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Abstract: Data is one of the most valuable assets a manufacturing company can possess. Historical data in particular 
has much potential for use in automated data-driven decision-making which can result in more efficient and 
sustainable processes. Although the technology and research behind data-driven systems for Root Cause 
Analysis has developed vastly over decades, their use for real time automated detection of root causes within 
steel manufacturing has been limited. Typically, root cause analysis still involves a lot of human interaction 
both in the pre-processing and data analysis phases, which can lead to variability in results and cause delay 
when devising corrective actions. In this paper, an application for automated Root Cause Analysis in an Hot 
Strip Mill is proposed for the purpose of demonstrating the effectiveness of such an approach against a manual 
approach. The proposed approach classifies temperature defects of steel strip Width Pull using a variety of 
machine learning algorithms in conjunction with k-fold cross validation. 

1 INTRODUCTION 

Each year, millions of tonnes of steel are rolled by 
steel companies across the globe. While steel-making 
plants strive to produce high quality steel strip and 
limited waste, various defects still occur on a regular 
basis and thousands of these are recorded by 
operators each year. Width-related defects account 
for a large portion of these. 

 
Figure 1: A fishbone diagram showing the causes of Width 
Pull throughout an HSM. 

There are several width-related defects, each with 
a number of failure modes with potential origins from 
various Hot Strip Mill (HSM) sub-processes, 
including bar specification issues, temperature 
fluctuations, and erratic tension control. 
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The current procedures used to determine the 
causes of width-related defects, however, are mostly 
manual and require human interaction before the 
issue can be resolved, sometimes even including 
simple true or false condition checks. This creates an 
inconsistent timescale in which defects may go 
unrecognised and successive products are therefore 
negatively affected. These problems can occur not 
only when defective behaviour is identified at a later 
time, but also if defective behaviour is missed and 
therefore goes unrecorded. Although human error is 
thought to be the main concern associated with 
manual processes, fast-paced and critical decision-
making and resource allocation are also primary 
concerns (Janssen et al., 2019; Sheridan & 
Parasuraman, 2000). 

In recent decades, root cause analysis (RCA) 
methodologies have adopted more up-to-date and 
relevant technologies including automation and 
machine learning (Mahto & Kumar, 2008). 
Automation has proven to be a powerful approach in 
manufacturing operations and RCA, dramatically 
reducing the time between the occurrence of physical 
events and digital analysis and visualisation (e 
Oliveira et al., 2022), usually without the need for 
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human interaction. Machine learning also enables 
RCA systems to learn patterns in data which can be 
too ambiguous for a human to perceive and provides 
the ability to re-train a system to adapt to new or 
unforeseen behaviour (Wiering & van Otterlo, 2012; 
Wuest et al., 2016). Within the steel rolling industry, 
RCA, particularly with machine learning, is not yet 
mainstream outside of its use in applications for 
surface defect detection and roller model 
optimisation. Currently, such applications have also 
not been embedded into a larger RCA system 
spanning multiple sub-processes in an HSM, which is 
a future aim of this study. 

By increasing the scope of machine learning 
applications in an HSM setting, it is possible to create 
a broad set of RCA tools for the identification of 
failure modes which can be used to improve the 
current process and reduce workload on team 
members, allowing them to focus on other more 
meaningful tasks. In the future, it would also be 
beneficial to combine these tools into a broad system 
to identify both the cause and origin of a defect 
throughout a number of HSM sub-processes. This 
would provide quick access and a simple but detailed 
overview of the process with regards to process 
performance and RCA. 

In this paper, a proposition is made for an 
automated RCA application which utilises machine 
learning to classify the root cause of Width Pull in an 
HSM. This aims to show that there is potential for a 
series of this type of application to be created in a 
steel industry setting and, in future, compiled into a 
final system which can broadly monitor the HSM 
process. The resulting application aims to save time 
and boost productivity of both the HSM process and 
analysts and reduce the overall number of defects that 
occur in the future. In section 2, an insight into the 
current issues and analysis procedures used in 
existing HSMs is highlighted and a deeper 
understanding into the background of RCA systems 
and machine learning both in general and in the steel 
industry is provided. The data pre-processing steps 
taken and the methodology used to carry out 
classification experiments are then outlined in section 
3. The results of these experiments are then evaluated 
against a manual approach to the described problem 
in the penultimate section before concluding on the 
proposed approach’s performance, the optimal 
machine learning model, and how it might be 
improved in the final section. Future work aims to 
discuss the need and integration of such an 
application in a broader RCA system spanning the 
entire HSM process. This will be in conjunction with 
a previous work in which an RCA application was 

created for failure mode classification in an HSM 
(Latham & Giannetti, 2021). 

