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Abstract: The Storage Location Assignment Problem (SLAP) is of primary significance to warehouse operations since 
the cost of order-picking is strongly related to where and how far vehicles have to travel. Unfortunately, a 
generalized model of the SLAP, including various warehouse layouts, order-picking methodologies and 
constraints, poses a highly intractable problem. Proposed optimization methods for the SLAP tend to be 
designed for specific scenarios and there exists no standard benchmark dataset format. We propose new SLAP 
benchmark instances on a TSPLIB format and show how they can be efficiently optimized using an Order 
Batching Problem (OBP) optimizer, Single Batch Iterated (SBI), with a Quadratic Assignment Problem 
(QAP) surrogate model (QAP-SBI). In experiments we find that the QAP surrogate model demonstrates a 
sufficiently strong predictive power while being 50-122 times faster than SBI. We conclude that a QAP 
surrogate model can be successfully utilized to increase computational efficiency. Further work is needed to 
tune hyperparameters in QAP-SBI and to incorporate capability to handle more SLAP scenarios.

1 INTRODUCTION 

The Storage Location Assignment Problem (SLAP) 
concerns the “allocation of products into a storage 
space and optimization of the material handling (…) 
or storage space utilization [costs]” (Charris et al., 
2018). Material handling involves all processes 
relating to the movement of products in a warehouse. 
The location assignment of products thus has an 
impact on the quality of material handling (Mantel et 
al., 2007). For example, if a vehicle needs to pick a 
set of products, the travel cost clearly depends on 
where the products are located. At the same time, the 
opposite is true in that material handling has an 
impact on location assignment: Vehicle constraints, 
traffic rules and picking methodologies can all have 
an impact on how a strong location assignment is 
formulated in the first place.  

Kübler et al. (2020) describe a “joint storage 
location assignment, order batching and picker 
routing problem” where the SLAP includes two 
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interlinked optimization problems in the warehouse: 
In the Order Batching Problem (OBP) vehicles are 
assigned to carry sets of orders (each order contains a 
set of products) (Koster et al., 2007). In the Picker 
Routing Problem the picking path of a vehicle is 
decided and it is equivalent to a Traveling Salesman 
Problem (TSP) (Ratliff & Rosenthal, 1983). This 
paper builds on Kübler et al.’s joint formulation and 
we treat the Key Performance Indicator (KPI) in both 
OBP and SLAP optimization as an estimate of 
aggregate travel in the warehouse. The key difference 
between the OBP and SLAP in this regard is that all 
products are assumed to have fixed locations in the 
former, whereas a subset of products are assumed to 
be available for location assignment or reassignment 
in the latter.  

The main focus of this paper is two areas where 
the SLAP has not seen much previous work. The first 
area is that of benchmarking. Currently there is a 
scarcity of benchmark data on any version of the 
SLAP, and existing datasets are on various formats, 
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making them difficult to reproduce (Section 2). We 
propose new benchmark instances using 
modifications to the wide-spread TSPLIB format 
(Reinelt, 1991) (Section 5). A key discussion 
regarding benchmark instances is how they can be 
kept as simple and standardized as possible, to enable 
easy reproducibility, while not losing applicability 
within the industry. One benchmarking area which is 
particularly difficult to standardize is the “relocation 
efforts” for different types of SLAP assignment 
scenarios (Section 2). We have delimited our SLAP 
model to assignment scenarios where products are 
hitherto not located in the warehouse.  

