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Abstract: Data mining has become an integral part of many educational systems, where it provides the ability to explore
hidden relationship in educational data as well as predict students’ academic achievements. However, the pro-
posed techniques to achieve these goals, referred to as educational data mining (EDM) techniques, are mostly
not explainable. This means that the system is black-boxed and offers no insight regarding the understanding
of its decision making process. In this paper, we propose to delve into explainability in the EDM landscape.
We analyze the current state-of-the-art method in EDM, empirically scrutinize their strengths and weaknesses
regarding explainability and making suggestions on how to make them more explainable and more trustwor-
thy. Furthermore, we propose metrics able to efficiently evaluate explainable systems integrated in EDM
approaches, therefore quantifying the degree of explanability and trustworthiness of these approaches.

1 INTRODUCTION

Data mining, also referred to as Knowledge discov-
ery in data (KDD), has become a standard when deal-
ing with large datasets. It is the process of extract-
ing useful information from a large set of data, tun-
ing those information into valuable insights and pre-
dictions. When data mining is applied to educational
datasets – often collected via a learning management
system (LMS) platform, it is referred to as educational
data mining (EDM).

The growth of online learning over the past two
years due to COVID-19 has made it much easier to
collect a mass of educational data set in universities
and other educational facilities. This mass of data
has whetted the appetite of educational data mining
researchers, producing a boost in the field. How-
ever, educational data mining is not a new paradigm
in itself. Its origin goes back to the year 2000
when it was briefly addressed during research on the
intelligence of tutorial systems whose results were
presented during the workshop on “Applying Ma-
chine Learning to ITS Design/Construction” hosted
in Montreal, Canada.

During the 2000s, several other workshops on data
mining in education were held, including the “Educa-
tional Data Mining” workshop created in 2005 and
hosted in Pittsburg, USA. Two years later, a similar
and complementary workshop named workshop on
“Applying Data Mining in e-Learning” was held for

the first time in Crete, Greece, in 2007. Most of these
workshops have evolved into conferences and are
known as such nowadays. This is the case of the “In-
ternational Conference on Educational Data mining”,
which takes place this year in London, United King-
dom. In recent years, the topic of EDM has become
increasingly important and several new conferences
have been born. The most prominent among these
conferences are the “International Conference on Ar-
tificial Intelligence in Education (AIED)”, the “Inter-
national Conference on Learning Analytics & Knowl-
edge (LAK)” and the “International Educational Data
Mining Society” founded in 2011. Over the years,
the idea and purpose of the EDM has evolved signif-
icantly. In its early days, it was limited to predict-
ing students’ performance in specific courses. During
the last few years, it evolved into improving the edu-
cational process and explaining educational strategies
for better decision-making (Silva and Fonseca, 2017).
This was achieved via the development and adop-
tion of statistical, machine-learning and data-mining
methods to study educational data generated by stu-
dents and instructors.

Currently, the main metric used in EDM is the
overall prediction accuracy. However, educational
data mining exhibits a multi-targeted problem and
only focusing on the accuracy might be misleading.
In this paper, we show that in addition to accuracy,
explainability needs to be considered to better address
problems in educational data mining.
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Figure 1: Educaton Data Mining (EDM) pipeline: Overview of how EDM techniques are applied from data gathering in
learning environments such as learning management system (LMS) platform to knowledge discovery. The dashed lines
indicates revisiting previous state of the process, when the result of the current state is not suitable.

Explainability is a relatively new paradigm in data
mining that aims to shed light on the decision-making
process in predictions made by intelligent systems.
In the context of EDM, it aims to explain for exam-
ple, why a data mining algorithm predicts that a stu-
dent will not pass the mathematics subject. This is a
real challenge since modern algorithms are so sophis-
ticated that their decisions have become too complex
to express in humans understandable terms. However,
significant progress has been made in the explain-
able artificial intelligence community and explain-
ability techniques have been successfully applied to
ML models. The question of whether these tech-
niques can be used in EDM is a major concern in this
paper. A review of those techniques will be presented
in Section 2. Furthermore, section 3 will give a de-
tailed overview of the state of explainability in educa-
tional data mining.