2 BACKGROUND 

2.1 Root Cause Analysis in 
Manufacturing and the Steel 
Industry 

2.1.1 Early Stages of Root Cause Analysis 

Having only been around since the 1950s and only 
becoming mainstream after the creation of Lean 6 
Sigma in the 1980s, RCA has played a major part in 
the push towards a better understanding of faults that 
occur in manufacturing processes (Arnheiter & 
Greenland, 2008; Ohno & Bodek, 1998). The aim of 
RCA was originally to identify the cause of a known 
issue so that an appropriate solution can then be 
determined. However, the methodologies used to 
achieve this goal has evolved over the years 
(Arnheiter & Greenland, 2008) to make this process 
more streamline and beneficial. Some examples 
include the inclusion of expert knowledge, prescribed 
solutions and, more recently, automation (Diez-
Olivan et al., 2019; Giannetti et al., 2015). 

The first major example of a practical RCA 
approach was the use of the 5 Whys methodology, 
created in the 1930s by Toyota engineers (Serrat, 
2017), but becoming popular later in the century as 
part of the Lean 6 Sigma framework . While Lean 6 
Sigma is used to improve general business efficiency, 
its techniques are often applied in the manufacturing 
industry (Sreedharan & Raju, 2016). The 5 Whys 
approach encourages further investigation into why 
faults occur (Serrat, 2017), which, as mentioned, is 
the main aim of RCA. The next major step in 
developing RCA was to further include expert 
knowledge such that analysts could make a guided 
diagnosis of the issue (Sarkar, Mukhopadhyay, & 
Ghosh, 2013). These expert systems eventually 
included further knowledge such that a prescribed 
solution could be given depending on the diagnosis 
and inputs (Cao et al., 2022; Kalantri & Chandrawat, 
2013). These were the first major steps towards 
introducing artificial intelligence into RCA 
methodologies. 

2.1.2 Root Cause Analysis and Machine 
Learning 

Over the last few decades, the amount of data 
collected in manufacturing processes has been 
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increasing at such a rate that it is becoming an 
increasingly important challenge to make use of this 
data in an efficient manner (Yaqoob et al., 2016). 
However, the infrastructures in which such vast 
amounts of data are stored are often unorganised and 
require a number of processing steps (Madden, 2012) 
before data is transformed into a suitable standard for 
analysis. The inclusion of artificial intelligence has 
propelled the development of RCA tools and 
methodologies such that it is now possible to quickly 
and efficiently process large amounts of information. 
There are many examples which demonstrate such 
tools which include the use of neural networks, 
regression models, and other more traditional analysis 
models such as control charts for automated RCA in 
a variety of industries (Oliveira et al., 2022; Giannetti 
et al., 2014a, 2014b). However, some argue that 
further development is still required to maximise its 
potential (Zhang et al., 2020). 

In the last several decades, machine learning has 
become a very popular tool for quick and automated 
analysis and feedback in manufacturing processes 
(Cinar et al., 2020; Dogan & Birant, 2021; Essien & 
Giannetti, 2019; Giannetti & Essien, 2022). The 
premise of machine learning is to learn patterns from 
the features of a given set of historical data and use 
this information to create a model that can identify 
these patterns in new, unseen data. This approach 
attempts to automate manual RCA operations and 
provide quick, if not immediate, feedback 
(Steenwinckel, 2018). 

