
MLP-Supported Mathematical Optimization of Simulation Models: 
Investigation into the Approximation of Black Box Functions of Any 
Simulation Model with MLPs with the Aim of Functional Analysis 

Bastian Stollfuss1,2 and Michael Bacher2 
1University Stuttgart, Stuttgart, Germany 

2University of Applied Science, Kempten, Germany 

Keywords: Machine Learning, Supervised Learning by Regression, Mathematical Analysis, Approximation, Material 
Flow Simulation, Process Optimization, Artificial Neuronal Network, Newton’s Method. 

Abstract: This paper contains results from a feasibility study. The optimization of manufacturing processes is an 
elementary part of economic thinking and acting. In many cases, complex processes have unknown analytical 
and mathematical methods. If mathematical functions for the behaviour of a process are missing, one often 
tries to optimize the process according to the trial-and-error principle in combination with expertise. However, 
this method requires a lot of time, computational resources, and trained personnel to validate the results. The 
method developed below can significantly reduce these cost factors by mathematically optimizing the 
unknown functions of a complex system in an automatic process. This is accomplished with discrete 
performance and behaviour measurements. For this purpose, an approximate prediction function is modelled 
using a multi-layer perceptron (MLP). The resulting continuous function can now be analysed with 
mathematical optimization methods. After formulating the learned prediction function, it is examined for 
minima using Newton’s method. It is not necessary to know the exact mathematical and physical context of 
the system that needs improving. Calculating a precise interpolation also results in further optimization and 
visualization options for the production plant. 

1 INTRODUCTION 

The modern-day possibilities of digitization mean 
that given processes are not simply adopted, but also 
optimized. Especially in information technology and 
business informatics, process or data mining, data 
science, process management, artificial intelligence 
(AI) are implemented as a matter of course (Laue et 
al. 2021), (Li Zheng, Chunqiu Zeng, Lei Li, Yexi 
Jiang, Wei Xue, Jingxuan Li, Chao Shen, Wubai 
Zhou, Hongtai Li, Liang Tang, Tao Li, Bing Duan, 
Ming Lei, Pengnian Wang 2014). Data-driven 
process optimization is a huge topic of industry 4.0 
(Paasche und Groppe 2022). This paper concerns the 
feasibility of a new method of data-driven process 
optimization. 

If mathematical functions for the description of a 
process are missing, one often tries to optimize the 
process according to the archaic trial and error 
principle (Bei et al. 2013). 

When optimizing the simulation models, which 
involved expert knowledge, empirical values and trial 
and error in combination with expertise were mainly 
used. The methodology is inefficient because of the 
missing explanation component, which is replaced by 
manual documentation and the associated high time 
duration and human resources. This approach offers 
opportunities for optimization by approximating the 
discrete black box function of the simulation model 
through a continuous function. Plant simulations do 
not generate a continuous function, which would be 
necessary for further mathematical processing (Rubin 
et al. 1993). 

We have to find a continuous approximation 
function with an effective optimization and 
subsequent return of the found results to the 
simulation model. 

The state of the art and the theory building of this 
paper are summered in chapter 1. Chapter 2 covers 
the system developed including plant simulation, 
designing an MLP, definition of validation 
parameters, training of the MLP, mathematical 
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optimization. Chapter 3 contains the evaluation of the 
developed system. Chapter 4 is discussing the 
research results. The following chapter 5 gives a 
Summary of our results. Finally, chapter 6 gives an 
insight into the future research perspectives. 

1.1 State of the Art 

The topics of the optimization methods, which are 
presented in the publications discussed, are artificial 
neural network (ANN), Support Vector Regression 
(SVR), Immune Particle Swarm Optimization 
(IPSO), multi-layer perceptron (MLP), mathematical 
optimization (MO), autoregressive integrated moving 
average (ARIMA), evolutionary algorithm (EA). 

The Paper (Yan Wang, Juexin Wang, Wei Du, 
Chen Zhang, Yu Zhang, Chunguang Zhou 2009) is 
about the downstream optimization of the SVR 
learning method with the help of IPSO. It's about 
improving hyperparameters of the SVR. In this work 
the hyperparameter setting of the SVR is optimized 
via IPSO.  

The authors in (Andrei Solomon 2011) use 
different prediction models, including ARIMA and 
linear regression on time series, to improve the 
simulation process parameters.  