Another artificial intelligence discipline which is
closely related to EDM is Learning Analytics (LA).
According to the call of the First International Confer-
ence on Learning Analytics and Knowledge (LAK),
LA can be defined as the measurement, collection,
analysis and reporting of data about learners and their
contexts, to understand and optimise learning and the
environments in which it occurs (Calvet Liñán and
Juan Pérez, 2015). The learning analytic process
is the same as the data mining process and can be
summarized as: an iterative process in which data is
extracted from an educational environment and pre-
processed before applying quantitative methods to
help instructors in decisions making. A schematic
representation of this process is shown in Figure 1.

In this paper, we focus on EDM and address
the limitations of the prediction accuracy, which is
the current state-of-the-art metric in evaluating and
analysing educational data mining techniques. Fur-

thermore, we give an overview of the state of explain-
ability in the EDM landscape. As will be seen in Sec-
tion 3, when designing EDM approaches, explainabil-
ity can be combined with prediction accuracy to over-
come the shortcomings of the latter. The main contri-
butions of this paper is as follows:

• We Provide a survey on EDM and compare exist-
ing EDM techniques.

• We define explainability and review the recent im-
provement made in explainable artificial intelli-
gence.

• We review the current state of explainability in
modern EDM approaches.

• We discuss the multi-dimensional requirement for
educational data mining, pointing out the limita-
tion of the prediction accuracy metric and propose
to integrate explainability in future EDM tech-
niques in order to fill the accuracy gaps.

2 EXPLANABILTIY IN GENERAL

Despite being opaque and difficult to interpret, data
mining models have spread out in many applications
from different domains such as education, healthcare,
criminal justice or autonomous driving. They help ed-
ucators predicting students’ grade, doctors making di-
agnostics or judges taking decisions. This raises con-
cern and demand for humanly understandable deci-
sions of these artificial intelligent systems.

To satisfy this demand, the concept of eXplain-
able Artificial Intelligence (XAI) has emerged with
the goal of producing AI models whose decisions are
interpretable and understandable by a non-AI-expert
human. A doctor should, for example, understand
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why an AI model diagnoses a tumour rather than sim-
ply operates on a patient because the model said so.
A judge using AI-based software to pass judgement
should be able to explain the motives and facts be-
hind that decision. An educator or visa officer should
understand why a model predicts that a student will
not succeed in his studies, instead of simply rejecting
the application because the model recommends to do
so.

On the other side, there is a growing number of
legal regulations restricting how companies and orga-
nizations make use of AI-based decisions. The EU’s
General Data Protection Rights (GDPR), – which
contains a “right to an explanation” article – for exam-
ple requires a human to examine and confirm the con-
clusions reached by an AI algorithm before applying
them. Another example is the “algorithmic account-
ability bill” of the city of New York, which requires
the fairness and validity of AI-based decisions to be
verifiable.

Due to these critical needs for ethics, fairness and
transparency of AI systems, there has been a con-
siderable increase in research interest in explainabil-
ity methods for interpreting and understanding black-
boxed automated decisions. This has led to some con-
vincing model explanation algorithms, especially in
the supervised learning domain (Burkart and Huber,
2021). Some of these algorithms have a promising
future in the EDM field. In Section 3, we will elab-
orate on which XAI algorithms we believe could be
integrated to which EDM approach to make it more
explainable.

One problem that can pose difficulties in the ac-
ceptance of this explainable methods is that the ex-
plainability capability of these algorithms is some-
times subjective since there is currently no consen-
sus on a definition of explainability. In 2.1 and 2.2,
we will review some conceptual and formal popular
meaning and definition behind explainability.

Another open challenge in explainable artificial
intelligence is to quantify explainability. We believe
a standard metric will be difficult to attempt until a
consensus has been made on a concrete definition of
explainability. However, some promising evaluation
metrics have emerged recently and will be presented
in 2.3.

