
POSER: A Semantic Payload Lowering Service

Daniel Spieldenner
Agents and Simulated Reality,

Keywords: Semantic Web, Interoperability, Mapping, Ontology, JSON.

Abstract: Establishing flexible, data source and structure independent interoperability between databases, web services or
devices is an ubiquitous problem in today’s digitized, connected world. The concept of semantic interoperability
is a promising approach to abstract communication from concrete protocols and data structures to a more
meaning driven data representation. While transforming structured data into semantic knowledge graphs is a
well investigated problem, actually using semantic data in an ecosystem of established legacy services, often
providing only a standard structured data API, is still an open issue. In this paper we propose an approach
on how to formally describe possible mappings between a higher level semantic data representation onto
syntactically fixed structured data objects, introduce an algorithm describing how to generate structured data
objects from semantic input using mapping rules following these concepts, and illustrate the approach with an
example implementation for a possible interoperability layer service, connecting a semantic input data set to a
JSON API.

1 INTRODUCTION

Since its early days, the Semantic Web (Berners-Lee
et al., 2001) has developed to a vast field of not only
research but also applications. Developers in domains
that demand a high level of interoperability, such as
Smart Cities or Smart Homes, have understood the
beauty of semantically describing and exchanging
data.

Instead of having fixed data structures that do not
convey any meaning of the data exchanged, formats
like RDF (Group, 2014) allow for describing data in a
not only machine readable, but also human understand-
able manner. Being able to not only describe existing
structured data in a semantic way, but also using the
vast amount of knowledge contained in knowledge
graphs to be used in existing applications would allow
for a higher level of interoperability in terms of service
composition and data exchange (Sadeghineko and Ku-
mar, 2021), (de Mello et al., 2022), (Rejeb et al., 2021),
(Bröring et al., 2018) However, established applica-
tions and interfaces are rarely tailored to a complex
format such as RDF. Using semantic data to feed regu-
lar APIs that rely on structured data formats such as
JSON is not possible out of the box.

While the transformation of structured data into
semantic data (lifting the data to a semantic level) or
the access to structured data sources in a semantic

fashion is widely investigated ((Dimou et al., 2014),
(Gupta et al., 2012), (Spieldenner, 2020), (Michel et al.,
2014)), the inverse direction of how to make semantic
data accessible for established structured data legacy
APIs is still mostly an open question.

In this paper, we present an approach to lower
data from a semantic level to structured data objects
by describing a target interface and its structure we
want to address in a semantic manner. To this end
we first introduce a formal definition of the mapping
process between a semantic knowledge graph and a
structured data object. Based on that we derive an
algorithm how to actually generate a nested structured
data object from a semantic input source and finally
provide an example implementation illustrating the
concepts introduced before.

After giving a brief overview of existing ap-
proaches and their potential shortcomings in section
2 we give a formal definition of the problem we want
to solve: finding mappings between a semantic knowl-
edge graph and a given non-semantic data structure
(section 3). In section 4 we propose a slim ontology
to semantically describe structured data, taking JSON
as an example, in such a way that we include the con-
cepts of section 3. Section 5 introduces an algorithm
describing a possibility to apply the aforementioned
mapping rules, enriched with the knowledge expressed
via the ontology presented before, to generate nested

Spieldenner, D.
POSER: A Semantic Payload Lowering Service.
DOI: 10.5220/0011510000003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 249-256
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

249

structured data objects. POSER, a prototype imple-
mentation of a web service taking a knowledge graph
as input and producing a JSON text as output, follow-
ing the concepts introduced before, is illustrated in
section 6. We conclude the paper and discuss open
questions in section 7.

2 RELATED WORK

Interoperability is a thoroughly investigated topic, not
only in the IoT domain (Lee et al., 2021), (Amjad et al.,
2021) (Bröring et al., 2017) but also in larger scale
smart environments like smart cities, smart homes or
smart grids. (Brutti et al., 2019) (Ahlgren et al., 2016)
(Ma et al., 2013) (Uslar and Engel, 2015) (Perumal
et al., 2010)

The motivation behind interoperability solutions is
mostly the same: connecting systems in a data source,
manufacturer or provider independent fashion and al-
lowing communication between data "silos", enclosed
systems with vertical communication channels that are
difficult to connect to other, similarly enclosed, data
sources. Examples for such silos are certain sets of
sensors in smart homes of a specific vendor that are
incompatible to interfaces of other devices, or data
sets of different domains in a smart city environment.
(Gardner, 2005) (Stonebraker et al., 2018)

Semantic interoperability has become a promising
approach to overcome this restriction to silo like archi-
tectures (Heiler, 1995) (Ganzha et al., 2017). Instead
of communicating with purely structured, "meaning-
less" data, data is semantically annotated to allow data
exchange on the basis of the actual meaning of the data
instead of just a string of characters.