In (Ankur Sinha, Pekka Malo, Peng Xu, 
Kalyanmoy Deb 2014), like SVR, hyperparameters 
should be optimized. It's not about optimizing the 
result, but about optimizing the hyperparameters for 
a machine learning process. Bilevel optimization is a 
special kind of programming in which an 
optimization problem is embedded in an outer and 
inner optimization problem, with an upper and lower 
bound on the boundary conditions. 

Generic algorithms are special optimization 
methods in the field of evolutionary algorithms. The 
publication (Nadir Mahammed, Souad Bennabi, 
Mahmoud Fahsi 2020) deals with the optimization of 
a business model design by Genetic Algorithm based 
on multiple populations. Based on the business model 
design, a mathematical representation is created and 
fed into the optimization process. Starting with an 
initial population, descendants are selected with the 
help of an evaluation function and subsequent 
selection. The selected offspring are modified and 
entered into the original population. A new 
population is obtained as the return value of the 
evaluation function, which is processed in the same 
way. The result is optimally parameterized business 
process. Business process parameters have been 
improved and greater diversity has been achieved. 
Basically, the trial-and-error process is developed 
further here because the random factor is preserved.  

(B. Cavallo, M. D. Penta, and G. Canfora 2010) is 
about an empirical study to reliably predict Quality of 
Service (QoS). Various prediction models are used 
for this, as Andrei Solomon in (Andrei Solomon 
2011) ARIMA was also used here. For further 
information see (Box 2015). 

From the data generated in an industrial process, 
the parameters are analysed with the help of data 
mining (Li Zheng, Chunqiu Zeng, Lei Li, Yexi Jiang, 
Wei Xue, Jingxuan Li, Chao Shen, Wubai Zhou, 
Hongtai Li, Liang Tang, Tao Li, Bing Duan, Ming 
Lei, Pengnian Wang 2014). The results are analysed 
and processed, and the process parameters are 
optimized using possibility theory and linear 
regression.  

In the publication (Zhaoxia Chen, Bailin He, and 
Xianfeng Xu 2011), an ANN with backpropagation 
(BP) is used directly to optimize processes. The data 
is generated by a measuring stand. The structure of 
the ANN is not analysed in detail, but the ANN 
outputs the control parameters for the machine 
directly. So direct error minimization takes place via 
the ANN and BP. 

Mathematical optimization is also a discipline of 
applied mathematics. Like analytics, it is about 
finding optimal parameters in a system so that a target 
function can be minimized or maximized. An 
analytical solution of optimization problems is often 
not possible or too time-consuming and could be 
replaced or supplemented by numerical methods. 
However, the mathematical function to be analysed is 
often unknown. Optimization is therefore also a 
problem of approximation, which involves 
minimizing the distance between two functions in 
order to then process the function further (Alpaydın 
2019). 

In the method developed by the mining engineer 
D. G. Kriging, a solution to the specific problem is 
described, which determines promising locations for 
further drilling sites with increased ore deposits based 
on previous drilling sites. To achieve this, he 
designed a method that became known as the Kriging 
method or Gaussian Process Regression and thus 
developed one of the first machine learning methods. 
It is still used today when a function is to be 
maximized for which an evaluation of the function 
parameters is very complex and whose mathematical 
derivations are not available (JARRE und Stoer 
2019). 

Because process optimization is a ‘black box 
problem’, the use of ANN is suitable. The process 
optimization creates large amounts of data from 
which information is to be extracted, taking the black 
box system into account. By training the ANN with 
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the discrete output values, we get a prediction 
function. The weights are adjusted by the 
backpropagation algorithm. We use the method 
similar to the Gaussian process to solve a regression 
problem. In our case, we use MLP for the following 
task. The production times or cycle times represent 
the output values depending on the input parameters 
of the prediction function. 

1.2 Hypothesis 

The hypothesis of this study concerned whether an 
MLP is able to approximate an unknown function 
with sufficient accuracy in order to be able to draw 
conclusions as to where the minima or maxima of this 
unknown function are located. 

1.3 Objective 

The aim was to test an optimization method that uses 
MLP to approximate functions in order to then 
examine the prediction function for optima. The 
optima found should be validated by returning them 
to the simulation model. Furthermore, it should be 
examined whether this method is better suited than 
trial and error methods. 

