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We present machine learning algorithms for automatically determining algorithm’s parameters for solving
the Capacitated Vehicle Routing Problem (CVRP) with unit demands. This is demonstrated here for the
“sweep algorithm” which assigns customers to a truck, in a wedge area of a circle of parametrically selected
radius around the depot, with demand up to its capacity. We compare the performance of several machine
learning algorithms for the purpose of predicting this threshold radius parameter for which the sweep algorithm
delivers the best, lowest value, solution. For the selected algorithm, KNN, that is used as an oracle for the
automatic selection of the parameter, it is shown that the automatically configured sweep algorithm delivers
better solutions than the “best” single parameter value algorithm. Furthermore, for the real worlds instances
in the new benchmark introduced here, the sweep algorithm has better running times and better quality of
solutions compared to that of current leading algorithms. Another contribution here is the introduction of the
new CVRP real world data benchmark based on about a million customers locations in Los Angeles and about
a million customers locations in New York city areas. This new benchmark includes a total of 46000 problem

instances.

1 INTRODUCTION

The Capacitated Vehicle Routing Problem (CVRP) is
a well known NP-hard problem that has been exten-
sively studied due to its importance in applications in
logistics and transportation. An instance of this prob-
lem consists of a depot, where trucks are located, and
a distribution of customers and their demands. The
goal is to devise tours for trucks that visit the cus-
tomers and deliver their demands, subject to the given
truck capacity, and so that the sum of distances tra-
versed by the trucks is minimum. A large number of
exact and heuristic algorithms have been devised for
the CVRP. In addition to algorithms, there are also
multiple benchmarks of data sets that are available for
the purpose of testing algorithms for CVRP. These in-
clude synthetic and real world data and consist mostly
of small instances (with fewer than 1000 customers).

https://orcid.org/0000-0002-1820-9019
https://orcid.org/0000-0002-6727-5565
https://orcid.org/0000-0002-2498-0512
4@ https://orcid.org/0000-0002-0343-4539

o

iel

Asin-Achd, R., Goldschmidt, O., Hochbaum, D. and Huerta, I.

One exception is the Gendreau benchmark (Arnold
et al., 2019) that includes large instances of size up
to 30000.

In general, when there are several algorithms to
solve a problem, no single algorithm dominates the
others on all problem instances. Algorithm selection
attempts to build machine-learning-based oracles ca-
pable of determining, in advance, which algorithm
can perform best for a given input instance. Simi-
larly, for a single algorithm, several configurations of
the algorithm are possible (i.e. different values for the
algorithm’s parameters). Again, it is often the case
that no single configuration performs best on all pos-
sible scenarios. Algorithm Configuration is the task
of building machine-learning-based oracles that can
output the best configuration for a given instance.

In this work we present a case study for automatic
algorithm configuration for the “Sweep Algorithm”.
The sweep algorithm assigns customers to a truck, in
a wedge area of a circle of parametrically selected ra-
dius around the depot, with demand up to the truck ca-
pacity. This radius parameter affects the output of the
algorithm, and its best value depends on an instance
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characteristics. In our study, we propose and com-
pare several Machine Learning (ML) algorithms for
identifying the appropriate parameter for each input
instance. We compare the algorithms’ performance
with the Single Best Solver (i.e. the by-default best
parameter value across all the instances) and the Vir-
tual Best Solver (i.e. a perfect solver that identifies the
best parameter value for each instance without over-
head).
Our contributions here include:

» The generation of new benchmark sets based on
real world addresses in New York and Los Ange-
les cities. With our instance generator, one can
generate random subset instances of sizes up to
one million customers.

* An automatically selected algorithm that gener-
ates very fast feasible solutions, which, when
compared to the first solutions found by OR
tools (Perron and Furnon, 2019) public solver, and
by the state-of-the-art FILO solver, publicly avail-
able, solver from (Accorsi and Vigo, 2021), de-
liver better quality solutions in dramatically faster
running times.

* Demonstrating the feasibility of building
machine-learning-based oracles capable of iden-
tifying a “best” parameter value of an algorithm,
resulting in considerable speed up and improved
solution quality.

The paper is structured as follows: Section 2
presents the basic concepts and terminology used in
the rest of the paper. It also presents relevant related
work in the field. In Section 3, we present and elabo-
rate on our automatically configured sweep algorithm.
Experimental results are presented in Section 4. Sec-
tion 5 includes conclusions and pointers to future re-
search.

