
rectly and where similarities to other terms may be
coincidental. Each term is assigned a semantic vector
computed with SpaCy’s1 ”en core web lg” model.
Because neighborhood queries at this scale (10000-
500000 items) and dimensionality (300) are expen-
sive even with the specialized Ball tree index, we use
a fast approximate index2.

Semantic similarity is not clearly defined – the
distance functions have mathematical definitions but
they operate on vectors which are highly subjec-
tive and method-dependent. We make the following
adjustments to achieve subjectively better ”common
sense” similarity with SpaCy’s general purpose vec-
tors.
Neighborhood Filtering. Semantic vectors do not
always follow human common sense. With the
”en core web lg” model, the similarity of Northern
Europe and Southern Europe is 0.97, but the similar-
ity of Italy and Southern Europe is 0.66. The terms
northern and southern themselves are semantically
very similar, but in human usage as identities, they
often convey a cultural and geographical distance.
Similar effects happen with antonyms (warm, cold),
proper nouns, enumerators (one, two, Monday, Tues-
day). We apply a soft filter which weakens the sim-
ilarity between a pair of terms if we detect that the
terms contain antonyms, or if enumerators or proper
nouns are present in both terms.
Frequent Terms. Out of 308322 ConceptNet and
Quasimodo terms we selected for similarity data, 61%
appear only once.

With the size of neighborhood k = 5, the neighbor-
hoods of common (more than 10 occurrences) terms
consist of 48% rare (1 occurrence) terms. So, rare
terms prevent seeing similarities between more com-
mon terms. By definition, rare terms only cover a
small fraction of the knowledge base. To facilitate
connecting more facts by similarity, we include only
common terms for generating similarity facts. In-
tuitively, the resulting similarities contain fewer sur-
prises.

1https://github.com/explosion/spaCy
2https://github.com/spotify/annoy

3.5 Inference Rules

The knowledge graphs Quasimodo and ConceptNet
contain factual statements like ”parrots are birds”
and ”birds can fly”, but to infer that ”parrots can
fly” from the knowledge, general inference rules are
needed. Our knowledge base construction includes
creating the rules for transitivity of the IsA relation
and symmetry of Similar. Generalization rules (Ex-
ample 5) are created for predicates that are inferred
from classes. Generalization is drawing a general
conclusion from specific evidence. Observing that a
person can drive a car allows us to generalize that the
person can drive other cars as well. This kind of in-
ference is not logically sound but follows ”common
sense”. The opposite direction of inference, from gen-
eral to narrow or specific, is supported by transitivity
of IsA.
Example 5 (Generalization rule). The following rela-
tions can be obtained from Quasimodo:

IsA(teenage mutant ninja turtles,X)→
SVO(pizza,eat,X) : 0.85

IsA(junk food,pizza) : 0.02

With the automatically generated rule

IsA(W,X)∧SVO(X ,Y,Z)→ SVO(W,Y,Z) : 0.8

we can infer that teenage mutant ninja turtles eat junk
food, although the confidence is < 0.02

Predicates describing classes can also be inferred
by class similarity. We automatically generate simi-
larity rules from a list of known predicates, for exam-
ple:

Similar(X ,Y )∧Property(Z,Y )→
Property(Z,X) : 0.7

With our knowledge encoding method, rules ap-
ply to instances and subclasses of a class. Reasoning
about classes should be done by populating or instan-
tiating the classes:
Example 6 (Class instantiation). Given the clause:

IsA(cat,X)→ Property(tabby,X) : 0.7

A FOL reasoner, perhaps unintuitively for a hu-
man, cannot answer the query ¬Property(tabby,cat).
However, we can populate the class with an instance:
IsA(cat,cat instance) and then query about the in-
stance: ¬Property(tabby,cat instance).

3.6 Other Data Sources

Our ongoing focus is to add more data sources to di-
versify and extend our default logic knowledge base.
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Table 3: Excerpt of ATOMIC20
20 data. X and Y are variables.

LHS Relation RHS

X votes for Y xIntent to give support
X votes for Y oReact grateful
bread ObjectUse make french toast

The ATOMIC20
20 knowledge graph (Hwang et al.,

2021) contains over a million everyday inferential
knowledge tuples about entities and events. The
bulk of knowledge encodes human attitudes, wanting,
needs, effect of action etc: commonsense information
about social interactions (Table 3).

