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Abstract: Systematic Literature Review (SLR) studies aim to leverage relevant insights from scientific publications to
achieve a comprehensive overview of the academic progress of a specific field. In recent years, a major
effort has been expended in automating the SLR process by extracting, processing, and presenting the synthe-
sized findings. However, implementations capable of few-shot classification for fields of study with a smaller
amount of material available seem to be lacking. This study aims to present a system capable of conducting
automated systematic literature reviews on classification constraint by a few-shot learning. We propose an
open-source, domain-agnostic meta-learning SLR framework for few-shot classification, which has been val-
idated using 64 SLR datasets. We also define an Adjusted Work Saved over Sampling (AWSS) metric to take
into account the class imbalance during validation. The initial results show that AWSS@95% scored as high
as 0.9 when validating our learner with data from 32 domains (just 16 examples were used for training in each
domain), and only four of them resulted in scores lower than 0.1. These findings indicate significant savings
in screening time for literature reviewers.

1 INTRODUCTION

The Systematic Literature Review (SLR) is a key
tool for comprehending the status quo of a research
area. It is a type of study that summarizes all avail-
able data fitting pre-specified criteria to answer pre-
cise research questions providing evidence of direc-
tions taken in recent years and the next steps indicated
by the scientific community (Kusa et al., 2022). SLR
is a means of identifying, evaluating, and synthesiz-
ing available research relevant to a particular research
question (van Dinter et al., 2021b). Citation screening
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is the stage where reviewers need to read and com-
prehend hundreds (or thousands) of documents and
decide whether or not they should be included in the
systematic review (Kusa et al., 2022). The collec-
tion, extraction, and synthesizing of the required data
for systematic reviews are known to be highly man-
ual, error-prone, and labor-intensive tasks (van Dinter
et al., 2021c; Kusa et al., 2022). The workload in-
volved in the SLR process is enormous and the pro-
cess is slow, which motivates the effort to automate
this process.

Despite the benefits obtained by the automation
of SLR, its exploration is still in its infancy, and
the theme has been scarcely discussed (Borges et al.,
2021). A systematic overview of the current state-of-
the-art in SLR automation seems to be lacking (van
Dinter et al., 2021c). The primary purpose of SLR au-
tomation is to cut down the cost of systematic reviews
and to reduce human error (van Dinter et al., 2021c).
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Traditional Machine Learning algorithms have been
efficient in reducing researcher time, but they have
labeling accuracy limitations (Howard et al., 2016).
These methods may not always converge to a high re-
call performance of at least 95%, which is a key re-
quirement of the citation screening task (Bekhuis and
Demner-Fushman, 2012).

The basic methods of Natural Language Process-
ing (NLP) are used for automated SLR processes.
NLP refers to a branch of computer science and more
specifically, a branch of artificial intelligence con-
cerned with giving computers the ability to under-
stand texts and spoken words in much the same way
human beings can (IBM Cloud Education, 2021). Re-
searchers should take advantage of the advances in
NLP capability and the usage of its technologies to
do further research (Collins et al., 2021).

Concerning the text classification, Support Vector
Machines (SVM) have historically always performed
well on this task because of their ability to general-
ize well on a large number of features (van den Bulk
et al., 2022). However, they have been surpassed
by Pre-trained Language Models (PLMs) based on
Artificial Neural Networks (ANN) such as Embed-
dings from Language Model (ELMo) (Peters et al.,
2018), or in transformers such as Bidirectional En-
coder Representations from Transformers (BERT),
(van den Bulk et al., 2022). ELMo and BERT have
been effective in text classification tasks as they gain a
deep understanding of the behavior of the textual lan-
guage. Nonetheless, neural networks often perform
optimally when there is an extensive dataset (Konto-
natsios et al., 2020; van Dinter et al., 2021a).

For an automated system to be beneficial to sys-
tematic reviewers, it should save time and miss as
few relevant papers as possible (Kusa et al., 2022).
Besides, the automated SLR process displays a trade
off issue: the state-of-the-art (SOTA) provides neu-
ral network models that perform well in this problem.
However, these models require a large labeled domain
dataset. Labeling on a large domain takes a significant
amount of time, which wastes a researcher’s time and
budget constraints (van Dinter et al., 2021c). There-
fore, the SOTA of automated SLR process requires a
skillful algorithm that performs well on this problem
using as little labeled domain data as possible. On the
other hand, it is well-known that pre-training and fine-
tuning even when evaluating small-scale data can suf-
fer from instability, and results may change dramati-
cally given a new split of data (Wang et al., 2021).

Regarding the challenge indicated above, Meta-
learning has emerged as an approach for learning
from small amounts of data (Nichol et al., 2018). To
achieve the best performance of the machine learning

algorithms, the mechanism of learning to learn (meta-
learning) should be broad in order to adapt to different
tasks and computations required to complete these
tasks. The model (or learner) is trained during a meta-
learning phase on a set of tasks, such that the trained
model can quickly be adapted to new tasks using only
a small number of examples or trials (Finn et al.,
2017). Few-shot learning (Weigang and da Silva,
1999; Fei-Fei et al., 2003) is well-studied in the
domain of supervised tasks, where the goal is to learn
a new function from only a few input/output pairs for
that task, using primary data from similar tasks for
meta-learning (Finn et al., 2017).