There are many applications of RCA which utilise 
machine learning in the manufacturing industry 
(Weichert et al., 2019), and many unique approaches 
have been taken to develop them. One such example 
is the use of machine learning-based anomaly 
detection methods, including K-Nearest Neighbour 
(KNN) and Local Outlier Factor (LOF), to detect 
failure modes in assembly equipment (Abdelrahman 
& Keikhosrokiani, 2020). Another application 
includes the use of machine learning, specifically 
neural networks, for quality monitoring in an 
injection moulding process (Nam, Van Tung, & Yee, 
2021). One more example is the use of supervised 
methods such as K-Means Clustering and decision 
trees for the detection of root causes of defects in 
semiconductors (Tan et al., 2021). It is worth noting 
that some approaches argue that a knowledge-based 
approach can sometimes be more suitable than 
machine learning depending upon the scenario 
(Martinez-Gil et al., 2022; Roshan et al., 2014). It is 
clear that some solutions are chosen to cater to the use 
case addressed by the application but have the 
common goal of using information from a process to 

provide useful feedback for the purpose of improving 
a process (Weichert et al., 2019). 

2.1.3 Root Cause Analysis in the Steel 
Rolling Industry 

Within the steel rolling industry machine learning 
and, especially, RCA is not yet mainstream and has 
only seen analytics for RCA used on a niche scale. 
While there has been much development for existing 
applications of machine learning, areas of focus in 
research are largely limited to surface defect detection 
(Huang, Wu, & Xie, 2021) and roller model 
optimisation (Li, Luan, & Wu, 2020). While it may 
be difficult to introduce new technologies into an 
operation of such a scale, machine learning has 
untapped potential with regards to RCA in the steel 
industry as it would enhance the automation of such 
analyses. Time and resources spent on conducting 
this process manually would therefore be saved and 
workers who would normally be tasked with this 
could devote more time to other workloads or more 
complex projects in which human interaction is a 
necessity. 

2.2 Width Pull and Current HSM 
Procedures 

2.2.1 Width Pull in the HSM 

When Width Pull occurs, the head end of a steel bar 
either elongates or becomes under width specification 
as a result of sudden tension in the strip (Khramshinet 
al., 2015; Radionov et al., 2020). This defect can 
occur for an array of reasons, including wrong bar 
specifications, high or low temperatures, and erratic 
tension. 

 
Figure 2: A graph showing the width deviation of a strip 
with Width Pull. 
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Currently, when Width Pull occurs in the HSM, 
the root cause is determined via a manual analysis of 
the defective sample. There are many causes of Width 
Pull and, although there is a workflow in place to 
determine basic causes, the data examined to 
determine other causes can be quite ambiguous 
making them difficult to draw conclusions on. 
Although temperature-related causes normally 
originate from the furnace (as shown in Figure 3), it 
is important to note that the issue is originally 
identified in a later part of the HSM process such as 
Roughing or Finishing. Many failure modes of width-
related defects in the HSM process are temperature-
related (as shown in Figure 1). 

 
Figure 3: A fishbone diagram showing the causes of Width 
Pull throughout a HSM. 

2.2.2 Current HSM Procedures  

Width Pull, as well as other defects that occur in the 
HSM, can have damaging effects both in the short-
term and long-term. Depending on the severity of the 
under width caused by Width Pull or other defects, a 
follow-up action is carried out. The first possible 
action is a cutback in which the under width portion 
of the strip is cut off. This results in a shorter strip 
length and scrap which is melted for use in later strips, 
requiring further processing which is both time-
consuming and unresourceful. Another action is to 
make a concession in which the customer is offered 
the defective strip at a negotiated lower price. 
Although this action does not always require further 
processing, potential profit is still lost. This however 
does not mean that cutbacks do not occur before or 
after concessions are made. In the worst-case 
scenario, the strip is scrapped altogether. In the long-
term, all follow up actions require either further 
resources and cost time and money, or result in 
wasted material, ultimately producing business waste 
(Sarkar, Mukhopadhyay, & Ghosh, 2013; Sreedharan 
& Raju, 2016). 

The effects of these defects can also be derived 
not just from the defect itself but from the manual 
analysis process that is currently used to determine 
their root causes. Issues are often caught or resolved 

long after immediate and, sometimes, lasting impacts 
that are created by defective behaviour. For example, 
some causes of Width Pull can affect a sequence of 
strips if left unresolved (Khramshin et al., 2015). A 
build-up of unresolved issues also suggests that the 
information collected about root causes is analysed 
too late to have a meaningful impact on the process, 
resulting in a less productive system. Lastly, manual 
analysis is time-consuming for analysts themselves. It 
is a trivial task which, if automated, would enable 
them to focus on more complex tasks and other 
responsibilities, thus boosting their productivity. 