The second focus area is the maximization of 
computational efficiency in OBP optimization. As 
mentioned above, a feature in the proposed model is 
that an OBP is used to estimate the quality of SLAP 
location assignments. Since the OBP is NP-hard it 
must be optimized in a way which trades off solution 
quality with CPU-time. We use the computationally 
efficient OBP optimizer Single Batch Iterated (SBI) 
(Oxenstierna, Malec, et al., 2021; Oxenstierna et al., 
2022). Within the proposed SLAP optimizer, SBI still 
requires a lot of CPU-time and we investigate 
whether it can be assisted by a Quadratic Assignment 
Problem (QAP) surrogate model to make 
optimization more efficient. The contributions are as 
follows: 

1. Introduction of SLAP benchmark data on the 
TSPLIB format.  

2. Feasibility analysis of a QAP surrogate model 
within a SLAP optimizer.  

2 LITERATURE REVIEW 

This section goes through general strategies for 
conducting storage location assignment and ways in 
which their quality can be evaluated. Various SLAP 
formulations and proposed optimization algorithms 
are covered. We mainly concern ourselves with a 
standard picker-to-parts set up and we particularly 
refer to Kubler et al. (2020), since their proposed 
model shares similarities with ours.  

There exist numerous general strategies for 
conducting storage location assignment (Charris et 
al., 2018). Three key strategies are Dedicated, Class-
based and Random storage: 

• Dedicated: Each product is assigned to a specific 
location which never changes. This strategy is 
suitable if the product collection changes rarely and 
simplicity is desired. Human pickers can furthermore 
benefit from this strategy since they can learn to 

associate specific products with locations, which 
might speed up their picking (Zhang et al., 2019).  

• Random: Each product can be assigned any 
available location in the warehouse. This is suitable 
whenever the product collection changes frequently. 

• Class-based (zoning): The warehouse is divided 
into zones and the products into classes (usually 
based on demand of products). Each class is assigned 
a zone. The outline of the zone can be regarded as 
dedicated in that it does not change, whereas the 
placement of each product in a zone is assumed to be 
random (Mantel et al., 2007). Class-based storage 
assignment can therefore be regarded as a middle 
ground between dedicated and random. 

The quality of a location assignment is commonly 
evaluated based on some model of aggregate travel 
cost. For this purpose, a simplified simulation of 
order-picking in the warehouse can be used (Charris 
et al., 2018; Mantel et al., 2007). Some proposals 
include the simulation of order-picking by the so 
called Cube per Order Index (COI) (Kallina & Lynn, 
1976). COI includes the volume of a product and the 
frequency with which it is picked (historically or 
forecasted). The general idea is then to assign 
products with high pick frequency and relatively low 
volume to locations close to the depot. Since orders 
may contain products which are not located close to 
each other, COI is only capable of simulating an 
order-picking scenario adequately where orders 
contain one product and vehicles carry one product at 
a time. This may be sufficient when trucks pick a 
couple of pallets or when certain types of robots are 
used (Azadeh et al., 2019). Mantel et al. (2007), 
introduced Order Oriented Slotting (OOS) where 
vehicles are assumed to pick one order at a time, but 
where the number of products in an order may be 
greater than 1. They also introduce a Quadratic 
Assignment Problem (QAP) model to estimate the 
quality of a product location assignment, which 
includes the distance between the product locations in 
the order and a single depot location. A similar model 
to OOS is used by Fontana & Nepomuceno (2017), 
Lee et al. (2020) and Žulj et al. (2018).  

There is not much prior research on SLAP’s 
where vehicles are assumed to pick more than one 
order at a time, i.e., where OBP optimization in some 
form is included in SLAP optimization. We are only 
aware of two papers within this category. The first is 
Kübler et al. (2020), whose work we discuss further 
below. The second is Xiang et al. (2018), but their 
work concerns a robotic warehouse where the 
vehicles are pods (moving racks) and is not easily 
comparable to a picker-to-parts system.  
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Travel cost is not the only way in which a SLAP 
solution quality can be evaluated. Lee et al. (2020), 
for example, study the effect of location assignment 
and traffic congestion in the warehouse. If too many 
products are assigned locations close to the depot (the 
goal in common COI), there may be a traffic 
congestion problem and it should ideally be included 
in an industrially adopted model. They call their 
version Correlated and Traffic Balanced Storage 
Assignment (C&TBSA) and they formulate it as a 
multi-objective problem with travel cost on the one 
hand, and traffic congestion avoidance on the other. 
Larco et al. (2017) study the relationship between 
worker welfare and storage location assignment. If 
picking is conducted by humans who move products 
from shelves onto a vehicle, the weight and volume, 
as well as the height of the shelf the product is placed 
on, can have an impact on worker welfare. Worker 
welfare can be quantified with parameters such as 
“ergonomic loading”, “expenditure of human energy” 
or “worker discomfort” (Charris et al., 2018). 