Hence, we propose a Model-Agnostic Meta-
Learning (MAML) using Few-Shot Learning for Sys-
tematic Literature Review Classification in this work,
applying a similar approach reported in the literature
(Finn et al., 2017). The key idea is to train the model’s
initial parameters. The model has maximal perfor-
mance on a new task after the parameters have been
updated through one or more gradient steps computed
with a small amount of data from that new task. Con-
cerning the few-shot learning, the model requires the
reviewer to label only a few papers previously. We
also define an Adjusted Work Saved over Sampling
(AWSS@R) to create a normalized metric to com-
pare across different domains scores required when
dealing to evaluate the same learner. Finally, we dis-
cuss the fine-tuning methodology, shedding light on
the challenges of running an automated SLR, particu-
larly the automated step of citation screening.

The contributions of this paper can be summa-
rized as follows: we propose a model-agnostic meta-
learning (MAML) with few-shot learning for auto-
mated SLR classification. This methodology can be
used in SLR from different research fields. We con-
duct large-scale experiments across a total of 64 sys-
tematic review datasets to evaluate the effectiveness
of the proposed method. From the Work Saved over
Sampling (WSS@R) metric (Cohen et al., 2006), we
define an Adapted WSS@R (AWSS@R) metric to
make a fair comparison between the datasets using a
model-agnostic meta-learner. Our method yields sig-
nificant workload savings. AWSS@R metric scores
of up to 0.9 were achieved when validating our learner
using 32 data domains, only four of which resulted in
scores below 0.1. This achievement is meaningful as
these results were obtained using only 16 examples
per domain to train the model. At the same time, the
benchmark baseline used more than 60% of the ex-
amples in its domains as labeled data to train its mod-
els. Finally, our project is publicly available and open
source1.

1https://github.com/BecomeAllan/ML-SLRC
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2 RELATED WORKS

The SLR process is separated into several steps to
increase rigor and reproducibility (van Dinter et al.,
2021b). The “Selection of primary studies (cita-
tion screening)” step is admittedly the most time-
consuming (Bannach-Brown et al., 2019; Sellak et al.,
2015; Tsafnat et al., 2018; van Dinter et al., 2021b).
As time is crucial when dealing with research at the
frontier of knowledge, finding a way to speed up the
systematic review process is a priority.

Recently, deep learning algorithms have been use-
ful in automating the citation screening process (Kon-
tonatsios et al., 2020). Van Dinter and others (van
Dinter et al., 2021b) presented the first end-to-end so-
lution to citation screening with a deep neural net-
work. Both models claim to yield the significant
workload savings of at least 10% indicating notable
savings in screening time in most domain data bench-
mark analyses (Kusa et al., 2022; Cohen et al., 2006).

The BERT model and its variants have pushed the
state of the art for many NLP tasks (Devlin et al.,
2019). BERT is based on a multi-layer bidirectional
transformer. Its training is done by conditioning both
left and right contexts, simultaneously optimizing for
tasks of a masked word and next sentence prediction
(Sun et al., 2019). SciBERT follows the same archi-
tecture as BERT but it is instead pre-trained on scien-
tific text (Beltagy et al., 2019).

The use of BERT models for the specific pur-
pose of document screening is very recent (Ioannidis,
2021; Qin et al., 2021). Kusa and others (Kusa et al.,
2022) conducted a replicability study of the first two
deep learning papers for citation screening (van Din-
ter et al., 2021b; Kontonatsios et al., 2020) and eval-
uated their performance on 23 publicly available do-
mains data. Kontonatsios and others (Kontonatsios
et al., 2020) presented an automatic text classification
approach that aims to prioritize eligible citations ear-
lier than ineligible ones. Van Dinter and others (van
Dinter et al., 2021b) proposed a Multi-Channel Con-
volutional Neural Network approach to support the
automated classification of primary studies.

The pre-trained algorithms used to automate the
citation screening process demand that the reviewer
labels a number of papers in order to train the model
using the new dataset. This category of neural net-
works is prone to overfitting when trained on small
datasets (Brownlee, 2018). Thus, a large amount
of labeled domain data is necessary. To reduce the
required effort to label a large dataset, it is neces-
sary to explore alternative methods. The combina-
tion between Meta-learning and Few-Shot learners is
a promising alternative.

Finn and others (Finn et al., 2017) proposed an al-
gorithm for meta-learning that is model-agnostic. It is
compatible with any model trained with gradient de-
scent and applicable to various learning problems, in-
cluding classification, regression, and reinforcement
learning. An approximation to this model-agnostic
meta-learning (MAML) can be obtained by ignoring
second-order derivatives and using generalized first-
order MAML (Nichol et al., 2018). Wang and others
(Wang et al., 2021) reformulated traditional classifi-
cation/regression tasks as textual entailment tasks.

This work uses the MAML strategy proposed by
Finn and others (Finn et al., 2017) with the first-order
approximation of data proposed by Nichols and others
(Nichol et al., 2018), and the entailment Few-Shot
learner strategy proposed by Wang and others (Wang
et al., 2021). Here, these approaches are applied to
the context of paper classification (include or do not
include) used in the SLR process.