2 PRELIMINARIES AND
RELATED WORK

2.1 The Capacitated Vehicle Routing
Problem and Algorithms

In the Capacitated Vehicle Routing Problem (CVRP)
there is a set of customers with known demands and
an unlimited collection of trucks, of limited capacity,
located at the “depot” which are to deliver the goods
to the customers so as to satisfy their demands. A
solution to the problem is a set of routes for the trucks,
such that each route begins and ends at the depot, the
total demand is satisfied, and no truck’s capacity is
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exceeded. The goal is to minimize the sum of the
lengths of the tours traversed by all the trucks.

CVRP is a well known NP-hard problem, which
generalizes the Travelling Salesperson Problem. Due
to its difficulty, and its importance in applications, a
large number of algorithms were devised for CVRP,
most of which are heuristic algorithms that do not
guarantee optimality. A recent review of such algo-
rithms is provided in (Elshaer and Awad, 2020). Ex-
act algorithms have also been proposed for the prob-
lem, one of which, (Pessoa et al., 2021), is considered
particularly influential. Recently, Machine-Learning-
based heuristics have been proposed, mostly for
small-size problem instances (Bogyrbayeva et al.,
2022; Alesiani et al., 2022; Fellers et al., 2021).

Recall that we address here CVRP with unit
demands—-that is, all customers demands are equal to
1 unit.

2.2 QOur Sweep Algorithm
implementation

The sweep algorithm (Haimovich and Rinnooy Kan,
1985; Dondo and Cerda, 2013; Gillett and Miller,
1974) consists of two phases. In the first phase cus-
tomers are allocated to trucks and in the second phase
a short route for each truck is computed, starting
from the depot, serving its customers, and returning
to the depot. The second phase can use any Travelling
Salesperson Problem (TSP) algorithm. In our imple-
mentation we solve the TSP using the Lin-Kernigan
(Lin and Kernighan, 1973) heuristic, as implemented
in the Concorde (Applegate et al., 2009) package, in
C language.

The first phase of the sweep algorithm, in which
customers are allocated to trucks, consists of two sub-
phases:

1. Customers are partitioned into two groups. The
first group consists of the customers which are
within a given distance parameter, radius, from
the depot. The remaining customers form the sec-
ond group.

2. In each group:

(a) With respect to the depot, compute the polar
coordinates of each customer and sort the cus-
tomers by increasing angle to the depot.

(b) One by one, assign the sorted customers such
that the total demand of customers assigned to
a truck doesn’t exceed the truck capacity. Note
that customers allocated to a truck in the first
group are located in a wedge of the circle cen-
tered at the depot, see Figure 1.
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Figure 1: For the case of truck capacity 4 and unit demands,
this figure illustrates an inner wedge and an outer wedge for
the sweep algorithm.

In the special case of unit demands, we also im-

plement a variation of the sweep algorithm where the
total number of customers in the outer circle is an in-
teger multiple of the truck capacity. In case the se-
lected radius is such that the number of customers on
the outer circle is not an integer multiple of the truck
capacity, we move the extra customers to the inner cir-
cle by effectively increasing the radius. The rationale
behind this is to avoid sending a truck serving fewer
customers than its capacity far from the depot. This
variation is referred as the second algorithm.
The Sweep Algorithm’s Parameter: We will use the
“radius” parameter r, which is computed as the ratio
of the radius of the inner circle divided by the distance
to the furthest customer from the depot. This param-
eter r takes values in the range [0, 1]. We use negative
values of r to indicate the use of the second algorithm
with the parameter |r|.

Figure 2 shows the number of instances that are
“best” solved by a given parameter value for the LA
and NY benchmark sets (to be discussed in Subsec-
tion 3.2.1). This figure implies that, on average, the
second variant of the algorithm performs better than
the first. Furthermore there is no uniform “best” pa-
rameter for all instances. Therefore, the prediction on
a “best” parameter value for a given instance is non
trivial and we will show that it can successfully be
done with machine learning methods.

We further note, from the results in Figure 2, that
the dominant best parameter values depend on the
benchmark set (NY or LA).