The SLAP can be divided into two broad 
categories depending on the number of location 
assignments sought. Either the assignment is a “re-
warehousing” operation, which means that a large 
portion of the warehouse’s products are (re)assigned 
locations (Kofler et al., 2014). Most often, and more 
realistically, however, only a small number of 
products are (re)assigned a location and this is called 
“healing” (Kofler et al., 2014). Solution proposals 
involving healing often look closely at different types 
of scenarios for carrying out initial assignments or 
reassignments. Below are four scenarios presented by 
Kübler et al. (2020):  

I. Empty storage location: A product is 
assigned to a previously unoccupied 
location.  

II. Direct exchange: A product changes 
location with another product.  

III.  Indirect exchange 1: A product is moved to 
another location which is occupied by 
another product. The latter product is moved 
to a third, empty location.  

IV. Indirect exchange 2: A product is moved to 
another location which is occupied by 
another product. The latter product is moved 
to a third location which is occupied by a 
third product. The third product is moved to 
the original location of the first product.  

The above relocation scenarios are all associated 
with different efforts, ranging from the lightest in 
scenario I, to the heaviest in scenario IV. Kübler et al. 

quantify efforts by considering both physical and 
administrative times, which are transformed to effort 
terms by proposed proportionalities. Total effort is 
computed based on distances between old and new 
locations for products and the total physical and 
administrative efforts. 

Concerning SLAP optimizers, proposals include 
exact models such as Mixed Integer Linear 
Programming (MILP), dynamic programming and 
branch and bound algorithms (Charris et al., 2018). 
The warehouse environment modeled in these studies 
are simplified to a large extent (Charris et al., 2018; 
Garfinkel, 2005; Kofler et al., 2014; Larco et al., 
2017). The main simplification concerns the above-
mentioned modeling of order-picking using COI or 
OOS. Other simplifications involve limiting the 
number of products (Garfinkel, 2005), number of 
locations (Wu et al., 2014), or by requiring the 
conventional warehouse rack layout (Kübler et al., 
2020). The conventional layout assumes Manhattan 
style blocks of aisles and cross-aisles and it is used 
almost exclusively in existing SLAP literature (we are 
only aware of two exception cases using the 
“fishbone” and “cascade” layouts (Cardona et al., 
2012; Charris et al., 2018). 

Most proposed SLAP optimizers provide non-
exact solutions using heuristics or meta-heuristics. 
These include multi-phase optimization where the 
first phase evaluates possible locations for products 
and the second phase carries out and evaluates the 
possible assignments (Wutthisirisart et al., 2015). In 
the meta-heuristic domain there are proposals 
involving Genetic and Evolutionary Algorithms (Ene 
& Öztürk, 2011; Lee et al., 2020), Simulated 
Annealing (Zhang et al., 2019) and Particle Swarm 
Optimization (PSO) (Kübler et al., 2020). In Kübler 
et al. (2020), a heuristic zoning optimizer is used to 
generate location assignments and a Discrete 
Evolutionary Particle Swarm Optimizer (DEPSO) is 
used to optimize the OBP (used as order-picking 
model). DEPSO is a modification of a standard PSO 
algorithm where the evolutionary part mitigates risk 
of convergence on local minima. The discrete part 
breaks the requirement of a continuous search space, 
which is a requirement in standard PSO. If TSP 
optimization is desired within a SLAP, S-shape or 
Largest Gap algorithms (Roodbergen & Koster, 
2001) are often used. For unconventional layouts with 
a pre-computed distance matrix Google OR-tools or 
Concorde have been proposed for TSP optimization 
(Oxenstierna et al., 2022; Rensburg, 2019).  
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3 PROBLEM FORMULATION 