2.1 Conceptual Definition of
Explainability

Although the goal of explainable artificial AI is clear
(making decisions or actions of AI systems – EDM
systems for example – explainable to a human ob-
server), there is currently no consensus on how to

define explainability. This is emphasized in a re-
cent paper (Miller, 2019), where the authors point
out the fact that most works in eXplainable AI are
based only on the researchers’ intuition of what con-
stitutes a good explanation. However, people select,
represent or comprehend explanations depending on
the discipline they are related to. From psychology,
according to (Lombrozo, 2006), explanations are the
currency in which we exchange beliefs. This def-
inition emphasizes the need for high confidence in
explanation. More recently, (Miller, 2019) formu-
lates explainability as the degree to which a human
can understand the cause of a decision. In a simi-
lar vein, (Kim et al., 2018) define explainability as
the degree to which a human can consistently pre-
dict the model result. A definition of explainability
in relation to AI is given by (Islam et al., 2019) as
the extent of transferable qualitative understanding of
the relationship between model input and prediction
in a recipient-friendly manner. (Ribeiro et al., 2016)
link explainability to visual perception. The authors
of the paper argue that explaining a decision means
presenting visual artifacts that provide qualitative un-
derstanding of the relationship between the instance’s
components (e.g. words in text, patches in an image)
and the model’s prediction. We believe a concise defi-
nition of XAI should take these rich and diverse view-
ing angle into consideration.

2.2 Formal Definition of Explainability

Consider a standard supervised learning problem – as
it is almost always the case in educational data min-
ing – and let denotes f : X 7→ Y , f ∈ F the super-
vised model trained with structured data-set Dtrain =
{xn,yn}m

n=1, which maps input feature x ∈ X to tar-
gets y ∈ Y . In this paper, we focus on local explana-
tion, which is the most common formal definition of
model interpretability. If F is complex, a local expla-
nation can be generated to understand its behavior in
some neighborhood Nx ∈ P[X ], where P[X ] denotes
the space of probability distribution over X . In ex-
plainable artificial intelligence (XAI) literature, sys-
tems that produce local explanations – local explain-
ers – are often denoted as σ : X ×F 7→ ξ, where ξ is
the set of possible explanations (Plumb et al., 2019).
It is worth mentioning that the choice of the expla-
nations system ξ greatly depends on whether or not
feature in Dtrain are semantics. In XAI, features are
said to be semantic if one can reason about them and
understand the meaning of change in their values (e.g.
a student’s age, grade or number of siblings).

To understand the decision made by a data mining
model, the vast majority of local explainers try to pre-
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dict how the model’s output would change if its input
were perturbed to some degree (Ribeiro et al., 2016;
Plumb et al., 2018). The explainer output space can
then be formalized as ξo := {g ∈ G | g : X 7→ Y },
where G denotes a class of interpretable functions.
Since the vast majority of features encountered in
EDM literature is semantic, we believe integrating lo-
cal explainers into EDM methods should be a fairly
convenient and promising task.

2.3 Quantifying Explainability

While explainability tells the how and why regarding
the decision of an AI model, it does not tell us much
about how much trust we can have in that decision. As
a result, the question of how to quantify explainability
is still an open challenge. In recent years, some met-
rics have been proposed to quantify proposed explain-
ability systems. The rest of this section will present
two of the most popular metrics.

Fidelity Metric. The fidelity metric evaluates ex-
plainability by measuring how accurately g models
f in a neighborhood Nx (Ribeiro et al., 2016; Plumb
et al., 2019). It can be formally defined as:

F( f ,g,Nx) := Ex̃∼Nx [(g(x̃)− f (x̃))2]. (1)

In this context, a lower fidelity value (lower is bet-
ter) means that the explainability system is able to
accurately determine which patterns were relevant to
the model for making this prediction. In the context
of EDM, an explanation with good fidelity accurately
identifies which pattern in the data the model used to
predict the student grade or overall student academic
year achievement, for example.

Stability Metric. The stability metric has been pro-
posed by (Alvarez Melis and Jaakkola, 2018) and
consists of evaluating the degree to which the expla-
nation changes between points in the neighborhood
Nx:

S( f ,σ,Nx) := Ex̃∼Nx [ ||(σ(x, f )−σ(x̃, f ))||22 ]. (2)

In this setting, the lower the stability value (lower is
better), the more reliable and trustworthy the model
explainability.

In the next section, we will analyse explainabil-
ity in EDM. Doing so, we will give some suggestions
on how to integrate explainability system in EDM ap-
proaches where it is missing. For the evaluation of
such explainability system, the tools described in this
section can be used.