3 METHODS AND TRAINING
FRAMEWORK

3.1 Data

In order to achieve a wide range of predictability,
we propose a domain-agnostic dataset comprised of
domains data from SLR on 64 topics, listed in Ta-
ble 2. As pointed out by (van Dinter et al., 2021c),
most studies use domain-dependent document meta-
data from the medical research field. A strength
of our work is the use of domains data from re-
search fields other than medical, such as the ASRe-
view Project (van de Schoot et al., 2021), Sciome
Workbench for Interactive computer-Facilitated Text-
mining (SWIFT-Review) (Howard et al., 2016), and
Cereals and Leafy Greens (van den Bulk et al., 2022).
The chosen data were reduced to titles, abstracts, and
the labels as included or not included according to the
revision criteria. We will consider included and not
included to refer to those papers classified to be in-
cluded or not included in the SLR, respectively.

3.2 SLR Classifier

In this work, we use the SLR Classifier model based
on the SciBERT PLM, due to its previously presented
advantages. The standard text classification training
task passes the input text, P1, to the learner and pre-
dicts a label based on this text. Here, this prediction
is rethought as an entailment classification, where two
bits of text, P1, P2, are passed in as the input and the
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output represents the judgment of whether the text P1
has entailment on P2 (Wang et al., 2021). P1 is the
concatenation of the title and abstract, and P2 is the
entailment text chosen as “It is a great text”.

Figure 1: Architecture of SLR Classifier.

Figure 1 shows the proposed SLR Classifier.
The proposed model uses four hidden layers of
transformer-based PLM encoders from SciBERT, fol-
lowed by a feedforward network (FNN) with an out-
put of size 200 called “Feature map”, connected to
the special token [CLS] of this chosen final SciB-
ERT output layer. Then, the 200 outputs are passed
to a hyperbolic tangent (tanh) activation function fol-
lowed by the FNN classification layer called “Classi-
fier”, which has a single output ŷ. Between the chosen
SciBERT layer output and the “Feature map”, a batch
normalization was set (Ioffe and Szegedy, 2015), and
before the tanh activation, a dropout of 0.2 was set.

The classifier layer uses a sigmoid activation to
output a prediction between 0 and 1, σ(ŷ) ∈ (0,1).
The use of this activation is beneficial for the SLR
Classifier. It can be used as a confidence ranker for
the predictions, by establishing a threshold and only
including in the review papers that the learner predicts

with higher confidence than this value (van Dinter
et al., 2021b).

The Binary cross-entropy was used to compute the
loss of this entailment classification task, adding a
weight (p > 1) to include examples to retrieve more
recall to the predictions. The loss function is given by
Loss(ŷ,y) =−[p.y. log(σ(ŷ))+(1−y). log(1−σ(ŷ))]
where ŷ is the logit of the classifier layer followed
by a sigmoid function σ(ŷ) = 1

1+e−ŷ , and the y is the
correct label.

The choice of four layers of SciBERT for the SLR
Classifier was conducted empirically. The minimal
number of layers that the model should have were ex-
perimented with to improve its results. We aimed to
reduce the number of model parameters, seeking that
the researcher could perform an automated SLR Clas-
sification task (SLRC) with minimum GPU resources.

3.3 Task Learner

Table 2 presents the classification frequencies of their
respective domain data. These domains have a se-
vere data imbalance. The challenge is to build a task
training framework that can handle a range of imbal-
anced data, such as the SLR datasets and resulting
Task Learner being domain-independent across var-
ious classification tasks. As we aim for this learner to
perform classification with as few examples as pos-
sible in a domain, the use of few-shot learning is
promising.

The proposed learner is designed to train the
SLR Classifier model with a few balanced domain
data examples to perform a classification task. We
call this framework a meta-learner - SLR Classifier
(ML-SLRC). For this proposal, we train the SLR
Classifier in as meta-learning phase with batches of
tasks S = {S1, ..,Sk} with a few balanced examples (F
examples) for each Sk task. Then we apply this model
as a starting point to learn a new specific task Sk+1 and
perform predictions on this k+1 task domain. Figure
2 illustrates this meta learner.

In practice, this framework follows a method of
MAML, which trains the learner based on a few shots,
named N-way-F-shots. The idea is to try to use
efficient starting parameters to optimize training tasks
of different domains (Finn et al., 2017). In this work,
we perform this training as 2-way-8-shots, where 2 is
the number of classes of the task (1: included, 0: not
included) with eight shots for each class. Each batch
of tasks S, is called a support set. Many batches of
test tasks, named queries and denoted as Q, are used
to test the learner’s performance in the meta-learning
and domain learning phase.
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Figure 2: ML-SLRC framework.

Since the purpose is to use a PLM like SciBERT
to have a good understanding of the text, the number
of parameters can turn into a computational problem
while calculating gradients used in MAML. The Rep-
tile algorithm is applied to handle this issue, as it is
a good approximation for this method (Nichol et al.,
2018).

3.4 Metrics

When dealing with SLR automation problems, espe-
cially those that involve optimizing the selection of
primary studies, the most used metrics to evaluate
model performance are precision, recall, and the F1-
score (van Dinter et al., 2021c). However, these tradi-
tional metrics are insufficient for learner evaluation as
they do not indicate how much effort was spared for
the researcher through the use of the learner (Kusa
et al., 2022). Furthermore, when creating a learner
to optimize the literature review process, the cost of
failing to detect relevant new literature is high, and as
such high recall is demanded (Cohen et al., 2006).

These demands led to the creation of the WSS@R
metric (Cohen et al., 2006), which was defined as
the fraction of work saved at a specific recall rate, as
stated below:

WSS@R =
T N +FN

Sample Size
− (1−R)

where TN is the number of true negatives, FN is the
number of false negatives, and R is the recall. The
WSS@R score measures the percentage of papers that
meet the original search criteria that the reviewers do
not have to read (because they have been screened out

by the classifier). Using automatic citation classifica-
tion can effectively reduce the workload of prepara-
tion of systematic review.