Overall, Table 1 lists the first 10 parameter values
that perform best. We observe that parameter value
0 seems to work best, with values close to —0.5 (i.e.
—0.49, —0.4, —0.51, —0.42, —0.39, —0.48, —0.41,
—0.43) performing next best. We use this list of pa-
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Figure 2: Number of instances which are best solved by
parameter value.

rameter values when evaluating the effectiveness of
the oracle, in Section 4.

Table 1: List of best 10 parameter values ordered according
to the percentage of best solved instances.

Parameter Value r % Wins
0 14.58
-0.5 4.09
-0.49 4.04
—0.4 3.72
-0.51 34
—0.42 3.36
-0.39 3.33
—0.48 3.32
—-0.41 322
—-0.43 2.92

Figures 3 and 4 show how the normalized cost (i.e.
the length of the tour normalized by dividing it by the
best (minimal) known value of each instance) varies
for different values of the parameter. Figure 3 shows
one line for the median value of all instances grouped
by different truck capacity. Besides observing that
the value can vary significantly for close parameter
values, particularly for the first algorithm), we also
notice that the trend is different depending on the ca-
pacity of the trucks. For instance, we can see that the
best value for instances for large capacities are among
the worst values for instances with small capacities.
We observe that the difference between “best” and
“worst” parameter values correspond to a magnitude
that is around 14% of the value of the “best solution”.
The behavior for the parameters corresponding to the
second algorithm is different than the one for the first
algorithm due to the effect of the “padding” of the
outer circle customers to multiples of the truck capac-
ity, since many close values deliver exactly the same
solution.

Analogously, Figure 4 shows one line for the me-
dian values of all instances grouped by number of cus-
tomers. Again, we notice that close parameter values
in the first algorithm can generate solutions of very
different quality. Here, we see that the normalized
difference between best and worse solutions can scale
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Figure 3: Normalized mean cost variation across possible
parameter’s values by truck capacity of all 46000 instances.

up to 15%. As in the previous case, the trend of the
normalized cost across the different parameter values
varies depending on the number of clients. For ex-
ample, we can see that good parameter values for big
instances are among the worse parameter values of the
smaller ones.
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Figure 4: Normalized mean cost variation across possible
parameter’s values by number of customers of al 46000 in-
stances.

2.3 Machine Learning

Machine Learning (ML) is an Artificial Intelligence
field that has seen huge development during the last
decade (Alpaydin, 2021). It is considered one of the
most powerful tools for processing and analyzing big
data volumes. Algorithms proposed for the differ-
ent ML models seek to identify hidden patterns in
the data, from which they can learn. In general, ML
models seek to learn, from given data, called train-
ing set, a function f that maps an input instance to
a corresponding scalar (vector) output, referred to as
label(s). ML models can be classified based on how
f is learned. When the learning process is based on
the use of ground truth, consisting of a set of input in-
stances and the associated correct output labels (dis-
crete or continuous), then the model is known as su-
pervised, e.g. (Burkart and Huber, 2021). When la-
bels are not available, the model finds patterns by an-
alyzing the nature of the input data, then the model is
said to be unsupervised, e.g. (Alloghani et al., 2020).
If the learning process of the model is based on both
ground-truth data and pattern analysis of the input
data, then it is known as semi-supervised, e.g. (Zhu
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and Goldberg, 2009).

We also classify ML models depending on the na-
ture of the output of the mapping f. If the output
assumes discrete values, known as “classes”, that are
used to separated the possible inputs on different cate-
gories, the model is said to be a classification model.
If the output is given as real (floating-point) values,
then the model is called a regression model.

The ML algorithms used here are:

Random Forests (RF) (Breiman, 2001): is an en-
semble method (Breiman, 1996) that constructs a
parameterized (n_estimators) number of decision
trees (Quinlan, 1986), that are trained, each one,
with a different subset of instances belonging to
the training set. To compute the output label, each
of the trees “proposes” a result. The final result
is determined by a consensus scheme that varies
depending if the model is a regression or a clas-
sification one. In the regression case, the consen-
sus corresponds to the average of all the decision
trees’ outputs, while for the classification version,
the final output corresponds to the label that re-
peats (is voted) the most, among the trees’ out-
puts.

k-Nearest Neighbors (KNN) (Fix and Hodges,
1989): is a ML algorithm that bases the output
label on the labels of the k closest training
examples to the input point we want to label.
Although several distance metrics can be used,
the euclidean distance between feature vectors
is the most common one. For classification
tasks, KNN assigns the output label as the most
repeated label among the k neighbors. In case
of a regression task, the label corresponds to the
average of the labels of the k neighbors.