However, as existing legacy APIs are not tailored to
this kind of communication, we need to provide ways
to not only enrich data with semantic meaning, but also
need methods to exploit this semantic knowledge when
addressing legacy interfaces expecting plain structured
data.

While approaches to generate RDF data from rela-
tional databases or structured data sources like RML
(Dimou et al., 2014) exist and are widely used, the in-
verse way how to use this semantic information when
addressing actual interfaces is less thoroughly investi-
gated.

The Web of Things1 (Zeng et al., 2011) initiative
provides a W3C standard for describing IoT interfaces
in an interoperable fashion and adding semantic infor-
mation via annotations, however the possibilities to
actually map complex payloads to achieve full inter-

1https://www.w3.org/WoT/

operability between services with incompatible struc-
tured data APIs is limited.

With JSON-LD (Sporny et al., 2014), a JSON
format incorporating semantic information is already
available. However, it is rather meant as a serialization
format for semantic data, not as a detailed concept
to describe an actual JSON structure. Just serializing
RDF to JSON-LD will not yield the results neces-
sary to cater for a given JSON-API. RDF to JSON
approaches like (Alexander, 2008) mostly focus on
serializing RDF to JSON, less on actually being able
to lower the semantic data back onto API level.

With OBA (Garijo and Osorio, 2020) Osorio and
Garijo present a framework to generate API descrip-
tions from an ontology with the possibility to serve
the client JSON text according to an ontology defined
structure. While they bridge the gap between the se-
mantic world and plain JSON, the approach is meant
to access an ontology, with the API structure given by
that ontology, rather than allowing semantic data and
the knowledge connected to it to be fed to an existing
legacy JSON API. Moreover, OBA does not provide
any specific description of JSON text itself, the output
is generated based on the OpenAPI description derived
from the input ontology.

The task of actually creating documents with a
specific structure was investigated by Allocca and
Gougousis (Allocca and Gougousis, 2015), analyz-
ing the RDF generated by a given RML mapping and
deriving inverse mapping rules for the given RML
mappings, resulting in a structured data document of
the form initially taken as input for the RML mapping
step. The approach only works on a subset of possible
RML mapping rules, and only generating CSV data
was investigated.

When it comes to describing actual JSON objects,
JSON schema 2 is a widely used well established stan-
dard, used, for example, by Barbaglia et al. for describ-
ing REST services (Barbaglia et al., 2017). Reading a
JSON schema definition of a complex object can get
quite cumbersome for a human reader and provides
only little semantic information about the JSON object
itself and how it links to other semantic data.

3 FORMAL DEFINITION

In order to derive an algorithm to generate structured
data from RDF, in our case JSON, we aim to describe
the JSON text we want to generate in terms of RDF
triples. A JSON text in this context represents a series
of valid JSON tokens as defined in section 2 of the

2https://json-schema.org/

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

250

JSON specification (Sporny et al., 2014).
With such a semantic description of the desired

JSON text at hand, lowering the actual data from the
knowledge graph to the JSON text then boils down to
finding proper mappings between the graph describing
our JSON text and the knowledge graph containing the
RDF data.

Let Γ be a set of graphs representing semantic data.
Let S be a set of structured data objects that can be
serialized into a proper JSON text. Our goal is to find
a mapping λ for a graph γ ∈ Γ to create an object s so
that s ∈ S and

∃λ : λ(γ) 7→ s (1)
In our case, S consists of all possible syntactically

correct JSON texts. For JSON, we mainly need to
differentiate between two possible types of data cre-
ated: primitives P⊂ S and compound data types C⊂ S.
In addition, we can consider the special null value
null ∈ S.