3 EXPLAINABILITY IN
EDUCATIONAL DATA MINING

Explainable AI (XAI) is a relatively new field that has
not yet really penetrated the EDM field, although it
would be of great importance in achieving the EDM
objectives. Generally, the objective of EDM is to im-
prove the educational system by assisting adminis-
trators and educators in decision-making tasks, like,
grades prediction (Bhopal and Myers, 2020), predict-
ing student dropout (Gardner et al., 2019), education
admission decisions (Marcinkowski et al., 2020) or
forecasting on-time graduation of students (Hutt et al.,
2019). In all these tasks, the current state of research
in EDM considers accuracy as the main metric to
evaluate the quality of a model. This allows to gain
great insight since accuracy is important. However,
EDM often infers a multi-target problem, therefore,
just focusing on accuracy is misleading and will not
be sufficient to reach the goal. This accuracy short-
coming can be overcome by integrating explanability
in EDM approaches, as will be shown in this section.

The rest of this section will explore if and how
explainability is integrated into state-of-the-art educa-
tional data mining techniques. A summary of this ex-
ploration on the most prominent state-of-the-art EDM
techniques is given in Table 1. Before delving into
explainability in the current state of EDM research
landscape, let briefly discuss the motivation for using
explainability in EDM.

3.1 Advantages of using Explainability
in EDM

To maintain the integrity of the data and validate the
ethical decision made by a model, explainable AI
should be used in EDM for deriving an understand-
ing of the important features that might be directly
effecting the students’ performance and help them
in choosing suitable courses of interest for example.
Furthermore, instead of focusing on the students’ per-
formance and result-oriented examinations, the con-
sideration and understanding of various attributes af-
fecting students’ performance and behavioural areas
is an important aspect for instructors. This is not a
trivial task since the educational dataset is dynamic,
as it consists of varying attributes such as location,
courses chosen, behavioural factors, historical perfor-
mance records and many more for each and every in-
dividual student. There is a massive necessity for sup-
porting students’ achievement, whether good or weak,
answering the question why and also discern the in-
formation for betterment of students’ performance.
Explainability also determines the model’s prediction
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strategy’s intrinsic bias (Gaur et al., 2020). Moreover,
explainability opens new research areas and ensures
decision-making based on domain knowledge.

In a nutshell, eXplainable Artificial Intelligence
(XAI) would not only provide the user with the per-
formance predictions but also necessitates the evalu-
ation of underlying features which play the medium
for reaching out to specific predictions.

3.2 EDM Approaches Adressing
Explainability

Recent research in educational data mining used at-
tention models to leverage a certain degree of in-
terpretability and visibility of words in sentences to
which the model predicts responses. This is of-
ten achieved by translating the model into responses
to questions where sentences are separated by OR
clauses. In (Gaur et al., 2020) for example, the
authors describe possible ways of infusing knowl-
edge graphs in deep learning (DL) models using
knowledge-aware loss function or knowledge-aware
propagation function. The former function can be
used to calculate the deviations in the information at
each and every layer of the DL model and for every
epoch during learning. The latter can interpret the
lost information and transfers the lost information us-
ing mathematical procedures. The paper describes a
use case on students’ academic performance with aca-
demic domain knowledge as knowledge graph. This
allows to infuse deep learning to the model for not
only making predictions but also estimate the incor-
rect decisiveness of meta concepts when solving a test
and provide us with the students’ knowledge. For ex-
ample, a student is asked to solve a problem encap-
sulating concepts of quadratic equations and physics,
the correctness to the answer explains his domain
knowledge in either one of the concepts or both. This
method provides a certain level of explanation of the
model decision making process.

Another paper by (Hasib et al., 2022) approaches
the explainability problem in EDM in a very different
way. The authors described the approach of utilizing
five different data mining algorithms such as Logis-
tic Regression, K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Naive Bayes and XGBoost
for classification task to predict the accurate categor-
ical estimations of five classes (Excellent, Good, Sat-
isfactory, Poor and Failure) of high-school student
dataset on two courses. The proposed experiments
showcase an excellent accuracy in utilizing the SVM
approach and provide a comparative analysis of the
five algorithms used. To explain the integrity of pre-
dicted results, the author trained LIME (Local Inter-

pretable Model-agnostic Explanations), a popular lo-
cal explainer model, to understand the changes in the
data and the effect of these changes on the predic-
tion results for five classification algorithms. How-
ever, LIME is better suited for image data-set and has
shown some limitations when applied to EDM data.