2 METHODS 

2.1 Summary 

Production plants can be simulated as a Blackbox 
function with the input parameters A and B and the 
output C, as cited below. C needs to be optimized 
with the input parameters A and B. MLPs are able to 
carry out universal approximations of Blackbox 
functions (Alpaydın 2019). In our case the MLP 
should now approximate the unknown function of the 
simulation of a production plant. The resulting 
prediction function is known in its entirety and can be 
MO. Specifically, the goal is that after the learning 
process, the MLP should behave exactly like the 
simulation. The MLP used is extended by a special 
activation function. Based on Fourier, the sine 
function is used instead of the frequently used 
sigmoid function (Egger 2006). The backpropagation 
algorithm and Newton’s method can be easily 
implemented through the simple symbolic derivation 
of the sine function. 

After successful training of the MLP, the 
determined weights of the connections are saved. 
With the known structure and the stored weights of 
the MLP, the prediction function is formulated by a 

self-implemented program. The prediction function 
built in this way results in C´ depending on A and B. 
C´ approximates C. C´ is now to be mathematically 
optimized depending on A and B using the Newton 
method. The parameters A and B can be determined 
by the found minima of C´. The quality of the 
prediction function can be verified by directly 
comparing the Blackbox function output C with the 
prediction function output C´. The MO works 
automatically, apart from the hyperparameter 
settings. 

2.2 Simulation 

The feasibility of the process described above is to be 
proven and analysed using a material flow simulation. 
A production plant should be optimized regarding its 
cycle time. For this purpose, concrete data sets of this 
production plant were first generated with a material 
flow simulation. 

 

Figure 1: Production plant. 

The data records created contained the variable 
parameters: workpiece carriers in the system and 
permitted simultaneous number of workpiece carriers 
in a part of the system (Sub Area), shown in Figure 1. 
The training data generated by the simulation model 
were discrete data pairs, which were then used for the 
supervised learning of the MLP. The data were 
automatically generated and mapped a combinatorial 
grid over the area of interest. 

The area of definition of the black box function to 
be examined is the area in which a minimum is 
assumed or an area that is determined by external 
specifications and limitations. The simulation 
calculated an output data structure containing the 
cycle times with which the finished workpieces left 
the system (Table 1).  
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Table 1: Output data. 

Workpiece 
carriers 

Produced 
Workpieces 

Workpiece 
carriers in 
sub-area 

Average 
cycle 

time [s]
94 1000 5 707.4768
94 1000 6 688.9963
94 1000 7 682.2486
94 1000 8 671.8879
94 1000 9 670.1345

The structure of the output data is formed as a grid 
area. The cycle time must be minimized by correctly 
setting the variable parameters to improve the overall 
productivity of the system. A prediction function is 
now formulated from the MLP so that it can be 
mathematically optimized. 

2.3 Modified MLP 

For this purpose, an MLP was created to train the data 
sets, in this case the cycle time depending on the 
variable system parameters. The MLP used was 
expanded to include the sine function as an activation 
function as shown in Figure 2, with amplitude a, 
angular frequency ω and phase ϕ. Since the cosine 
function is only phase-shifted, it is also described 
(Papula 2014). 

 

Figure 2: Illustration of the network structure with modified 
activation function. 

The property of a simple derivation of the sine or 
cosine function forms the basis for the idea of using 
this as an activation function. Since the weights 
should not diverge or convert to zero during the 
learning process, the input and output values were 
normalized beforehand. The backpropagation 
algorithm was used to adjust the weights in the 
learning process. Depending on the previous weights, 
this propagates the error back and adjusts the current 
weights according to their influence. 
 

2.4 Validation 

Various error parameters were calculated to evaluate 
the quality of the prediction function, including 
RMSE, MAE and  Rଶ (Alpaydın 2019). 

Since this is a new activation function that cannot 
be set in the usual libraries, the MLP was self-
implemented. Known functions for determining the 
quality of the MLP were used to test the created 
program code for correct functionality. The first test 
runs took place with random well-known (Eq. 1., Eq. 
2), two-dimensional functions. Once these could be 
approximated very well after setting the 
hyperparameters, the test was extended to three-
dimensional functions, which also has been 
successfully approximated. 

2.4.1 2D-Function 

fሺxሻ= 120
x2+1 (1)

 
Figure 3: Original function (left) and funtion approximation 
(right). 

Table 2: Results of test run with 2d function. 

Epoch RMSE MAE R2 
198 0.287285 0.215675 0.999898

2.4.2 3D-Function 

fሺxሻ= x⋅y
ⅇ൫x2+y2൯ (2)

 
Figure 4: Original function (left) and function 
approximation (right). 