Primitives consist of the datatypes string, number
and boolean. The actual values of the primitive data
types will be determined by evaluating statements σ ∈
Γ, mapping knowledge from a knowledge graph γ ∈ Γ

to an object s ∈ S. We can define a mapping in a
recursive manner as explained in the following.

3.1 Primitives

Let σ ∈ Γ be a statement consisting of subject, predi-
cate, object σs,σp,σo. Let

λ(σ) = I(σo) = p ∈ P (2)
where I(σo) is the interpretation of σo. The interpre-
tation I depends on the json data type of the primitive
p:

• If p is a string, p=σo, i.e. the actual string value in
the object position of statement σ. If σo consists of
an URI pointing to another resource, or a number,
parse the value into a string nevertheless.

• If p is a number, σo is parsed into a number format,
if possible, and null otherwise.

• If p is boolean, p = true if σo = true∨ σo = 1
and p = f alse if σo = f alse∨σo = 0. If σ0 is
not interpretable in a boolean fashion, then set
p = null
The outcome of the interpretation I(σo) then is in

any case either a string, a number or the null value, and
with that, we have created a valid JSON text according
to (Bray, 2014) .

3.2 Objects

Let γ ∈ Γ be a graph representing semantic data. Our
goal is to map this graph in such a way that we receive

a JSON object o ∈ S, defined by a key/value pair (k,v),
i.e. ∃λ(γ) : λ(γ) 7→ o . By definition, v ∈ S, and k ∈
P, as keys are strings and as such can be interpreted
as primitive objects. In order to map γ to an object,
we thus must map γ to (k,v), so we are looking for
mappings λ1,λ2 with o = (λ1(γ),λ2(γ)).

Finding a mapping λ1(γ)) is trivial as λ1(γ)) = k
by definition is a primitive and the mapping rules for
primitives as given by equation 2 apply.

For λ2(γ) = v we either can use the mapping rules
for primitives again, resulting in an object {o, v}
with o,v ∈ P. Or we take v = o′ ∈ C with its own
specific mapping

γ
′ ∈ Γ

′ ⊂ Γ,λ′ : Γ
′ ⊂ Γ→ S,λ′(γ′) = o′ (3)

and proceed recursively.
We have shown that we can create arbitrarily

deeply nested objects from a given graph. Now for
the inverse direction, we show that we can define a
mapping λ for a given, fixed object o ∈C.

Let o = (k,v),o ∈ C be an object consisting of a
key/value pair (k,v). We need to specify a mapping
λ so that o = λ(γ),γ ∈ Γ with γ being a given graph
representing semantic data. If v∈P, we need to specify
a statement σ = (σs,σp,σo) ∈ Γ with λ(σ) = p as
given in equation 2 and we are done.

If we aim for v ∈C, so v being a compound object,
we select a subset Γ′ ⊂ Γ and set

v = λ
′(γ′),γ′ ∈ Γ

′. (4)

In this fashion, we can recursively define nested
objects until finally we arrive at a literal value, option-
ally narrowing down the search space in the semantic
representation when proceeding to lower hierarchy
levels.

3.3 Arrays

Let a ∈C be a data structure representing a collection
of objects o1,o2, ...,on ∈ S . A mapping λ : Γ→ S,γ ∈
Γ,a ∈ S,λ(γ) = a can be found by giving specific map-
pings for every element of a:

λ(γ) = (λ1(γ1),λ2(γ2), ...,λn(γn))

= (o1,o2, ...,on)

= a
(5)

In the inverse direction, if we have a specific array
a = (o1,o2, ...on) we want to express as a mapping
λ(γ)), we can do so by mapping each o1,o2, ...on) us-
ing either mappings of the form of equation 2 or 3.

POSER: A Semantic Payload Lowering Service

251

4 SEMANTIC REPRESENTATION
OF JSON

As a proof of concept we show how the previously
introduced formalism can be used to map data from
RDF to JSON. In order to describe the structure of the
resulting JSON text and to provide the links to the in-
put data where we want to have semantic data mapped
to our JSON values, we introduce a slim ontology for
describing JSON texts. Describing a JSON API in
terms of RDF makes it easy for us to express the data
to be mapped to our JSON objects in terms of RDF
statements, as explained in section 3 . A visualisation
of the ontology is shown in figure 1 .