The WSS@R score scale depends on the sample
imbalance variation. This large variation is further
illustrated in Figure 3, which presents heatmaps of
WSS@R values considering sample sizes with differ-
ent class imbalances that lead to different WSS@R’s
perspectives. As defined in Section 3.3, the proposed
ML-SLRC method trains the model by crossing dif-
ferent domains data. For the learner to have “impar-
tiality” when evaluate with different domains, it is
necessary to normalize them. Hence, an alternative
metric to WSS@R is required. We propose a normal-
ized metric in Section 4.

4 META-LEARNING
EXPERIMENT

4.1 Adapted Work Saved over Sampling

The WSS@R score is well suited to the problem,
although it has clear limitations. It is susceptible
to high variation stemming from changes in class
imbalance (van Dinter et al., 2021b). This paper uses
many datasets to form the domain model-agnostic of
SLRs. The same starting model (learner) is used to
learn each SLR Classification task (SLRC), and the
learner’s performance must be comparable between
different datasets domains. This comparison could
not be attainable with the WSS@R metric, justifying
our proposition of a new adapted WSS@R metric. To
the best of our knowledge, it is the first time such
a metric has been suggested. We propose a case of
WSS@R that is stable regardless of class imbalance
in the sample used.

To derive this new metric, we suppose the worst
scenario for a given SLRC where the number of not
included (N) papers is much higher than the included
(P) papers. Statistically, this can be represented by
N >> P for the population distribution. Given a sam-
ple of this SLRC scenario and a learner to predict the
classifications, the WSS@R measures the quality of
the learner’s exclusion criteria on the sample by the
examples classified as not included (tn+ f n, tn and
f n are true and false negative on sample’s predictions,
respectively), given how many were correctly classi-
fied as included (t p, true positive on sample’s pre-
diction). The total sample’s classification examples,
not included and included, are given by n = tn+ f p
and p = t p+ f n, respectively, and the sample size is
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Figure 3: WSS@R by the ratio of the true labels, not included (T N%) and included (T P%) simulated.

M = n+ p. The WSS@R can be derived as

WSS@R =
tn+ f n

M
− (1−R)

WSS@R =
tn
M

+
f n
M
− (1− t p%).

Thus, with the restriction N >> P for the SLRC sce-
nario, when the sample grows to the corresponding
population size, (n, p)→ (N,P) = (T N +FP, T P+
FN), the learner’s exclusion criteria also will con-
verge the predictions to some distribution of TN,
FN (true and false negative on population’s predic-
tions, respectively) and TP, FP (true and false positive
on population’s predictions, respectively). It is rea-
sonable to approximate N ≈ N +P and f n/M → 0.
Therefore, the WSS@R can be approximated by2

WSS@R →
M→∞

T N%− (1−T P%) = AWSS@R.

We named this convergence approximation as
Adapted WSS (AWSS@R). This new formula is now
used with the assumption that a sample was given by
the worst-case scenario of the SLRC, where T N% and
T P% are the proportion’s predictions of the true clas-
sifications of not included and included, respectively.

In the case of a relatively large sample, this met-
ric is a good approximation of the WSS@R in the
sample case of n >> p. In other cases like n = p
or n << p, the WSS@R is susceptible to changes
in sample distribution to evaluate the respective work
saved. In contrast, the AWSS@R is not susceptible
because it considers the sample’s work saved rate with
the SLRC scenario assumption. The evaluation is a
relative perspective of WSS@R and can be compared

2t p% = t p
p , T N% = T N

N , and T P% = T P
P .

between the sample cases to evaluate the learner’s ex-
clusion criteria. Table 1 shows this sample’s propor-
tions cases with WSS@R and AWSS@R. If 100%
of included papers in the SLR were included by the
classifier, the WSS@100% measures the percentage
of the sample’s examples that are not included in the
SLR and were not selected to be read, therefore re-
ducing this percentage of the sample to be read. The
AWSS@100% measures the same percentage if the
sample was given by the worst SLRC perspective.
The AWSS@R is numerically comparable and can in-
fer the proposed scenario, as can be seen in Figure 4.
Different ratios are simulated to map the AWSS@R
plane, where in all cases of the sample’s ratios, the
metric is stabilized in contrast to WSS@R in Figure
3. Using both formulas is advisable for the sample
and worst-case perspective evaluation.

Table 1: AWSS@R and WSS@R values considering differ-
ent class imbalanced examples with T N% = 100%.

Sample AWSS WSS

Not included Included @0% @100% @0% @100%
550 550 0 1 0 0.50

1000 100 0 1 0 0.90
100 1000 0 1 0 0.09

4.2 Split Training 50-50

When training and validating our learner, it is impor-
tant to note the impact of task imbalance during the
meta-learning phase. The proportion of included and
not included labels in some domain tasks considered
varies vastly (Table 2). Therefore, it is necessary to
split the tasks into train, test, and validation task sets
that consider the need for the meta-learner to perform
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Figure 4: AWSS@R by the ratio of the true labels, not included (T N%) and included (T P%) simulated.

generically. Given that the training task set is a ran-
domly selected batch of tasks, if a given domain task
was already included in this batch, different examples
of this task must be chosen to train the learner. Thus,
the learner learns a task independently of the task ex-
ample, avoiding task’s example overfit.