The pairwise-compared functions, original function 
and approximation agree in a self-defined quality 
criterion up to 2% MAE. (Figure. 3,4) and Table 2, 
Table 3. 
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Table 3: Results of test run with 3d function. 

Epoch RMSE MAE R2 

19 1.192364 0.780794 0.998744 

2.5 Training 

The data set generated by the simulation contains 
about 650 labelled data (Fig. 5). After successful 
online learning, the MLP can predict the cycle time 
with a corresponding level of accuracy, which can be 
found in Table 4. 

 

Figure 5: Plot of the data set calculated by the simulation 
model. 

 

Figure 6: Approximation of the data set by ANN4. 

The prediction function of the fully trained MLP, 
which is shown in Fig. 6, was now used to find the 
minima of the cycle time. The prediction function was 
extracted using a program designed for this purpose. 
The number of summed and nested sine functions is 
defined by the structure of the MLP. The learned 
weights were each inserted as a factor in front of the 
individual sine functions. Since the nesting and the 
summation always follow the same pattern, this 
surrogate function was created in different “for-
loops”. At the end of the algorithm, the finished 
prediction function was outputted. 

Table 4: Results of the MLP training. 

MLP: Epoch RMSE MAE 𝑅ଶ 

MLP1 904 0.069216 0.054091 0.834757 

MLP2 312 0.055734 0.047214 0.883755 

MLP3 21815 0.053844 0.044480 0.830314 

MLP4 7803 0.041716 0.034093 0.941049 

For the purpose of mathematically optimizing the 
prediction function, minima were now sought in the 
area shown in Table 5. The definition area of the 
prediction function (Fig. 6) consists of the limited 
ranges of the input parameters. The range of 
parameters to be examined was between 20 100 
workpiece carriers in the entire system and 5 20 
workpiece carriers in the limited sub-area of the 
system (Fig. 1). 

Table 5: Limits of the generated data set. 

 Workpiece 
carriers [n] 

Workpiece 
carriers in 

sub-area[n] 

Average 
cycle 

time [s] 

Lower limit 20 5 640.64 

Upper limit 100 20 862.65 

Increment 2 1  

2.6 Mathematical Optimization 

The Newton method as an iteration method is very 
well suited to finding extreme points. For this 
purpose, the first and second partial derivatives of the 
prediction function were formed first. Since the 
prediction function only consists of nested and 
weighted sine functions, it can be derived simply 
symbolically, and a numerical derivation is not 
necessary. This avoids rounding errors and 
discretization errors. The second partial derivatives 
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were assembled into the Jacobian matrix, which is 
used in the so-called Newton step to determine the 
local gradient of the prediction function. Since there 
are multidimensional extreme points, it must be 
checked whether each extremum is a minimum in all 
dimensions by using the Jacobian matrix. 

 
Figure 7: Approximation by MLP3P4 and identified 
minima. 

A starting point in the definition area is first 
defined in the Newton´s method, after which several 
Newton steps are carried out from this starting point. 
The starting point can converge to a local minimum. 
If the starting point diverges, the program aborts after 
a certain number of Newton steps. In order to find as 
many local minima as possible in the target area, a 
combinatorial grid out of the definition area with the 
required resolution of starting points was created. 
Now local minima of the cycle time and their 
responsible parameters in the prediction function 
could be determined using the Newton method 
(Figure 7). 

The parameters of the calculated local minima 
were converted to inverse the normalization that was 
initially introduced. Then, the parameters found, 
which lead to a minimum of the cycle time were 
entered into the simulation for evaluation. Finally, it 
was checked whether a shorter cycle time was 
achieved with the calculated parameters. 

3 EVALUATION 

As a result, it was possible to train the MLP in such a 
way that the cycle time of the plant could be predicted 

with a high degree of certainty (Table 4). The 
function of the best MLP approximates the behaviour 
of the simulation model regarding the cycle time with 
a coefficient of determination R2up to 0.94. The mean 
absolute error corresponded to about 7.56 seconds out 
of an average of 686.63 seconds for the cycle time 
(1.1%). The result is better than the deviation of 2% 
determined with the test functions in section 2.4. 
After successfully training and extracting the 
prediction function, it could be visualized as a 
continuum. Checking the found minima provides 
certainty, and the procedure does not require human 
assistance, but works automatically. 