Mainly we make use of the following classes that
represent all the valid data types for a JSON object:

Text: The entire JSON text, consisting of objects and
values

Value: The super class for all possible JSON values.
Value has two subclasses, Compound and Primi-
tive, to distinguish JSON values that themselves
can be made up of more complex objects again,
and those representing a single literal value.

Compound: Subclass of Value, super class of Object
and Array. Compound values can contain other
JSON values in one way or another.

Object: Standard JSON object, consisting of a key/-
value pair and enclosed in curly braces.

Array: A JSON array containing a set of other JSON
Values.

String: Primitive representing a string

Number: Primitive representing a number

Boolean: Primitive representing a boolean value

Null: null value

In addition, we defined we following properties to
express further relations in the JSON document:

hasRoot: Text −→Value, the top most element in the
JSON hierarchy that also acts as an entry point for
the lowering algorithm.

hasKey: Ob ject −→ String , defines the key for the
current JSON object

hasValue: Compound −→ Value, the value of the
current JSON object

isExpressedBy: Primitive−→ rd f s : Statement The
RDF statement modelling the data representing the
primitive.

isRepresentedBy: Compound −→ rd f : Class The
class in the incoming semantic data to which this
compound object refers.

5 ALGORITHM

Our goal is to express knowledge encoded in a given
RDF source in terms of a JSON value. According to
the JSON specification (Bray, 2014) , a value must
be a JSON object, array, number, string, one of the
boolean values true or false, or the special literal null.
A JSON text is defined as a serialized value, however,
in our case we limit ourselves to the case of JSON
texts representing objects expressed as key/value pairs
surrounded by curly braces. Covering the full range
of possible JSON values can easily be done using
the same algorithm as described below with minimal
implementation changes.

JSON texts result in a document with a tree like
structure: we have one root element that contains at
least one key/value pair. The value itself can either
consist of a primitive, an another object or an array, a
list of values.

In order to build the actual JSON structure, we will
start at the designated root element, read the string
for the key from our semantic API description and
check the value to use. In case of the value pointing
to another JSON object, we repeat the above steps
recursively, using the resulting JSON object as the
value for the corresponding key. In detail, we perform
the steps as described in the following.

5.1 Initializing the JSON Structure

The document we describe is represented by a RDF
resource of the type json:Text that we can retrieve
by querying the document for an RDF resource of that
type. As defined before, this element must have a
property json:hasRoot with range json:Object.
Create a new JSON object as explained below.

5.2 Creating JSON Objects

A JSON Object is defined as such by using the RDF
type json:Object. As given in the JSON specifica-
tion, each JSON object consists of a key/value pair.
The key is defined by the property json:hasKey, as
defined in section 4. The value of this property can
be immediately used as the string for the key. As de-
fined in the ontology, an object of type json:Object
must have exactly one property json:hasValue with
range again json:Object. Create the JSON object
defined by the referenced resource as described here
and append it to the value position of this key/value
pair.

If the JSON object is supposed to represent data of
a given type θ from the semantic data layer, expressed
by the property json:isRepresentedBy, we query

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

252

Figure 1: Visualisation of the JSON ontology.

the input data set Γ for a subgraph Γ′ that contains
every path from a resource of the specified type θ.
Using this subgraph Γ′ in subsequent recursive steps
for nested objects, we realize equation 3 of the formal
definition given in section 3 .

5.3 Creating JSON Primitives

JSON primitives are defined by the RDF classes
json:String, json:Number or json:Boolean.
Again, a primitive consists of a key/value pair, but
this time we know that no JSON object will appear in
the position of the value. Thus, the actual value of this
resource is defined by our input data. Therefore, an
entity of type json:Primitive must contain a prop-
erty json:isExpressedBy. The resource defining
the primitive to be generated is given by a RDF state-
ment defining the class of resources from the input data
to use for retrieving the values, along with the property
to take the value from. What we receive as result of
mapping the JSON primitive is an interpretation I(σo)
of the statement σ = (σs,σp,σo) as defined in section
3 .

5.4 Creating JSON Arrays

JSON arrays are described with their own class
json:Array in the ontology introduced in 4. A

JSON value defined as json:Array in the mapping
file will basically be treated like an object, with the
difference that multiple matching values will be ac-
cumulated and the array itself will be enclosed by
square brackets instead of curly braces. In the end, an
array will consist of a collection of mapping results
λ1(γ1),λ2(γ2), ...λn(γn) as defined in section 3 .