Due to the issue raised above, we created a train-
ing task set selecting the domains from Table 2 with
over 50 entries for both not included and included
classifications. In the meta-learning phase, the learner
was set to train during four inner epochs (the number
of epochs to learn the task Sk) and 20 outer epochs
(the number of epochs to pass over all the batch of
tasks S). For each outer epoch, a new batch of tasks
S containing 20 tasks with 16 examples for each task
(eight included and eight not included examples) is
randomly initialized. To update the parameters with
the training task set, the inner phase (“learn the task”)
was set to create batches of four examples, and to up-
date the parameters, the outer phase (“learn to learn
tasks”) was set to have five tasks. All examples that
pass through the SLR Classifier have 512 tokens, and
to compute the loss, the weight of included examples
was set to 1.5 to retrieve more recall and the learn-
ing rate of the inner and outer update step were set to
5×10−5.

Table 3 summarizes the results of five attempts for
each task on the test task set3. Once the SLR Clas-
sifier model is trained in the meta-learning phase, a
new domain task is passed to be learned with 16 ex-
amples (eight included and eight not included) in the
domain learning phase to validate the learner. Ta-
ble 3 lists the mean of these five attempts. In some
cases, at 95% recall rate, the learner performs well
once the threshold (the confidence level to predict if
the example is included in the SLR task domain) sur-
passes 80%. Overall, with as few as 16 examples,
the learner achieves an AWSS@95% metric close to
one, representing a satisfactory performance and sav-
ing considerable time when labeling these different
SLR domains.

To demonstrate the learner predictions after train-

3When using @R means, the threshold was defined as
0.9 to evaluate the learner confidence level.

ing with 16 examples in one domain, the 200 out-
puts of the SLR Classifier model from the feature
map layer were mapped to 2 dimensions with t-
distributed Stochastic Neighbor Embedding t-SNE
(van der Maaten and Hinton, 2008) and plotted as dis-
persion points. To map the confidence of each point,
the sigmoid-activated classifier layer output was used.
The colors blue (0, not included) and orange (1, in-
cluded) are the true labels of these examples.

Figure 5 describes the t-SNE technique for one at-
tempt in the ”Fluoride” test task domain. In particu-
lar, Figure 5 (b) contains all included classified papers
with a threshold@95 greater than 0.798. For this case,
the accuracy is 0.9, showing a high hit rate of the true
label. Figure 5 (c) represents the predicted included
papers for a 90% threshold. Figures 5 (a), (b), and (c)
show that the learner is sorting the predicted papers,
and the learner aims to prioritize those classified as in-
cluded. Figure 5 (d) represents the ROC curve for this
attempt. The red line is the recall at 95%, confirming
the learner’s reasonable confidence in classifying the
papers using different thresholds.

4.3 Benchmark Datasets Comparison

To validate our proposed training framework, we
performed a comparison with a literature baseline
(Kusa et al., 2022). The comparison considered these
baseline domains for the test tasks phase and the other
domains defined in Table 2 for the train and validation
tasks phases.

Table 5 hands out the WSS@95% values pre-
sented in the baseline domain (Kusa et al., 2022) con-
catenated with WSS@95% and AWSS@95% of the
proposed Task Learner. The AWSS@95% shows the
normalization effect. As we can see, in general, the
WSS@95% is smaller than AWSS@95% due to the
class imbalance defined in Table 2.

Concerning these metrics, even when the learner
does not exceed the values of the benchmark domains,
there is time saved in the SLR. The average of the
AWSS@95%, considering all the domains, is 24.5%,
more than double the minimum (10%) considered
acceptable (Cohen et al., 2006). The contribution of
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Figure 5: t-SNE predictions and ROC curve of one attempt (Fluoride).

the proposed Task Learner is significant given the 16
labeled papers, a tiny amount compared to the number
of articles used to train and test the benchmarks
baselines. Several studies (Cohen et al., 2006; van
Dinter et al., 2021a; Kontonatsios et al., 2020; Kusa
et al., 2022) used more than 60% of the articles
present in the Atypical Antipsychotics domain to train
the learner.

Figure 6 (a), (b) and (c) describes the t-SNE
technique for one attempt in the test domain, Atypical
Antipsychotics. This figure shows that the learner can
sort the predictions. According to the opacity of the
dots, this sorting firstly classifies the papers predicted
as true included. Figure 6 (d) shows the ROC curve
for this case. This curve identifies that the learner’s
confidence is low when approximating the recall at
95% (red line). This fact also is exhibited in Table 4,
where the threshold at recall 95% (threshold@95%)
for the Atypical Antipsychotics domain is 29,5%. The
same is observed in all other domains included in the
test task set.

5 DISCUSSION

In this paper, we use neural network-based pre-trained
language models with MAML components to train a
model to perform primary citation screening on vari-
ous subject domains. To the best of our knowledge,
the proposed learner expands the research in the field
of automated systematic literature reviews, innovating
with the unprecedented use of meta-learning coupled
with neural network-based methods in the area.