3.3 EDM Approaches Lacking
Explainability

The vast majority of approaches in educational data
mining concentrate on the accuracy of the model be-
ing deployed, therefore largely neglecting its explain-
ability. This result in EDM approaches performing
well in regard of their accuracy, but they are not ex-
plainable. This lack of explainability goes against re-
cent legislation like the EU’s ”General Data Protec-
tion Right” (GDPR), for example, which requires the
decision making process of an AI algorithm to be hu-
manly understandable.

One of such EDM technique exclusively focusing
on accuracy has been proposed in (Asif et al., 2017),
where the authors concentrated on predicting the aca-
demic achievements of students at the end of a four
year study program. This is a multi-target problem
since it includes predicting the student grade at each
course for example. The main finding of the paper
was the importance for the educators to concentrate
on a small number of courses showing particularly
good or poor performance. Doing so, support can
be offered to under-performing students as well as
advice or opportunities to high-performing students.
Their model which mainly built on decision tree and
random forest does not tackle the explainability is-
sue. However, this will be an interesting feature, es-
pecially in the case of a multi-target problem as de-
scribed in their paper. Fortunately, their method is
lightweight and integrating an explainability module
like EXpO (Explanation-based Optimization), which
has been presented in (Plumb et al., 2019), should be
fairly straightforward.

An approach with a similar objective has been
proposed in (Burgos et al., 2018). The goal here was
to predict the overall grade a student would get in the
subsequent semester. Here again, the approach fo-
cuses on the model prediction accuracy at the expense
of its explainability. Although this is a single-target
problem in contrast to the previously mentioned ap-
proach by (Asif et al., 2017), which was a multi tar-
get problem, understanding the algorithm’s decision-
making process would be a valuable asset. This
should be conveniently achievable with an explainer
like FTSD (Functional Transparency for Structured
Data) proposed in (Lee et al., 2019).
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Table 1: State-of-the-art Approaches for Educational Data Mining. For each method, we describe the task tackled, the data
mining methods used, and whether or not explainability has been addressed.

Methods Tasks Methods Explainability

(Hasib et al., 2022) Regression,
Classification

KNN, XG-Boost, SVM, Logistic
Regression and Naive Bayes

√

(Hoffait and Schyns, 2017) Classification RF, LR, ANN ×

(Fernandes et al., 2019) Classification Gradient Boosting ×

(Gaur et al., 2020) Regression Knowledge Graphs
infused DL model

√

(Cruz-Jesus et al., 2020) Classification DT, RF, SVM ×

(Toivonen and Jormanainen, 2019) Classification DT ×

(Kaur et al., 2015) Regression Classification Algorithms ×

(Asif et al., 2017) Regression DT, RF ×

(Waheed et al., 2020) Classification ANN ×

(Xu et al., 2019) Regression DT, SVM ×

(Burgos et al., 2018) Regression SVM, FNN ×

(Rebai et al., 2020) Regression,
Classification RT, RF ×

Another view of the EDM problem has been pro-
posed by (Waheed et al., 2020). They suggest a model
analyzing students’ records related to their naviga-
tion through a learning management system (LMS)
platform. The authors demonstrate that a student’s
clickstream activity has a significant impact on its
performance. More precisely, students who navigate
through courses achieve better results. Their approach
which is based on deep neural networks is complex
and its decision is difficult to explain or interpret. In-
corporating a neural network based local explainers
like RRR (Right for the Right Reason) (Shao et al.,
2021) – an explainer, which regularizes a black-box
model via a regularizer that involves a model’s expla-
nations – into their model could enhance the trustwor-
thiness of the results.

Tackling a similar problem as the previously men-
tioned approach, (Xu et al., 2019) proposed to model
the relationship between Internet usage behaviors and
academic performance of undergraduate students via
decision tree and SVM. The final model therefore pre-
dicts student academic performance from Internet us-

age data. The authors found a positive correlation be-
tween academic performance and internet connection
frequency, whereas internet traffic volume was neg-
atively correlated with academic performance. Al-
though they do not mention the explanation of the
model in their article, their method is already intu-
itive in itself and its result should be fairly explain-
able. Nonetheless, the integration of a fairly simple
explainer should not be a complicated task.