6 IMPLEMENTATION

As a proof of concept, we provide an example JAVA
implementation 3, making use of the Spring Boot 4

framework. The resulting JSON object can either be re-
trieved in the response body of a REST POST request
or can immediately be forwarded to another REST
endpoint. In the latter case, the data flow between the
client and the target service is managed making use of
Spring Cloud Gateway 5.

To describe the JSON API we want to use, we use
lowering templates written in Turtle RDF, consisting
of a JSON API description using the JSON ontology
described in section 4 and a reification header to define
the RDF statements to be used for JSON primitives.

3https://github.com/spidan/poser
4https://spring.io/projects/spring-boot
5https://spring.io/projects/spring-cloud-gateway

POSER: A Semantic Payload Lowering Service

253

Algorithm 1: POSER Algorithm.

Require: Semantic Input data input
Require: JSON Payload Model model

1: result = emptyJSON
2: root← JsonRoot(model)
3: result = BuildJSON(input,root,result)
4: procedure BUILDJSON(input, jsonModel,result)
5: if jsonModel is Compound then
6: if model representedBy subInput then input← subInput
7: end if
8: children = getValues(jsonModel)
9: for all child ∈ children do

10: result← BuildJSON(input,child,result)
11: end for
12: end if
13: if jsonModel is Primitive then
14: Value← rei f y(input)
15: result← (key,value)
16: end if
17: return result
18: end procedure

6.1 Template Files

Templates are written in Turtle RDF and stored locally
in the web service by sending a POST request to the
/storeTemplateFile endpoint of the service. In
order to reference a specific template when requesting
a mapping from RDF to JSON, provide the name of
the specific template file as URL parameter.

The template itself consists of two named
graphs: the json:ReificationHeader describes
how to map actual data properties to the corre-
sponding primitives in the JSON document, and the
json:ApiDescription, providing a semantic repre-
sentation of the API itself.

6.1.1 Reification Header

The reification header contains the definition for the
RDF statements representing actual data to be used in
the generated JSON file. It consists of resources of the
class rdf:Statement, the class of the corresponding
resource in the input data set and a property defining
the predicate to use for querying the desired property.
For an example, see listing 1.

@prefix ex: <https://www.example.org/> .
@prefix json: <http://some.json.ontology/> .

json:ReificationHeader {
ex:TimeDataSource a
iots:TimeData;
rdf:predicate time:dateTime .

}

Listing 1: Reification header of a simple lowering template with one
primitive value to be mapped.

6.1.2 JSON API Description

The second graph, named json:ApiDescription,
contains the actual semantic representation of the API
along with references to the semantic data sources,
following the ontology introduced in section 4. Listing
2 provides an example for a simple JSON text to be
generated, consisting of one object with key data that
contains a string primitive timestamp (see listing 3)

@prefix ex: <https://www.example.org/> .
@prefix json: <http://some.json.ontology/> .
@prefix iots: <http://iotschema.org/> .

json:ApiDescription {

ex:JsonModel a json:Text;
json:hasRoot ex:Data .

ex:Data a json:Object ;
json:key "data" ;
json:value ex:TimeValue ;
json:isRepresentedBy iots:TimeSeries .

ex:TimeValue a json:String ;
json:key "timestamp"^^xsd:string ;
json:isExpressedBy ex:TimeDataSource .

}

Listing 2: API description of a JSON text with one object containing
one string primitive.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

254

{
data: {
timestamp: "2021-01-10T19:58:49.294909Z"

}
}

Listing 3: The JSON object to be created by the above API descrip-
tion.

6.2 Mapping Step

The central part of the service is built on the RDF4J 6

library for parsing, processing and writing RDF. The
mapping procedure takes two inputs: the input model,
a RDF model representing the input data, and the json
model, a RDF model describing the semantic represen-
tation of the JSON object we want to generate.

As described in section 5, the first step is deter-
mining the root object. For performance reasons we
are using the filter method of the RDF4J Model API
7 instead of storing the data in a local triple store and
using SPARQL queries. Retrieving the object of the
triple resulting from filtering the input for all state-
ments with json:hasRoot in the predicate position
yields the unique root value, as by definition there is
only one root present in the JSON model description.