3 METHODOLOGY 

3.1 Problem Statement 

In the following experiments, the potential of 
machine learning for automating RCA in an HSM 
setting is demonstrated by classifying temperature-
related failure modes of steel strips which have 
suffered from Width Pull. This application is planned 
to be part of a greater work which will combine such 
applications and determine the failure mode and 
origin of identified strips with Width Pull throughout 
the HSM. 

3.2 Dataset 

The number of steel strips affected by low 
temperature, or ‘undersoaking’, accounts for a larger 
percentage of samples, overall making the dataset 
used in this study unbalanced. At the time of data 
collection, a total of 166 samples were available, 111 
of which were undersoaked and 55 of which were 
high temperature. Despite the imbalance, the 
available dataset still had a limited number of 
samples. It was therefore decided to use the whole 
dataset for this experiment rather than reducing the 
amount of undersoaked samples to account for 
balance, which would limit the quality of training 
during machine learning. 

Table 1: A table showing the split of labelled data used in 
this experiment. 

 Training 
Dataset 

Testing 
Dataset 

Total 
(Label) 

Undersoaked 78 33 111 

High Temp 39 16 55 

Total (Dataset) 117 49 166 
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Each sample is derived from two temperature 
signals which are pre-processed and compared to 
evaluate their representation of the root cause. This is 
achieved through a series of transformations which 
eliminate redundant data and account for differing 
temperature ranges between different product 
specification and comparing the range of values 
between different product specifications and 
comparing the range of values between the two 
signals following these transformations. Statistical 
features are then chosen to represent the samples 
during the training stage of machine learning. These 
features help the chosen machine learning algorithms 
to distinguish between the behaviour of undersoaking 
and high temperature. 

3.3 Pre-processing and Labelling 

In order to analyse the signal data both manually and 
using machine learning, redundant data must first be 
eliminated and, if it is not already, the remaining data 
must be processed into a readable format. By cleaning 
signal data like this, a more relevant perspective of 
our data is shown, making data from different classes 
more distinct during the feature extraction stage. The 
first step is to eliminate irrelevant measurements in 
the signal which occur when the bar is not present in 
the Finishing Mill (as shown in Figure 4). A binary 
Metal-In-Mill (MIM) signal displays whether or not 
the bar is present in the mill. The second step is 
completed by extracting the temperature signal 
measurement where the MIM signal is activated (as 
shown in Figure 5). 

 
Figure 4: Temperature signal of an undersoaked strip before 
pre-processing. 

 
Figure 5: Temperature signal of an undersoaked strip where 
MIM signal is activated. 

The second step is to pad outlier measurements to 
sensible values (as shown in Figure 6). Measurements 
above a strip temperature’s upper tolerance plus 50°c 
are set to this value. Alternatively, measurements 
below a strip temperature’s lower tolerance minus 
50°c are set to this value. Outlier values alone are not 
enough to distinguish whether Width Pull is caused 
by temperature. This is because these values may be 
caused by erroneous sensor readings and, very 
commonly, noise upon the strip’s entrance into the 
Finishing Mill. Data representing this behaviour is 
therefore eliminated from the beginning of the signal 
to remove redundant values that may misrepresent 
failure modes during training. 

 
Figure 6: Temperature signal of an undersoaked strip after 
outliers are removed. 

The next step in narrowing down on this 
information is to segment first 10% of the signal, 
representing the head end of the strip (as shown in 
Figure 7). This is because Finishing Mill Width Pull 
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instances typically occur in the head end of the bar. 
The final step maps each signal to a comparable scale 
such that measurement ranges are mapped to the 
sample values. A standard peak normalisation 
formula (1) is used with the minimum and maximum 
values of each signal to map all values of all signals 
between 0 and 1 (as shown in Figure 8). 𝑃𝑒𝑎𝑘 𝑁𝑜𝑟𝑚. ൌ  𝑥 െ min௡ ሺ𝑥ሻmax௡ ሺ𝑥ሻ െ min௡ ሺ𝑥ሻ (1)

 
Figure 7: Temperature signal representing the head end of 
an undersoaked strip. 