Out of the 12 domains, the SLR Classifier learner
trained with only 16 examples in the domain learn-
ing phase, all of them had scores superior to 10%, as
shown in Table 3. In the case of the learner trained
on the benchmark domains, shown in Table 4, out of
20 tasks, the learner had scores superior to 10% in

15 of them. This indicates that the learner can con-
tribute to reducing citation screening workload. Once
again, when using the AWSS@95% as a reference, no
domains had scores below 10% in the results shown
in Table 3, and only four tasks had scores below this
value in the results seen in Table 4. The minimum
WSS@95% score for the learner was 0.05, and the
maximum score was 0.9.

In general, when comparing the results of our
learner with those of the literature (Cohen et al., 2006;
Matwin et al., 2010; Cohen, 2008; Cohen, 2011;
Howard et al., 2016), utilizing the AWSS@95% met-
ric, it can be inferred that our learner had inferior re-
sults, with some exceptions, as can be seen in Table
5. Nevertheless, the few-shot learner herein proposed
is domain-agnostic, while all the comparing models
were specifically trained for each domain with a rela-
tively large dataset and, as such, should be much less
flexible and adaptable.

In Figure 5, we can see an example where the
performance of the algorithm was suitable. As can
be seen, there is a large AUC for the ROC curve,
resulting in a low false-positive rate at a recall of
95%. Furthermore, separability between included and
not included values can emerge in the first three im-
ages. On the other hand, Figure 6 shows an exam-
ple that stresses room for improvement where the
learner showed poor performance in disentanglement
the classification confidence of the examples, neces-
sary in order to improve its ability to create separabil-
ity between classes.

6 CONCLUSION AND FUTURE
WORK

We developed a domain-agnostic ML-SLRC frame-
work using few-shot classification in this work. With
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Figure 6: T-SNE predictions and ROC curve of one attempt (Atypical Antipsychotics).

a pre-trained SLR Classifier as a learner, it is possi-
ble to conduct the citation screening of a SLR Clas-
sification task utilizing a small number of previously
labeled papers. We also proposed a new metric called
Adjusted Work Saved on Sampling at recall R%, ca-
pable of representing the proportion of examples not
included in the SLR separated to be not read if it is
the worst perspective scenario of an SLR, resulting
in comparable scores in different SLR domains with
variable classes imbalances. The results showed that
the proposed learner can classify the articles within
the domain as included or not included, presenting
reasonable WSS@R and AWSS@R values. Our pro-
posed learner saves time, preventing the reviewer
from reading papers that are not to be included in the
SLR, using just as few papers as possible to train and
perform a citation screening. The domains utilized in
our experiments considered a wide range of different
fields of research.

This paper is a part of a systematic study to
develop an SLR solution for the end-user. All code
and databases are publicly available and open-source,
so this proposed model has a practical application
to society. Future work is required to improve the
classification accuracy. Therefore, we suggest using
Active Learning, where the learning method includes
the reviewer’s interference in the training loop (Yi
et al., 2022). The learner is expected to select key
papers for the reviewer to label online among those
with the lowest probability of hitting. When the
reviewer specifically labels the papers that the model
has the most difficulty classifying, it is also expected
to increase the learner accuracy.
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APPENDIX

Tables containing the datasets description and experi-
ments results.
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Table 2: Citations for the 64 publicly available datasets used in the experiments on automated citation screening for SLRs.

Source Size Incl. Excl.

ACE Inhibitors 2214 167 2047
ADHD 781 80 701
Antihistamines 277 87 190
Atypical Antipsychotics 999 329 670
Beta Blockers 1819 266 1553
Calcium Channel Blockers 1069 246 823
Estrogens 337 77 260
NSAIDs 348 81 267
Opioids 1717 41 1676
Oral Hypoglycemics 462 134 328
Proton Pump Inhibitors 1171 220 951
Skeletal Muscle Relaxants 1318 26 1292
Statins 2659 150 2509
Triptans 573 200 373
Urinary Incontinence 271 65 206

Drug Reviews (Cohen et al., 2006) 16015 2169 13846

Distal Radius Fractures Approach 182 10 172
Distal Radius Fractures Closed Reduction 180 4 176
Hallux Valgus Prognostic 59 2 57
Head and Neck Cancer Bone 228 32 196
Head and Neck Cancer Imaging 6 2 4
Obstetric Emergency Training 150 17 133
Post Intensive Care Treatment 291 77 214
Pregnancy Medication 321 39 282
Shoulder Replacement Diagnostic 329 3 326
Shoulder Replacement Surgery 376 6 370
Shoulderdystocia Positioning 146 6 140
Shoulderdystocia Recurrence 281 5 276
Total Knee Replacement 311 25 286
Vascular Access 728 19 709

Medical Guidelines (Harmsen et al., 2021) 3588 247 3341

Bisphenol A (BPA) 7093 102 6991
Fluoride and Neurotoxicity 3870 49 3821
Neurophatic pain 29202 5009 24193
PFOA/PFOS 5950 95 5855
Transgenerational 46147 606 45541

SWIFT (Howard et al., 2016) 92262 5861 86401

Source Size Incl. Excl.