Starting from this root object, we recursively call
the actual mapping method, taking three parameters:
the object model, which is the semantic representa-
tion of the current JSON object to be generated, the
input model, which represents the subset of the in-
put data to be used in this mapping step, determined
as given in section 5 depending on the presence of
a json:isRepresentedBy property, and the result
object, the JSON object to append the mapping results
of the current step to and to be returned as the result
of the current mapping step.

In each recursion step, we first check whether the
current object is a primitive or a compound object,
again by using the RDF4J filter function, checking for
rdf:type in predicate position, to determine the RDF
type of the current object.

In case of a primitive we check the corresponding
json:isExpressedBy statement in the reification
header, perform a pattern matching in the input data
set, append the result to the current result object and
terminate by returning that object.

In case of a compound object, we check for
any json:isRepresentedBy properties and narrow
down the input data set for upcoming recursion steps
by finding each path from entities of the specified class

6https://rdf4j.org/
7https://rdf4j.org/documentation/programming/model/

in the input data set to a leaf node in the RDF graph.
The resulting model functions as the input model for
the next recursion step, as object model we choose
the resource referenced by json:hasValue, again by
filtering using the RDF4J model API, and as resultO-
bject we provide the JSON object we have obtained
as a result of the previous mapping steps during the
recursion.

7 CONCLUSION AND
DISCUSSION

In this paper we have given a formal definition of
a possible mapping approach to reduce a semantic
knowledge graph to a structured data object. In order
to be able to express the mapping rules in a human and
machine readable fashion we have introduced a slim,
lightweight ontology to describe the structure of an
existing JSON API in a semantic linked data fashion
and proposed a way how to tie these API descriptions
to actual data in RDF format.

Given such an API representation and a set of suit-
able data queries, we have shown how to generate
actual JSON payload, following a fixed given struc-
ture, by means of an example implementation. This
prototype allows for generating JSON texts from se-
mantic input data and for forwarding this JSON texts
to third party JSON APIs, providing an actual exam-
ple of a possible interoperability layer between the
semantic world and a structured data legacy service.

For the sake of simplicity, we have omitted some
concepts that were not needed for our test use cases
both on the RDF as well as the JSON side for our
prototype implementation. First of all, we ignore sets
defined in RDF, such as bags or collections .

Furthermore, arrays in JSON are by definition or-
dered lists. RDF graphs however are by definition
unordered, so while the resulting mappings with our
approach will be semantically correct, our goal is to
provide a means for realizing an interoperability layer
between legacy APIs, some of which may rely on the
order of elements in an array. One solution to ensure
a certain ordering would be introducing an orderBy
property to the json:Array class which will be added
in future releases of the prototype.

In the current version of the prototype there is quite
some effort left to the user to write the lowering tem-
plate files. While some of this work is unavoidable
due to the higher expressiveness of linked data and
the necessity to give the user the possibility to specify
the actual correspondences between the non-semantic
structured data and the semantic knowledge graph, es-
pecially the semantic representation of the structure of

POSER: A Semantic Payload Lowering Service

255

a JSON document as such could be determined auto-
matically, leaving only the task of connecting data to
objects and values to the user.

ACKNOWLEDGEMENTS

This work has partially received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation
programme under grant agreement No. 857237 (Inter-
connect)

REFERENCES

Ahlgren, B., Hidell, M., and Ngai, E. C.-H. (2016). Internet
of things for smart cities: Interoperability and open
data. IEEE Internet Computing, 20(6):52–56.

Alexander, K. (2008). Rdf in json: a specification for serial-
ising rdf in json. SFSW 2008.

Allocca, C. and Gougousis, A. (2015). A preliminary in-
vestigation of reversing rml: From an rdf dataset to its
column-based data source. Biodiversity data journal,
(3).

Amjad, A., Azam, F., Anwar, M. W., and Butt, W. H. (2021).
A systematic review on the data interoperability of ap-
plication layer protocols in industrial iot. IEEE Access.

Barbaglia, G., Murzilli, S., and Cudini, S. (2017). Defini-
tion of rest web services with json schema. Software:
Practice and Experience, 47(6):907–920.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific american, 284(5):34–43.

Bray, T. (2014). The javascript object notation (json) data
interchange format. Technical report.