 
Figure 8: Temperature signal of an undersoaked strip after 
peak normalisation. 

Although basic labels exist to show simply 
whether or not a steel strip sample is has Width Pull, 
the data required for this application must be specific 
to the root cause of the defect. Using a combination 
of the existing manual analysis process, the extracted 
data, and a series of plots displaying the now cleaned 
signal data, the root causes of the extracted Width 

Pull samples were manually labelled, creating further 
labels used to train and test the final machine learning 
algorithms. 

3.4 Feature Selection 

A collection of statistical features was extracted from 
the pre-processed data for use in the chosen machine 
learning algorithms. These include several quartile 
values, mean, peak value, root mean square, and 
standard deviation. Pearson’s Correlation Coefficient 
was then used to determine which of these features 
would be used during training. More specifically, the 
averages of each feature after being applied to this 
formula were used as a guide to eliminate features 
which correlated too closely and would therefore 
become redundant or counterproductive during 
training (Schober, Boer, & Schwarte, 2018). The 
result of this methodology is a feature set which is 
combined with the labels to create a final dataset 
which can be used to train and test the machine 
learning model appropriately. 

3.5 Machine Learning Algorithms 

A variety of classic machine learning algorithms has 
been selected for training and testing in this 
experiment. This subsection briefly describes each 
model and their parameters. 

3.5.1 Trees 

A classification tree is a linear graph in which each 
node is assigned a value based on training features. 
These values are used as a foundation for decision-
making when classifying new samples. 

3.5.2 Naïve Bayes 

Naïve Bayes also uses probabilities based on training 
features to determine classification labels. However, 
the Naïve Bayes algorithm bases these probabilities 
on the frequency of each value, meaning that more 
prominent features are dominant in classification. 

3.5.3 K-Nearest Neighbour 

The KNN algorithm creates a dimensional space in 
which samples are plotted based on the values of their 
features. New samples are plotted in this space and 
compared to a chosen number, k, of neighbours. The 
class of a new sample is chosen based on the class of 
the majority of its k neighbours. It should be noted 
that the numbers k in KNN and k-fold cross validation 
are unrelated. 
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3.5.4 Support Vector Machines 

A Support Vector Machine (SVM) also plots feature 
values into a dimensional space, although rather than 
comparing new samples to a distribution, this 
algorithm attempts to create a new, separating 
hyperplane. New samples are classified based on their 
position relative to this hyperplane. 

3.5.5 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are made up of 
neurons which are combined to form a number of 
layers. Each neuron has a weight which is updated 
during training based on the inputted features. An 
ANN’s width and depth is determined by the number 
of neurons and layers it contains. 

3.5.6 Ensembles 

An ensemble combines the result of more than one 
machine learning algorithm. The ensembles used in 
this experiment combines several tree algorithms. 

3.6 K-fold Cross Validation 

K-fold cross validation is used to estimate the 
generalisation error of a machine learning model. In 
this experiment, k = 5 has been chosen such that each 
machine learning algorithm is run five times using 
80% of the training dataset. For each of the five runs, 
20% is not used during training. 

4 RESULTS 

4.1 Full Training Dataset 

A total of 13 machine learning algorithms were used 
in the training stage of this experiment. Accuracy, 
precision, recall, and F1 score metrics are used to 
evaluate the performance of each model. Accuracy 
simply calculates the overall percentage of correctly 
labelled samples. Precision describes the percentage 
of samples which are labelled as a given class that 
truly belong to this class while recall describes the 
percentage of samples which belong to this class that 
are classified correctly. Although accuracy is still an 
informative metric, F1 score is derived from precision 
and recall, and evaluates the performance of 
classification models more reliably. In the following 
results, F1 score is represented as a percentage for 
consistency among metrics. 

Table 2: Performance of each machine learning algorithm 
when trained on the full training dataset. 