3.1 SLAP Model 

The objective function of the SLAP model is similar 
to the ones formulated in Henn & Wäscher (2012) and 
Oxenstierna, van Rensburg, et al. (2021): Minimize 
the distance needed to pick a given set of orders, using 
order-batching:  𝑚𝑖𝑛 ෍ 𝐷(𝑏)𝑎௠௕,௕∈ℬ 𝑚 ∈ ℳ, ℬ ⊂ 2𝒪 (1) 

where 𝒪 denotes orders, where ℬ denotes generated 
batches, where 𝐷(𝑏)  denotes the distance to pick 
batch 𝑏 (the distance of a TSP solution) and where 𝑚 
denotes a vehicle. 𝑎௠௕ denotes a binary variable that 
is 1 if vehicle 𝑚  is assigned to pick 𝑏  and 0 
otherwise. Products 𝒫 belong to orders 𝒪 ∈ 2𝒫  and 
the locations of all products in any order 𝑜 ∈ 𝒪 are 
retrievable with function 𝑙𝑜𝑐௢: 𝒪 → 2ℒ𝒫 . ℒ𝒫 denotes 
all product locations in the warehouse. Similarly, all 
locations in a batch of orders are retrievable using 
function 𝑙𝑜𝑐௕: ℬ → 2ℒ𝒫 . The formulation is built on a 
digitization pipeline for warehouses on any 2D rack-
layout, mapping of products to location coordinates, 
precomputation of all shortest distances between 
locations using the Floyd-Warshall graph algorithm, 
constraints for order-integrity and vehicle capacities, 
depot configurations and number of vertex visits. 
Comprehensive details for warehouse digitization 
and preprocessing for the OBP are beyond the scope 
of this paper, so for details we refer to Oxenstierna, 
van Rensburg, et al., (2021) and Rensburg (2019). As 
mentioned in Section 1, the main difference between 
the OBP and SLAP formulations concerns the 
definition of product locations. In Oxenstierna, van 
Rensburg, et al. (2021) each product 𝑝 ∈ 𝒫 “has a 
[fixed] location”. We change this for the SLAP such 
that a subset of products 𝒫௦ ⊂ 𝒫 have their locations 
removed in the warehouse. The SLAP then consists 
of minimizing the OBP objective in Equation (1) 
while trying various location assignments for 𝒫௦.  

The above SLAP scenario is represented by the 
“empty storage location” scenario I in Kübler et al. 
(2020) (Section 2). The relocation effort needed to 
place the products at their assigned locations can be 
assumed insignificant in this scenario, since finding 
empty locations for new products in a warehouse is 
not optional, but a requirement. The other of Kübler 
et al.’s scenarios are “reassignments”, which means 
that that the potential gains in travel cost due to 
location reassignment must be weighed against the 
cost of reassigning them. Including reassignments 

makes a SLAP optimization model more complete, 
but arguably also more complex. One of the aims of 
this paper is to propose a model which allows for a 
relatively simple and standardized SLAP benchmark 
instance format. Contrary to Kübler et al., we chose 
not to include various assignment scenarios in our 
model, but on the other, we do not require a specific 
warehouse layout. We invite further discussions on 
how to rank and choose SLAP modeling features for 
a standardized format. 