Bröring, A., Schmid, S., Schindhelm, C.-K., Khelil, A.,
Käbisch, S., Kramer, D., Le Phuoc, D., Mitic, J., Ani-
cic, D., and Teniente, E. (2017). Enabling iot ecosys-
tems through platform interoperability. IEEE software,
34(1):54–61.

Bröring, A., Ziller, A., Charpenay, V., Thuluva, A. S., Anicic,
D., Schmid, S., Zappa, A., Linares, M. P., Mikkelsen,
L., and Seidel, C. (2018). The big iot api-semantically
enabling iot interoperability. IEEE Pervasive Comput-
ing, 17(4):41–51.

Brutti, A., Sabbata, P. D., Frascella, A., Gessa, N., Ianniello,
R., Novelli, C., Pizzuti, S., and Ponti, G. (2019). Smart
city platform specification: A modular approach to
achieve interoperability in smart cities. In The internet
of things for smart urban ecosystems, pages 25–50.
Springer.

de Mello, B. H., Rigo, S. J., da Costa, C. A., da Rosa Righi,
R., Donida, B., Bez, M. R., and Schunke, L. C. (2022).
Semantic interoperability in health records standards:
a systematic literature review. Health and Technology,
pages 1–18.

Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R.,
Mannens, E., and Van de Walle, R. (2014). Rml: a

generic language for integrated rdf mappings of hetero-
geneous data. In Ldow.

Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., and
Wasielewska, K. (2017). Semantic interoperability in
the internet of things: An overview from the inter-
iot perspective. Journal of Network and Computer
Applications, 81:111–124.

Gardner, S. P. (2005). Ontologies and semantic data integra-
tion. Drug discovery today, 10(14):1001–1007.

Garijo, D. and Osorio, M. (2020). Oba: An ontology-based
framework for creating rest apis for knowledge graphs.
In International Semantic Web Conference, pages 48–
64. Springer.

Group, W. R. W. (2014). Rdf - resource description frame-
work.

Gupta, S., Szekely, P., Knoblock, C. A., Goel, A., Taheriyan,
M., and Muslea, M. (2012). Karma: A system for
mapping structured sources into the semantic web. In
Extended Semantic Web Conference, pages 430–434.
Springer.

Heiler, S. (1995). Semantic interoperability. ACM Comput-
ing Surveys (CSUR), 27(2):271–273.

Lee, E., Seo, Y.-D., Oh, S.-R., and Kim, Y.-G. (2021). A
survey on standards for interoperability and security in
the internet of things. IEEE Communications Surveys
& Tutorials, 23(2):1020–1047.

Ma, R., Chen, H.-H., Huang, Y.-R., and Meng, W. (2013).
Smart grid communication: Its challenges and opportu-
nities. IEEE transactions on Smart Grid, 4(1):36–46.

Michel, F., Montagnat, J., and Zucker, C. F. (2014). A survey
of RDB to RDF translation approaches and tools. PhD
thesis, I3S.

Perumal, T., Ramli, A. R., Leong, C. Y., Samsudin, K.,
and Mansor, S. (2010). Interoperability among het-
erogeneous systems in smart home environment. In
Web-Based Information Technologies and Distributed
Systems, pages 141–157. Springer.

Rejeb, A., Keogh, J., Martindale, W., Dooley, D., Smart, E.,
Simske, S., Fosso-Wamba, S., Breslin, J., Yapa, K.,
Thakur, S., et al. (2021). The big picture on semantic
web and interoperability. what we know and what we
don’t.

Sadeghineko, F. and Kumar, B. (2021). Application of se-
mantic web ontologies for the improvement of infor-
mation exchange in existing buildings. Construction
Innovation.

Spieldenner, T. (2020). On the fly sparql execution for
structured non-rdf web apis. In WEBIST, pages 243–
252.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., and
Lindström, N. (2014). Json-ld 1.0. W3C recommenda-
tion, 16:41.

Stonebraker, M., Ilyas, I. F., et al. (2018). Data integration:
The current status and the way forward. IEEE Data
Eng. Bull., 41(2):3–9.

Uslar, M. and Engel, D. (2015). Towards generic domain
reference designation: How to learn from smart grid
interoperability. DA-Ch Energieinformatik, 1:1–6.

Zeng, D., Guo, S., and Cheng, Z. (2011). The web of things:
A survey. J. Commun., 6(6):424–438.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

256