From a different perspective, (Rebai et al., 2020)
proposed to identify the key factors that impact
schools’ academic performance and to explore the re-
lationships between these factors. Their regression
tree model featured that factors, which are the most
correlated to high student performance are compe-
tition, school size, class size and parental pressure.
Their model does not provide any explanation on
its decision-making process. Moreover, because we
could not find any implementation of their method,
it is difficult to assess whether the integration of an
explainability module would be good achievable or a
relatively complex task.
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In a related move, a model trained with demo-
graphic characteristics of students of a federal district
of Brazil was proposed by (Fernandes et al., 2019).
The approach which aims at predicting student’s aca-
demic performance uses classification models based
on the Gradient Boosting Machine (GBM). The re-
sults indicate that demographic features like neigh-
bourhood, school and age are crucial indicators of
student success or failure. In their paper, the au-
thors provide usecase to understand the functioning of
their model. However, understanding how the model
works do not help to understand the model decision
process when predicting a specific class. We sug-
gest the integration of a model agnostic method like
SHARP (Lundberg and Lee, 2017) to make their ap-
proach more interpretable.

A similar and more recent study based on stu-
dent’s demographic characteristics has been proposed
in (Cruz-Jesus et al., 2020), where the authors develop
a model able to predict the academic achievement of
public high school students in Portugal. The dataset
consisted of 16 demographics on 110,627 students
among which gender, age, internet access, computer
possession or class attendance. The authors imple-
ment many variants of their approach using various
data mining techniques such as K-nearest neighbours,
logistic regression, support vector machine or artifi-
cial neural networks. These implementations achieve
a student performance prediction accuracy ranging
from 51.2% to 81.1%. Interestingly, the variants of
their implementation resulting in low accuracies of-
fer a greater flexibility regarding the integration of an
explainability module. On the other side, the imple-
mentations that demonstrate the best accuracies are
more complex and integrating an explainability mod-
ule without compromising the models accuracies is
not a trivial task. This difficulty is well illustrated
in their ANN model, which is a complex black box
model, thus making the integration of external com-
ponent difficult. A technique that could be used to
infuse explainability into their neural network is the
one proposed in (Plumb et al., 2019), which regular-
izes an ANN for explanation quality at training time.

To wrap up the exploration and importance of ex-
plainability in EDM, Figure 2 compares the neighbor-
hood fidelity metric (presented in 2.3) of the simple
FTSD explainer, which was particularly designed for
structured data, and the predictive mean square error
of several models trained on the UCI Educational Pro-
cess Mining (EPM) regression dataset.
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Figure 2: Neighborhood Fidelity of the FTSD explaina-
tions (lower is better) vs. predictive MSE of several model
trained on the UCI “EPM” regression dataset.

3.4 Discussion and Outlook

An empirical conclusion that can be made out of this
section is that when designing EDM approaches, the
educational data mining community should try to find
a trade-off between prediction accuracy and model
explanation. Good reasons for this are on one side the
constantly growing demands and legislation for hu-
manly understandable decision of artificial intelligent
system and on the other side the easier debugging and
enhancement of the trustworthiness of those systems.
Improving the trustworthiness of EDM approaches by
making their decision process understandable is of
crucial importance since EDM decisions are applied
to humans, for example when deciding to accept or
reject an application for a study visa or an application
for a specific program.

In view of this, more attention should be paid on
providing EDM approaches that are explainable, even
at the accuracy cost. In designing these human under-
standable models, the EDM community could inspire
from the few literatures in the XAI community (Al-
varez Melis and Jaakkola, 2018; Plumb et al., 2019;
Al-Shedivat et al., 2020) that have thematized on this
accuracy-explainability trade-off.

4 CONCLUSION

In this work, we addressed the explainability problem
in educational data mining. We made several obser-
vations, both conceptual and empirical, which open
future research directions. In particular, we noticed
that explainability is not well addressed in EDM al-
though it would be of great importance in satisfying
regulations about artificial intelligent systems as well
as making EDM more trustworthy. Furthermore, we
took a look at the current state of explainable artifi-
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cial intelligence (XAI) research both in terms of con-
ceptual formalism and evaluation metrics and propose
some XAI methods that could be incorporated into
specific state-of-the-art EDM approaches.

In the long horizon, achieving explainable EDM
would have a great impact on education and should
be among significant goals for a healthier and trust-
worthy EDM practice. Our work is a foundational
research and does not lead to any direct applications.
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