3.2 QAP Model 

Since Equation 1 poses an NP-hard problem, it would 
require an infeasible amount of CPU-time to re-run 
the minimization for a large number of candidate 
solutions (location assignments). We therefore 
propose to filter out promising candidates based on a 
surrogate model. For this purpose we use a Quadratic 
Assignment Problem (QAP) model with the 
following objective: 𝑚𝑖𝑛 ෍ ෍ ෍ ෍ 𝑤௣భ௣మ௟మ∈ℒ𝒫௟భஷ୪మ௟భ∈ℒ𝒫௣మ∈𝒫௣భஷ௣మ

𝑑௟భ௟మ × ௣భ∈𝒫 × 𝑎(𝑝ଵ, 𝑙ଵ)𝑎(𝑝ଶ, 𝑙ଶ)  (2) 

where 𝑤  denotes weight, where 𝑑  denotes distance 
and 𝑎(𝑝, 𝑙) a function which returns 1 if product 𝑝 is 
located at location 𝑙  and 0 otherwise. Cost is the 
element-wise summation of a weight matrix and a 
distance matrix. The cell values in the weight matrix 
represent the number of times two products, 𝑝ଵ, 𝑝ଶ, 
appear in the same order 𝑜 ∈ 𝒪 . The distances 
between all product locations is assumed pre-
computed according to (Rensburg, 2019). If the 
matrix indices for products in 𝒫௦ are permuted in such 
a way that the aggregate distance and weights 
between them is decreased, the QAP cost should also 
decrease.  

The intention with the QAP surrogate is then to 
apply it in an accept/reject Markov Chain Monte 
Carlo (MCMC) method (Cai et al., 2008). A sample 
(solution candidate) 𝑥 should only be accepted if its 
QAP cost estimate 𝑓(𝑥) (Equation 2) is low and close 
to a corresponding OBP ground truth value 𝑓∗(𝑥) 
(Equation 1). Assuming 𝑓(𝑥)  and 𝑓∗(𝑥)  are 
proportional, the accept probability can be upper 
bounded by the following quotient (Christen & Fox, 
2005): 𝑔൫𝑓(𝑥), 𝑓∗(𝑥)൯ ≤ 11 + 𝑒஼|௙(௫)ି௙∗(௫)|ು (3) 
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where 𝑔൫𝑓(𝑥), 𝑓∗(𝑥)൯ denotes the accept probability 
and 𝐶  and 𝑃  positive constants. Unfortunately, 
Equation 3 cannot be directly utilized in our case. 
Since sample 𝑥  in the SLAP is a permutation of 
arbitrary length (henceforth 𝒙), it would require an 
infeasible amount of CPU-time to establish 
proportionality between 𝑓  and 𝑓∗  so that norm |𝑓(𝑥) − 𝑓∗(𝑥)| generalizes. Below we describe two 
proposals for how this problem can be resolved.  

If we have a dataset of finite samples with 
available ground truth costs Ψ = ൫𝒙, 𝑓∗(𝒙)൯ ∈ 𝑿௡ ×ℝା௡ , 𝑛 ∈ ℤ, and a task where a single sample (e.g. the 
best) should be found, a basic model of 
proportionality between 𝑓  and 𝑓∗ is provided by 
softmax cross-entropy (Bruch et al., 2019; Cao et al., 
2007): ℙ൫𝑓(𝒙௜)൯ = 𝑒௙(𝒙೔)∑ 𝑒௙൫𝒙ೕ൯௡௝ୀଵ  (4) 

ℙ൫𝑓∗(𝒙௜)൯ = 𝑓∗(𝒙௜)∑ 𝑓∗൫𝒙௝൯௡௝ୀଵ  (5) 

𝐿(𝑓) = − 1|Ψ| ෍ ℙ൫𝑓∗(𝒙𝑖)൯ 𝑙𝑜𝑔ℙ൫𝑓(𝒙𝑖)൯൫𝒙𝒊,௙∗(𝒙𝒊)൯∈ஏ  (6) 

where ℙ൫𝑓(𝒙௜)൯ and ℙ൫𝑓∗(𝒙௜)൯ denote the estimated 
and ground truth probabilities of producing a sample, 
respectively. 𝐿(𝑓) is the loss of 𝑓 (i.e., its distance to 𝑓∗ ). This model can be extended into Normalized 
Discounted Cumulative Gain (NDCG) (Bruch et al., 
2019): 𝑁𝐷𝐶𝐺 = 𝐷𝐶𝐺𝐼𝐷𝐶𝐺 (7) 