Algorithm Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%)

Coarse 
Gaussian 

SVM
93.88 88.24 93.75 90.91 

Coarse 
Tree 95.92 93.75 93.75 93.75 

Fine 
Gaussian 

SVM
81.63 81.82 56.25 66.67 

Fine KNN 87.76 85.71 75 80 

Fine Tree 95.92 93.75 93.75 93.75 

Gaussian 
Naïve 
Bayes

93.88 84.21 1 91.43 

Kernel 
Naïve 
Bayes

95.92 88.89 1 94.12 

Linear 
SVM 91.84 87.5 87.5 87.5 

Narrow 
ANN 93.88 93.33 87.5 90.32 

Opt. 
Ensemble 91.84 87.5 87.5 87.5 

Opt. ANN 93.88 93.33 87.5 90.32 

Quadratic 
SVM 91.84 87.5 87.5 87.5 

Wide ANN 89.8 86.67 81.25 83.97 

From the results shown in Table 2, it can be seen 
that a majority of the trained models can be used 
appropriately for the classification task. However, 
only a handful show consistent scores between the 
performance metrics. In particular, the Coarse and 
Fine Tree models have been shown to perform best 
with accuracies and F1 scores of above 93%. These 
models are generally quick to train and thus easier to 
retrain when more data becomes available. Although 
the Kernel Naïve Bayes model provides a better 
accuracy, recall, and F1 score, its precision falls 
behind the two Tree models, suggesting it does not 
perform as well when labelling a particular class. 

4.2 K-fold Cross Validation 

After 5-fold cross validation, the models show 
slightly decreased but similar performance to the 
previous test results (as shown in Table 3). This 
means that although each algorithm was given less 
information during training, the models were still able 
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to generalise data relatively well, resulting in stable 
training and thus reliable and consistent models.  

Table 3: Performance of each machine learning algorithm 
in 5-fold cross validation. 

Algorithm Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%)

Coarse 
Gaussian 

SVM 
85.31 79.01 75 76.88 

Coarse 
Tree 88.37 83.8 80 81.73 

Fine 
Gaussian 

SVM 
87.89 82.78 79.58 81.06 

Fine KNN 88.16 82.55 80.94 81.63 

Fine Tree 88.82 83.76 81.75 82.62 

Gaussian 
Naïve 
Bayes 

88.64 82.59 83.13 82.64 

Kernel 
Naïve 
Bayes 

88.57 81.94 83.93 82.7 

Linear 
SVM 88.47 81.76 83.75 82.55 

Narrow 
ANN 88.57 82.55 83.19 82.54 

Opt. 
Ensemble 88.86 82.69 84 83.03 

Opt. ANN 88.79 82.47 84.09 82.98 

Quadratic 
SVM 88.74 82.46 83.85 82.87 

Wide ANN 88.73 82.72 83.46 82.78 

While it is beneficial to determine whether a 
machine learning model generalises well, as has been 
shown in this experiment, the Tree-based models 
would be likely to be selected for use in this 
application based on their superior performance in the 
full training experiment (as shown in Table 2). In this 
particular cross validation experiment, the 
Optimisable Ensemble performed marginally better 
than other models, but would not be selected for use 
in the final application based on its performance when 
trained on the full dataset. 

At the current time, the small dataset used in this 
experiment is suitable for the application of 
classifying temperature-related root causes of Width 
Pull. However, using the best performing machine 
learning algorithms in this experiment, it will be both 
time and cost-efficient to retrain with more data at a 
later date. 

5 CONCLUSION 

A digitised version of the current RCA system for 
Width Pull in an existing HSM has been proposed and 
has shown to perform acceptably for the given task. It 
is capable of providing almost immediate results and 
feedback, dramatically reducing the time between a 
defect occurring and its root cause being identified. 

There would be several benefits of adopting this 
application into an HSM setting. Time would be 
saved on performing unnecessary analyses, reserving 
efforts for productivity elsewhere. This application 
also showcases the potential of combining data 
sources with the aim of repurposing data to create 
new tools and maximise the value of data resources. 
This application is a step towards further automation 
and digitisation of basic HSM analyses and shows 
this approach has the potential to reduce workload on 
analysts such that human interaction can be directed 
towards more complex issues in the HSM. In future 
work, there may also be potential in applying this 
methodology to other steel strip manufacturing 
processes, such as casting and cold rolling, and 
linking the analyses of root causes between these 
processes. 
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