Ada Boost (AB) (Schapire, 2013): belongs to a
class of ensemble methods known as boost-
ing (Schapire, 1997). This technique consists on,
iteratively, refining the “weakest model” in the en-
semble (e.g. a decision tree). First, this model
is trained with the complete training set, then a
higher weight is assigned to the data points which
accumulate bigger deviations on the metric being
optimized (e.g. the error). The weights are com-
puted from a parameter called learning_rate. A
new iteration with another “weak” model is per-
formed using the new weights from the previous
step, in order to correct the highest deviations of
the previous model. This is repeated for a num-
ber of iterations which is given as a parameter
(n_estimators).

Gradient Boosting (GB) (Friedman, 2001): is also
a boosting model that generalizes the ideas be-



Fast Algorithms for the Capacitated Vehicle Routing Problem using Machine Learning Selection of Algorithm’s Parameters

hind Ada Boost. For it, different parameterized
loss functions can be defined. For the learn-
ing, the model, consecutively, learns a parameter-
ized number (n_estimators) of new “weak” mod-
els that are given as input to the next iteration.
For each new model, in a similar way of gradi-
ent descent, a negative gradient is computed based
on the past model which is weighted according
to a parameterized scheme (learning_rate), and
a move in the opposite direction for reducing the
loss is performed.

Convolutional Neural Networks(CNN)
(Fukushima and Miyake, 1982): are a spe-
cial type of Neural Networks (McCulloch and
Pitts, 1943) that specialize in processing topo-
logical data in form of matrices (i.e. an image).
Its structure is typically composed by three types
of layers: convolutional layer, pooling layers
and fully connected layers. The main operation
of this kind of networks is that of convolution
consisting of computing the dot product between
two matrices: a submatrix of the input matrix
and another matrix called kernel (also called
filter). The kernel contains parameters that are
learnt during the training phase. The result of
performing several convolutions of the image
is a new set of features that is fed to the next
layer, which in turn corresponds to high level
characteristics of the input data (e.g. borders,
corners, colors, etc). The pooling layers are used
in order to reduce the dimensionality of each
feature map resulting of the convolution phase.
This is done by performing single operations over
the matrices like obtaining the maximum or the
average of its values. This way, each matrix is
“compressed” into one single value that is later
fed to the fully connected layers, which usually
correspond to the last layers of the network.
These layers map this “compressed data” into
the corresponding output of the model (i.e. the
labels).

2.4 Per Instance Automatic Algorithm
Configuration

According to (Kerschke et al., 2019), automatic al-
gorithm configuration consists of determining the pa-
rameter values of a given algorithm (its configura-
tion) in order to optimize its average performance
across the instances of a given benchmark set. Per-
instance algorithm configuration is a generalization
of this problem, where the configuration is optimized
for a specific input instance. For the latter, we can
identify two phases: a training phase, where the per-

instance configurator learns from the characteristics
and performance metrics of known training instances,
for which training set labels exist, and a production
phase where it is used to select the best configuration
for a given, new, instance. In contrast, (per-set) au-
tomatic algorithm configuration (see (Lopez-Ibafiez
et al., 2016)) sets “good average” values that are used
for all the test instances, once it is trained. One ap-
proach for Per-instance algorithm configuration is to
consider it as an special case of automatic algorithm
selection (Lindauer et al., 2015), where a finite num-
ber of different configurations correspond to a finite
number of algorithms, and the task consists on find-
ing which, among such configurations, would per-
form best in a given input instance (Rice, 1976). For-
mally, as defined in (Lindauer et al., 2019), the goal is
to select, for a given instance and a given metric m, an
algorithm A, whose performance metric value is best.

Previous work on algorithm selec-
tion/configuration for CVRP, include (Fellers
et al., 2021), where the authors present a CNN-based
meta-solver that is capable of identifying, from a set
of 4 heuristic algorithms, for up to 79% of instances,
the one that performs best, in a set of diverse in-
stances automatically generated by the authors. The
instances considered in such study vary the number
of customer in the range [100 — 1000]. Also, a recent
survey on learning-based algorithms for the CVRP
can be found in (Bogyrbayeva et al., 2022).