If the predicted minima were greater than the 
values calculated by the simulation, they were 
classified as incorrect. The incorrectly predicted 
minima could be traced back to interpolation 
inaccuracies. The global minimum was determined 
by paired comparison of all local minima. In four of 
the 16 MLPs examined, an improvement in the cycle 
time was achieved due to mathematical optimization. 
The data set for all 16 MLPs examined includes 
around 10,000 label data. In order to compare the 
mathematically optimized procedure with the trial-
and-error method, randomly selected parameter 
combinations were entered manually, and the results 
collated to a test suite. 

Collecting the data from the trial-and-error 
method should take about as long as the procedure of 
the developed algorithm. 

For this purpose, the time required for training the 
MLP and mathematical optimization was calculated, 
as shown in Table 6. 

For the benchmark of the MLP and MO versus 
trial and error, both processes are given 6 hours to 
find the global minimum of the cycle time. The trial-
and-error test suite mentioned above was generated in 
6 hours by hand. In contrast to the trial-and-error 
procedure, training the MLP by hand only takes 2 
hours, thus saving 4 man-hours.  

Table 6: Duration time. 

650 data generated automatically 1.5 h 

Training 2 h 

Determining minima and global minimum 2 h 

Other steps of procedure 0.5 h 

Sum 6 h 

The data set comprised 500 data pairs (Fig. 8). 
Due to the manual input of the parameters and the 
aimless generation of data, the data record is shorter 

IN4PL 2022 - 3rd International Conference on Innovative Intelligent Industrial Production and Logistics

112



than the automatically generated data record. In 
addition, it is not as evenly distributed over the 
definition area, while the MLP dataset is discrete. 

The global minimum in this dataset is 646,78s. 
The global minimum determined by trial and error is 
5.12s worse than the minimum time determined by 
the MLP and the mathematical optimization, shown 
in Table 7. 

 
Figure 8: Test suite. 

Table 7: Results. 

Process Global 
Minimum 

[s] 

Workpiece 
carrier  

[n] 

Workpiece 
carrier in 
sub-area 

[n] 
MLP and 

mathematical 
optimization 

641.66 100 17 

Trial and 
error in Plant 
Simulation 

646.78 92 15 

4 DISCUSSION 

Process optimization of complex manufacturing 
systems, which is used in many production plants, is 
often difficult and confusing in practice, since the 
mathematical and physical relationships of the factors 
influencing the system are not known, resulting in a 
black box function. 

Finding suitable hyperparameters for the 
respective learning task is sometimes very time-
consuming. However, once hyperparameters were 
found, they could be used again and again for the 

application. The time required to train the MLP was 
2 hours, on average, requiring no further work steps 
by hand. However, the calculation time was 
dependent on external factors, such as the number of 
input data, size of the MLP, number of epochs, 
performance of the source code, and the performance 
of the computing components. Overall, however, very 
good automation of the process was possible. 

Furthermore, only short, wide MLPs could be 
evaluated, as the gradient calculation for long, narrow 
MLPs is significantly more complex. The reason for 
this lies in the partial derivatives for the gradient 
method, which are calculated symbolically. The 
extracted function is a nesting of the transfer and 
activation function. Thus, the need for post-
differentiation increases exponentially with each 
additional layer. 

5 SUMMARY 

Training an MLP with a complex black box function 
has proven to be feasible. In some cases, a cycle time 
advantage of the MLP and MO procedure compared 
to the trial-and-error method could also be shown. 
This benefit is tied to its definition area. This means 
that the global minimum is outside of our definition 
area. In this case it is only a local minimum inside the 
definition area. However, the definition range was 
realistic from a technical point of view. For example, 
it is not possible to feed any number of workpiece 
carriers into a limited conveyor belt section, even if 
this would result in infinitely short cycle times.  

The process can be automated in the main and, in 
the case of complex problems, is faster than the trial-
and-error method due to the reduction in manual 
work. This results in a productivity advantage 
through the saving of human resources. With the 
method using MLPs and MO, it is not necessary to 
know the exact mathematical and physical 
relationships of the Blackbox system to be improved. 

6 PERSPECTIVE 

The MLP and MO procedure can also be applied to 
other functions. In this way, functions could be 
predicted for which there are no simulation models. 
In this case, a test stand forms the basis from which 
empirically discrete data can be obtained, but the 
exact mathematical function behind the system is 
unknown. With the help of base values, a prediction 
function is interpolated with MLPs. The subject of a 
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further publication could be a performance evaluation 
and comparison between the MLP and MO procedure 
and the trial-and-error procedure on a simulation 
model. 
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