Animal Depression 1599 251 1348
Anxiety-Related Disorders 10515 770 9745
Dementia 5609 11 5598
Heart Disease 4212 19 4193
Nudging 1850 383 1467
PTSD Trajectories 5425 359 5066
Software Defect Detection 7002 62 6940
Software Engineering 1700 45 1655
Software Fault Metrics 6000 48 5952
Software Fault Prediction 8911 104 8807
Virus Metagenomics 2305 114 2191
Wilson Disease 2358 161 2197

ASReview (van de Schoot et al., 2021) 57486 2327 55159

Cereals 674 292 382
Cereals Future set 147 71 76
Leafy Greens 224 66 158
Leafy Greens Future set 95 62 33

Food Safety (van den Bulk et al., 2022) 1140 491 649

Alzheimers 832 32 800
Angiotensin 209 9 200
Anticoagulation 418 18 400
Atorvastatin 416 16 400
Bivalirudin 414 14 400
Cetuximab 412 12 400
Colorectal Cancer 413 13 400
Dabigatran 413 13 400
Gastric Cancer 206 6 200
Metformin 623 23 600
Parkinsons 209 9 200
Rheumatoid 1675 75 1600
Tyrosine Kinase 1043 43 1000
Ustekinumab 209 9 200

PubMed Abstracts (Lanera et al., 2018) 7492 292 7200

Table 3: Summary of the mean (and the standard deviation) of five validation considering 16 examples (eight positive and
eight negative samples) in the domain learner phase, after training the SLR classifier in the meta learner phase. defined in
Section 4.2.

Source
WSS AWSS Recall WSS Accuracy F1 Score Treshold

@95% @R @95% @R @95% @R @95% @R @95% @R @95%

Dementia .90 (.04) .73 (.11) .90 (.04) .73 (.11) 1 (0) .87 (.16) .90 (.04) .87 (.06) .01 (.01) .01 (.01) .89 (.06)
Fluoride .69 (.09) .50 (.27) .70 (.09) .50 (.27) 1 (0) .56 (.32) .70 (.09) .94 (.05) .02 (.01) .09 (.05) .80 (.07)
Head Cancer .84 (.02) .81 (.02) .85 (.02) .82 (.02) .95 (0) .89 (.03) .90 (.02) .93 (.02) .17 (.02) .21 (.04) .80 (.12)
Heart Disease .32 (.09) .11 (.12) .34 (.10) .12 (.13) .96 (0) .20 (.22) .43 (.09) .86 (.06) .23 (.03) .14 (.12) .53 (.11)
Leafy Greens F. .15 (.04) .01 (.01) .47 (.13) .03 (.03) .97 (.01) .04 (.05) .83 (.04) .33 (.03) .89 (.02) .07 (.09) .43 (.17)
Opiods .39 (.07) .35 (.07) .40 (.07) .36 (.08) .97 (0) .53 (.13) .44 (.07) .83 (.06) .06 (.01) .11 (.01) .39 (.16)
PFOS-PFOA .72 (.03) .43 (.21) .73 (.03) .44 (.21) .95 (0) .49 (.24) .78 (.03) .95 (.03) .11 (.01) .21 (.04) .65 (.14)
Skeletal Muscle .39 (.07) .14 (.08) .40 (.07) .14 (.08) 1 (0) .16 (.10) .40 (.07) .97 (.01) .05 (.01) .12 (.06) .37 (.10)
Software Eng. .34 (.06) .05 (.09) .34 (.06) .05 (.09) .97 (0) .06 (.11) .38 (.06) .97 (.01) .07 (.01) .04 (.07) .30 (.16)
Software Fault .78 (.02) .59 (.24) .79 (.02) .59 (.24) .97 (0) .64 (.28) .82 (.02) .95 (.04) .07 (.01) .19 (.07) .54 (.07)
Knee R. .76 (.08) .61 (.14) .80 (.09) .64 (.15) .96 (0) .68 (.18) .85 (.08) .94 (.03) .46 (.15) .60 (.09) .81 (.06)
Vascular A. .51 (.10) .27 (.13) .52 (.10) .27 (.13) 1 (0) .33 (.16) .53 (.10) .93 (.04) .07 (.01) .16 (.09) .56 (.14)
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Table 4: Summary of the mean of five (and the standard deviation) validation considering 16 examples (eight positive and
eight negative samples) in the domain learner phase, after training the SLR classifier in the meta learner phase defined in
Section 4.3.