2.5 Performance Metrics

To evaluate algorithm selection methods, two base-
lines are frequently used:

Single Best Solver (SBS): relates to the perfor-
mance of the solver with best average behavior
across all the instances used for the first phase
(i.e. the best solver on average for the training
set).

Virtual Best Solver (VBS): relates to a virtual
solver that delivers perfect selection of the
best performing algorithm for each individual
instance.

An algorithm selector is reasonable if it performs
at least as well as the SBS. Hence, it is common to
normalize the performance metric m with respect to
this baselines. For this problem, we take m as the
length of all trucks’ tours. This normalized metric is
known as 71 and is defined as follows:

m —myps

ey

n=——"—
msps — myps

Values of /i1 = 0 mean that the selector performs
as well as the VBS and /1 = 1 means that it performs
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as well as the SBS. Greater than 1 values of /2 mean
that the use of the selector is worse than using a sin-
gle algorithm/configuration for all the instances in the
test.

For evaluating the performance of different ML
models on the quality of the predicted parameter r,
we use the Mean Squared Error (Carbone and Arm-
strong, 1982) (MSE). This measures the average of
the squares of the differences between the predicted
values of r and the best possible values of r. This best
value is determined for each instance by running all
possible values of r and picking the one which gives
the lowest value of the length of the tours. This best
value is referred to as the ground-truth label of the
instance.

3 META-SWEEP-ALGORITHM:
AUTOMATIC
CONFIGURATION OF THE
SWEEP ALGORITHM

3.1 Algorithm Configuration as
Algorithm Selection

As proposed in (Lindauer et al., 2015), algorithm con-
figuration tasks can be handled the same way as algo-
rithm selection tasks. For this, typically, a continu-
ous domain has to be discretized and bounded. For
the Sweep Algorithm, this is straightforward, since
its parameter is bounded by the range [0,1] and such
a range can be discretized at a desired level of gran-
ularity. The algorithm selector setup for the Sweep
algorithm is given in Figure 5.
The process is composed of the following tasks:

Training and Testing Data Preparation: For this
task, benchmark sets have to be collected, and all
possible configurations of the algorithm have to
be tested against those benchmark sets. For each
experiment, the cost obtained by the algorithm
and the time of the execution is stored.

Instance Characterization: The instances are char-
acterized by devising and selecting a set of fea-
tures that are ideally informative. It is also impor-
tant that computation of the features of an instance
is done efficiently, since the focus of algorithm se-
lection is low running time overall.

Instance Labeling: Since our approach here is su-
pervised, we need to label our training set. These
labels are computed by comparing the quality of
the costs of the solutions associated to the corre-
sponding parameter values.

34
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Figure 5: Training process for our supervised algorithm
configuration framework.

Machine Learning Models: A machine learning
model is defined by its input, output and the
function that maps the input into the output.
The input consists of the (possibly normalized)
features determined in the characterization step
above and the output corresponds to the (possibly
normalized) labels also described above. The
learning of the mapping is then computed by
ML algorithms that adjust the parameters of
the underlying structure of the model (neural
network, decision trees, etc). After this, the
model is validated by comparing the model’s
output with the labels in the testing data.

Next, we elaborate on the details of each of the
tasks.

3.2 The Generated Training and Testing
Data

3.2.1 Los Angeles and New York Datasets

The customers of each instance are randomly selected
either from a set of over one million addresses in
Los Angeles, (https://data.lacity.org), or from a set
of close to one million addresses in New York City
(https://data.cityofnewyork.us). Each customer is de-
fined by its latitude and longitude coordinates. The
distance between two customers is calculated as the
Euclidean distance. For each instance, we locate the
depot at the mid-point between the most south-west
and the most north-east customers.

In this study, we set all demands to unit. The num-
ber of customers per instance varies from 500 to 6000,
randomly selected, and the truck capacity varies from
25 to 200 customers. For every combination of num-
ber of customers and truck capacity, we have gener-
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ated 500 instances from each of the Los Angeles and
the New-York City collections of addresses. In total,
we generated 46000 instances.