Part of ATOMIC20
20 relations are ConceptNet-like,

e.g. AtLocation and CapableOf. These relations can
be treated as subject-relation-object triples and con-
verted similarly to the Quasimodo data, augmented
with fragment parsing (Section 3.3). The rest of the
data describe relations of events to other events or ob-
jects and social interactions. The grammatical struc-
ture in these relations is more diverse than Quasimodo
(Figure 1), so pattern matching may be less effective.
We intend to use event-based encoding with thematic
roles, proposed in many earlier papers, e.g. (Furbach
and Schon, 2016), but with the goal of having a mini-
mal rather than rich set of thematic roles.

(West et al., 2021) demonstrated that high qual-
ity knowledge graphs can be extracted from large lan-
guage models. The machine generated ATOMIC10x is
somewhat larger than ATOMIC20

20 and in the same for-
mat. The source code of their experiment is available
so there is potential to generate new relation triples
tailored for specific purposes.

As shown with Quasimodo, our knowledge base
construction pipeline can convert triples consisting
of English words or short simple text fragments.
Therefore, a suitable text source like Simple English
Wikipedia can be exploited by parsing it with OpenIE
(Angeli et al., 2015).

4 RESULTS

We have made the default logic knowledge bases we
created available3 along with the reasoning system
GK, a number of examples and a tutorial.

We experimented with a knowledge base trans-
lated from Quasimodo and English language Con-
ceptNet, consisting of 1786884 facts, 24 inference
rules and 68886 similarity rules. Our reasoning sys-
tem answers trivial questions quickly. For example,
GK proves in 4 seconds that birds fly and in 2 sec-
onds that penguins cannot fly, both with confidence

3http://logictools.org/gk/

1. The latter proof successfully invalidates the con-
tradicting flying proof stemming from a taxonomy
fact in Quasimodo by proving that the blocker holds.
To the question whether babies have hair, the system
properly gives neither a positive nor a negative con-
firmation: Quasimodo contains both a positive and a
negative fact for this statement, both with a high con-
fidence. These examples show that our automatically
constructed knowledge base can be successfully used
to reason with contradictory knowledge.

However, when we try to use Quasimodo and
ConceptNet knowledge for nontrivial questions, we
almost always fail. For example, we can infer that
sheep have wool, but cannot infer that a sheep with no
wool would be cold in cold weather. This is because
our knowledge base is missing several facts for that
chain of reasoning, starting with the fact that sheep
need wool to keep warm. In other words, there are
still not enough commonsense rules. To identify and
map the knowledge gaps we need quantitative eval-
uation. We are actively working on parsing natural
language questions and small sets of premises, so that
we can test our approach on existing commonsense
reasoning benchmarks.

5 SUMMARY

This paper describes our knowledge representation
for commonsense reasoning with default logic. Our
present target is general question answering at the
level of the understanding of a small child. We present
the methods to convert the Quasimodo and Concept-
Net knowledge graphs to our knowledge base. We
demonstrated the extraction and use of contradic-
tory and uncertain knowledge in question answering
with our inference engine built for plausible reason-
ing (Tammet et al., 2022). We cannot yet conclusively
state whether a default logic knowledge base is a com-
petitive alternative to neural language models, for that
quantitative evaluation is needed. Ongoing and future
work includes integrating more data sources and de-
veloping capability to interpret existing natural lan-
guage benchmark questions.
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J., Kovács, L., and Pattinson, D., editors, Automated
Reasoning - 11th International Joint Conference, IJ-
CAR 2022, Haifa, Israel, August 8-10, 2022, Proceed-
ings, volume 13385 of Lecture Notes in Computer Sci-
ence, pages 300–309. Springer.

Tammet, T. and Sutcliffe, G. (2021). Combining json-
ld with first order logic. In 2021 IEEE 15th Inter-
national Conference on Semantic Computing (ICSC),
pages 256–261. IEEE.

Trinh, T. H. and Le, Q. V. (2018). A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

West, P., Bhagavatula, C., Hessel, J., Hwang, J. D., Jiang,
L., Bras, R. L., Lu, X., Welleck, S., and Choi, Y.
(2021). Symbolic knowledge distillation: from gen-
eral language models to commonsense models. CoRR,
abs/2110.07178.

Ylonen, T. (2022). English machine-readable dictionary.
https://kaikki.org/dictionary/English/index.html.

Zhang, C. (2015). DeepDive: a data management system
for automatic knowledge base construction. PhD the-
sis, The University of Wisconsin-Madison.

Knowledge Integration for Commonsense Reasoning with Default Logic

155