Source
WSS AWSS Recall WSS Accuracy F1 score Treshold

@95% @R @95% @R @95% @R @95% @R @95% @R @95%

ACE Inhibitors .22 (.04) .13 (.08) .24 (.04) .14 (.09) .95 (0) .22 (.14) .33 (.04) .87 (.05) .17 (.01) .17 (.08) .23 (.14)
ADHD .36 (.04) .34 (.16) .39 (.05) .38 (.17) .96 (0) .47 (.20) .48 (.04) .87 (.02) .25 (.02) .38 (.10) .10 (.05)
Antihistamines .08 (.03) .04 (.04) .11 (.04) .05 (.05) .95 (0) .08 (.08) .38 (.03) .72 (.01) .47 (.01) .12 (.12) .26 (.09)
Antipsychotics .05 (.01) .14 (.02) .08 (.02) .21 (.03) .95 (0) .65 (.06) .39 (.01) .59 (.04) .50 (0) .50 (.01) .29 (.17)
Beta Blockers .14 (.01) .19 (.07) .17 (.02) .23 (.08) .95 (0) .41 (.14) .32 (.01) .76 (.03) .29 (0) .32 (.05) .22 (.10)
Bisphenol A .70 (.03) .53 (.14) .71 (.03) .54 (.14) .95 (0) .65 (.17) .76 (.03) .89 (.03) .10 (.01) .14 (.02) .58 (.20)
Calcium C. .07 (.03) .07 (.07) .09 (.03) .09 (.10) .96 (.01) .15 (.18) .32 (.03) .76 (.03) .39 (.01) .17 (.16) .14 (.11)
Estrogens .03 (.03) .08 (.09) .04 (.03) .09 (.11) .96 (0) .18 (.24) .26 (.03) .76 (.05) .35 (.01) .17 (.14) .07 (.03)
Fluoride .88 (.02) .82 (.06) .89 (.02) .83 (.06) .95 (0) .90 (.09) .93 (.02) .93 (.02) .23 (.05) .22 (.08) .88 (.08)
Hypoglycemics .04 (.02) 0 (.01) .05 (.02) 0 (.02) .95 (0) .03 (.01) .33 (.02) .72 (.02) .43 (.01) .05 (.03) .14 (.11)
Incontinence .19 (.04) .31 (.02) .25 (.05) .40 (.02) .96 (.01) .57 (.08) .44 (.04) .77 (.04) .44 (.02) .53 (.02) .21 (.11)
Neuro. Pain .28 (.01) .15 (.09) .34 (.02) .18 (.11) .95 (0) .25 (.16) .49 (.01) .81 (.02) .39 (.01) .28 (.15) .29 (.15)
NSAIDS .20 (.04) .24 (.14) .25 (.05) .31 (.18) .95 (0) .43 (.29) .44 (.04) .78 (.03) .42 (.02) .39 (.18) .36 (.15)
Opiods .46 (.06) .37 (.09) .47 (.06) .38 (.09) .95 (0) .49 (.16) .53 (.06) .88 (.07) .08 (.01) .16 (.03) .26 (.17)
PFOS-PFOA .67 (.06) .29 (.24) .67 (.07) .30 (.25) .95 (0) .39 (.34) .72 (.06) .90 (.09) .09 (.02) .09 (.06) .65 (.19)
Proton Pump .11 (.02) .06 (.07) .13 (.02) .08 (.08) .95 (0) .11 (.11) .31 (.02) .82 (.01) .33 (.01) .15 (.13) .06 (.03)
Skeletal Muscle .22 (.08) .12 (.10) .22 (.08) .13 (.10) .96 (0) .17 (.15) .27 (.08) .94 (.05) .04 (0) .09 (.03) .20 (.15)
Statins .15 (.04) .14 (.02) .16 (.04) .14 (.02) .95 (0) .18 (.03) .24 (.04) .92 (.02) .11 (0) .19 (.02) .14 (.06)
Transgen. .43 (.12) .33 (.09) .44 (.12) .34 (.09) .95 (0) .36 (.09) .50 (.12) .97 (0) .06 (.01) .25 (.03) .23 (.13)
Triptans .19 (.04) 0 (0) .28 (.06) -.01 (0) .95 (0) .02 (.02) .53 (.04) .67 (.01) .57 (.02) .04 (.03) .16 (.03)

Table 5: Means (and the standard deviation) of WSS@95% and AWSS@95% across five validation runs for each of the 20
review datasets presented in Table 4 compared with results presented in (Kusa et al., 2022).

Dataset
Results [6] replicated

by [8]
[7] replicated

by [8]

WSS AWSS

[1] [2] [3,4] [5] [6] [7] @95% @95%

ACE Inhibitors .566 .523 .733 .801 .787 .783 .785 .367 .224 .240
ADHD .680 .622 .526 .793 .665 .698 .639 .704 .356 .391
Antihistamines .000 .149 .236 .137 .310 .168 .275 .135 .075 .105
Atypical Antipsychotics .141 .206 .170 .251 .329 .212 .190 .081 .054 .800
Beta Blockers .284 .367 .465 .428 .587 .504 .462 .399 .142 .166
Calcium Channel Blockers .122 .234 .430 .448 .424 .159 .347 .069 .073 .950
Estrogens .183 .375 .414 .471 .397 .119 .369 .083 .034 .430
Oral Hypoglycemics .090 .085 .136 .117 .095 .065 .123 .013 .360 .490
Urinary Incontinence .261 .296 .432 .531 .531 .272 .483 .180 .195 .251
NSAIDs .497 .528 .672 .730 .723 .571 .735 .601 .199 .252
Opioids .133 .554 .364 .826 .533 .295 .580 .249 .457 .466
Proton Pump Inhibitors .277 .229 .328 .378 .400 .243 .299 .129 .106 .128
Skeletal Muscle Relaxants .000 .265 .374 .556 .286 .229 .286 .300 .217 .221
Statins .247 .315 .491 .435 .566 .443 .487 .283 .149 .157
Triptans .034 .274 .346 .412 .434 .266 .412 .440 .191 .281

Average Drug Reviews .234 .335 .408 .488 .471 .335 .431 .269 .167 .195

Bisphenol A (BPA) .752 .792 .780 .369 .704 .713
Fluoride and Neurotoxicity .870 .883 .806 .808 .879 .888
Neurophatic Pain .691 .620 .598 .091 .283 .341
PFOA/PFOS .805 .071 .838 .305 .665 .675
Transgenerational .714 .708 .718 .000 .434 .440

Average SWIFT .766 .615 .748 .315 .314 .294

Average (all datasets) .619 .475 .590 .292 .241 .245

[1](Cohen et al., 2006) [2](Matwin et al., 2010) [3,4](Cohen, 2008) (Cohen, 2011) [5](Howard et al., 2016)[6](van Dinter et al., 2021a)[7](Kontonatsios et al., 2020)
[8](Kusa et al., 2022)
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