3.3 Instance Characterization and
Features

Our models use different features of the CVRP in-
stances as input for suggesting the best configuration
of the algorithm. Such features have to be informa-
tive and, hopefully, fast to compute. They are nor-
mally computed by preprocessing the input instance
and by extracting descriptive statistics from it. For
CVREP, fast to extract descriptive statistics are: num-
ber of customers, average and standard deviation of
the demands, statistics on the spatial distribution of
the customers, etc.

We choose the following features to feed to our
models:

Number of Customers. The total number of cus-
tomers in the CVRP problem.

Capacity: The capacity of the trucks. For this
work, we consider uniform capacity across all the
trucks, but this can easily be converted to a vector
of capacities if this is not the case.

Width. The biggest difference across x-coordinates
of all customers.

Height. The biggest difference across y-coordinates
of all customers.

k-circular Convolution. We take k-concentric cir-
cles, centered at the depot, in such a way that the
last circle has radius equivalent to the distance of
the depot to its furthest customer. The radius for
the other k — 1 circles are uniformly distributed
between the depot and the external circle. For
each circle i > 0 of radius r;, we compute the
percentage of customers that lie in the flat donuts
formed by the circles of radius r; and r;_;. For
this work, we take k = 100.

Customers Matrix. This matrix is equivalent to the
one used in (Huerta et al., 2022): Itisa 128 x 128
matrix that is computed as follows. We uniformly
divide the euclidean space in which the customers
are disposed in a 128 x 128 layout and, for each
of the 16384 cells, we compute the number of cus-
tomers that are contained in the cell. For normal-
ization purposes, a top threshold value can be set
for really crowded cells.

The first four features are used in all the models,
whereas k-circular convolution is used for RF, KNN,
AB and GB, and the customers matrix is used only for
CNN.

3.4 Instance Labeling

The instance labeling entails the computation of the
ground-truth label of each instance. As explained ear-
lier, this is the value of r that gives the best perfor-
mance of the Sweep algorithm for this instance. This
is given to the ML algorithms as the labels for the
training set.

3.5 Machine Learning Models Used

For training our regression model, we used several
ML algorithms. The parameters for the models were
adjusted using k-fold cross validation (Stone, 1974),
with k = 5. The results of this hyper-parameter tun-
ing and further details on each of the algorithms are
as follows:

Random Forests: n_estimators =510
k-Nearest Neighbors: k=210

Gradient Boost: [oss = MSE, learning_rate = 0.1,
n_estimators = 100.

Ada Boost: learning_rate = 0.1, n_estimators = 50.

Convolutional Neural Networks: The CNN is
formed by the following layers:

* 3 convolutional layers with 16,32 and 48, 3 x 3-
sized filters,

* 2 pooling layers of sizes 2 x 2,
* adense layer of 32 nodes

* alayer that concatenates the previous layer with
the 4 features corresponding the number of cus-
tomers, capacity, width, height,

* 4 fully connected layers of sizes 512,128,32
and 10, the last one corresponding to the out-
put of the network.

All layers use the ReLu, a piece-wise linear ac-
tivation function (Agarap, 2018), with the excep-
tion of the last one, which uses a linear activation
function.

3.6 Meta-Sweep-Algorithm

The Meta-Sweep-Algorithm (MSA) is a per-instance
automatically configured algorithm. This meta-
algorithm first computes the features, defined in Sub-
section 3.3, associated with an input instance, which
are then fed to the selected machine-learning-based
oracle to predict the best parameter value. Then, the
meta-algorithm runs the sweep algorithm with this
predicted radius parameter.
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4 EXPERIMENTAL RESULTS

4.1 Comparing the Parameter
Prediction Quality of Different
Machine Learning Algorithms

The training and testing of the five ML algorithms
were performed on a machine with a 3.3Ghz AMD
Ryzen 9 5900HS processor with 16GB of RAM. A
Nvidia RTX 3060 GPU was also used for the training
of CNN. We used the Machine Learning Algorithms
implemented in the Scikit-learn and Keras (tensor-
flow) modules of Python.

A
0.05 A

0.04 A

00371 ge G#

0.02 A

Prediction Time (s)

KNN
0.01 A

0.008 0.009 0.01 0.011
Mean Squared Error

Figure 6: Quality (in terms of MSE) and running time com-
parison of ML algorithms.

Figure 6 shows the performance of the parame-
ter prediction of the five ML-algorithms. The per-
formance is measured in terms of MSE across the
training set and the running time (shown as mean and
standard deviation). As can be seen, GB and CNN
are the algorithms with largest MSE value. More-
over, for AB, the running time is the largest. KNN
delivers, on average, predictions of best quality and at
the fastest running time. RF and GB perform slightly
worse in quality, and take longer times (up to 3x the
time needed by KNN). Hence, for the rest of this sec-
tion, we report on results obtained by KNN.

In Figure 7 we contrast the ground-truth labels
with the predicted labels as computed by the KNN
algorithm. The ideal form of such graphic would be a
perfect diagonal, but we can observe chunks of values
for which the mislabeling is more common. For in-
stance, we notice that the algorithm predicts very dif-
ferent values when the ground-truth values are close
to 0. We also notice that the algorithm tends to predict
a negative value (i.e. the second algorithm) more of-
ten than when the real “best” parameter indeed corre-
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Figure 7: Ground truth labels vs predicted labels by KNN.

sponds to the second algorithm. This may not have an
impact on the quality of the recommendation, since
there may be parameter values for the first and sec-
ond algorithms that generate very close solutions in
the quality of the tour length. How this mislabelling
affects the performance in the length of the resulting
tour length is explored in the next subsections.

4.2 Comparison with Other CVRP
Solvers

We compare the results of our Meta-Sweep-
Algorithm (MSA) with other state-of-the-art solvers.
Specifically, we compare with OR-tools CVRP
solver (Perron and Furnon, 2019) with its default
parameters’ values, and with the publicly available
FILO solver, described in (Accorsi and Vigo, 2021),
also with its default parameters’ values. The CVRP
OR-tools solver is a constraint Programming solver
that supports multiple CVRP formulations. The FILO
solver is based on Iterated Local Search, which im-
plements several already proposed and new neighbor-
hoods, which acceptance criterion is based on that of
Simulated Annealing, in order to continually diver-
sifying and exploiting different regions of the search
space. More importantly for this work, FILO’s local
search initialize with the solution obtained by a C++
implementation of the classic Savings heuristic for the
VRP (Clarke and Wright, 1964), which we label CW.

For each of the 15333 instances in the testing set
(a third of the benchmark set), we run the three algo-
rithms: MSA, CW and OR-Tools. Figure 8 illustrates
the difference in the performances of the algorithms.
In this figure, each instance is presented as a point for
each of the three algorithms in blue (MSA), orange
(OR-Tools) and green (CW). The horizontal x-axis is
the computation time (in log-scale) taken by the algo-
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rithms to produce a first solution. The vertical y-axis
is the solution quality measured as the ratio of the so-
lution value divided by the best value delivered by one
of the three algorithms.

o
14 . MSA
® ORtools (1°sol.)
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Figure 8: Time and quality comparison of MSA, OR-tools
and CW algorithms.

As can be seen, compared to OR-Tools, MSA
and CW produce better solutions and in dramatically
faster time. Compared to CW, MSA is noticeably
faster (on average 2x faster) and delivers most of the
best solutions computed. The gap between the solu-
tions both algorithms produce oscillates between very
small values and up to 18%. The most extreme vari-
ations seem to happen for the fastest-to-compute in-
stances, which are the smallest ones.

Table 2: Percentage of best solved instances per algo-
rithm and average runtime, grouped by number of cus-
tomers. # cust = number of customers. % MSA, % CW,
% OT = percentage of instances in the group best solved
by meta-sweep-algorithm, CW and OR-tools respectively,
and t MSA, t_ CW, t_OT = average time needed to produce
the first solution by meta-solver, CW and OR-tools respec-
tively, in seconds.

#cust. | % MSA tMSA | % CW tCW | % OT t_.OT
500 82.89 0.03 17.11 0.02 0.0 1.77
1000 76.49 0.07 2351 0.07 0.0 7.01
1500 75.68 0.11 24.32 0.13 0.0 15.61
2000 77.88 0.16 22.12 0.23 0.0 2753
3000 73.76 0.23 26.24 0.5 0.0 6143
4000 57.11 0.35 42.89 0.89 0.0 108.89
5000 56.93 0.44 43.07 1.4 0.0 16941
6000 57.82 0.54 42.18 2.03 0.0 245.26

Table 2 reports the percentage of instances, out of
the 15333 instances, that are best solved by each of
the algorithms. It also shows the average time needed
by each algorithm to compute the solutions. This is
reported for each group of instances that share the
same number of customers. The results in this table
indicate that MSA finds solutions much faster than
the other algorithms—up to two orders of magnitude
faster than OR-Tools, and about a factor of 2 faster
than CW. Also, MSA finds better quality solutions for
most instances.

4.3 The Effectiveness of the KNN
Oracle

One way of evaluating the effectiveness of the oracle,
as proposed in (Dunning et al., 2018), is to make it
predict the best p values of r for each instance, and
compare them to a “single” best vector of values of
r for the entire dataset. This is a generalization of
the SBS as discussed in Section 2.5, which we call p-
SBS. For this, the model is trained to output not only
one, but the p best values of r. Here we set p = 10.
For SBS, it is run for the first p parameter values in
the ranked list from Table 1, (0,—0.5,—0.49, —0.4,
—0.51, —0.42, —0.39, —0.48, —0.41, —0.43).

80
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Figure 9: Percentage of instances that are best solved using

p parameter values, for MSA and p-SBS.

Figure 9 shows that the use of the oracle in MSA
provides significant improvement over p-SBS, both of
which use the same number of “best” parameter val-
ues. Whereas p-SBS selects parameter values from a
fixed list, the oracle provides MSA parameter values
that depend on the instance. As we can see, in the
base case in which a single parameter value is used,
MSA is able to dynamically pick a best possible pa-
rameter value for up to 29% of the instances. This
contrasts with SBS, which is only able to do so for
14.58% of the instances using the fix parameter value
of 0. We can see that the gap between MSA and p-
SBS on the percentage of instances for which a best
parameter can be found, among the p alternatives, in-
creases.

Figure 10 illustrates how the quality of the solu-
tion of MSA and p-SBS improves as a function of
increased number p of top-ranked parameter values to
be tested in the algorithm. As can be seen, in the base
case where a single parameter value is tested, MSA
delivers solutions with close to 0.6% gap, on average,
compared to the best possible delivered by VBS. In
contrast, SBS delivers solutions that have a gap close
to 5%. This difference between MSA and SBS dimin-
ishes dramatically when picking a second parameter
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Figure 10: Gap percentage within the cost using p parame-
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to test. For 4 or more parameter values, the difference
becomes minimal.

Another evaluation metric that is usually taken
into account for automatic algorithm selection tasks is
the 71 metric, presented in Subsection 2.5. Figure 11
shows how the 72 value behaves as p increases. We re-
call that values closer to 0 mean that the meta-solver
behaves close to the Virtual Best Solver and that val-
ues close to 1 mean that the solver behaves more like
the p-SBS. Note that while increasing p, the 1 value
tends to get worse because the larger p is, the more
likely the performance of p-SBS is to improve.

S CONCLUSIONS AND FUTURE
WORK

We demonstrate here that using ML for automatic
selection of an algorithm’s parameters improves sig-
nificantly the quality of the solution provided. This
proof of concept is given here for the case of CVRP
and the sweep algorithm with the radius parameter.
We present a comparison of several ML algorithms
for selecting automatically the radius parameter. In
our experiments, KNN is the best performing. Using
KNN for automatically selecting the radius parame-
ter, we compare the performance of our meta-solver
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(MSA) with two publicly available state-of-the-art
CVRP solvers: OR-tools (Perron and Furnon, 2019)
and FILO (Accorsi and Vigo, 2021) showing that au-
tomatic selection of the radius parameter provides fast
and high quality solutions. Specifically, MSA al-
ways dramatically improves on the quality and run-
ning time of OR-tools. For comparison with FILO
(which entails comparison with Clark-Wright), the
improvement is particularly notable for large-scale in-
stances with relatively small number of trucks (i.e. ra-
tio of total number of customers divided by the truck
capacity).

We further introduce here two new CVRP bench-
mark sets based on real addresses in Los Angeles and
New York City. These include about one million cus-
tomers each and a collection of 46000 instances that
are random subsets of these benchmarks.

Future research plans are to build a CVRP meta-
solver that considers a portfolio of additional algo-
rithms based on local search and exact methods. We
also plan to expand the functionality of the meta-
solver by adding capabilities of having user-specified
limits on the running time and other computational
resources.
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