𝐷𝐶𝐺 = ෍ 𝑓థ(𝒙)௜𝑙𝑜𝑔ଶ൫𝜋௙(𝒙)(𝑖) + 1൯௡
௜ୀଵ  (8) 

𝐼𝐷𝐶𝐺 = ෍ 𝑓థ∗(𝒙)௜𝑙𝑜𝑔ଶ൫𝜋𝑓∗(𝒙)(𝑖) + 1൯௡
௜ୀଵ  (9) 

where 𝑓థ(𝒙)  and 𝑓ம∗(𝒙)  denote relevance values 
proportional to the approximated and ground truth 
values in 𝑓(𝒙) and 𝑓∗(𝒙), respectively. 𝜋 denotes a 
ranking (a list of integers between 1 to 𝑛 ). 𝐼𝐷𝐶𝐺 
denotes an ideal value where 𝑓థ∗(𝒙)ଵ > 𝑓థ∗(𝒙)ଶ >⋯ > 𝑓థ∗(𝒙)௡. Bruch et al. (2019) argue that NDCG is 
a stronger choice than softmax cross-entropy 
whenever 𝑓∗ is of non-binary type, which is the case 

in Equation 1. We thus use NDCG to provide a 
distance estimate between Equation 1 ( 𝑓∗ ) and 
Equation 2 (𝑓) . Choices for datatype for 𝑓థ  are 
further discussed in the experiments in Section 5. In 
Figure 4 (Appendix) an example is shown where 
NDCG is computed from an input vector with range ሾ1, 𝑛ሿ  where 𝑛  denotes the number of solution 
candidates (samples).  

4 OPTIMIZATION ALGORITHM 

The proposed optimization algorithm (QAP-SBI) 
includes a module for SLAP candidate solution 
generation and two estimators of solution quality: A 
fast but noisy estimator using a Quadratic Assignment 
Problem (QAP) model, and a slow but accurate Order 
Batching Problem (OBP) optimizer (SBI): 

 
Figure 1: Optimization model.  

The input in step i is a future-predicted set of orders 𝒪  with products 𝒫  and 𝒫௦ ⊂ 𝒫  (Section 3). 
Predicting future orders is beyond the scope of this 
paper and we assume this set already exists. See 
Kübler et al. (2020) for an example of how prediction 
of future orders can be carried out. In step ii 𝑛 SLAP 
candidate solutions (for 𝒫௦) are generated using basic 
zoning (Section 2), stochasticity and a volume 
capacity parameter. The pseudocode below describes 
this procedure: 
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Algorithm 1: Assignment generation. 

 

U is a set of locations which are not filled to capacity 
in the warehouse and product 𝑝 ∈ 𝒫 must fit within 
the location capacity constraint. A “zone weight” is 
calculated to provide a probability that the product 
should be assigned to a certain zone, depending on the 
weight to other products in the same zone (using the 
same weights matrix as described in Section 3). In the 
rest of the procedure possible locations for the 
products are iterated and a suitable SLAP candidate 
is finally selected.  

The solution costs of the candidate assignments 
are estimated using the QAP model (step iii in Figure 
1). In step iv the candidate solutions with the 
strongest QAP estimates are selected and submitted 
to OBP optimization in step v. We use the OBP 
optimizer Single Batch Iterated (SBI) and its main 
features are its high computational efficiency and its 
ability to handle warehouses with unconventional 
rack layouts (Oxenstierna et al., 2022). SBI only has 
optimality bounds for small instances, so the quality 
of its results for larger instances can be debated (as 
far as we are aware there exists no proposal for how 
to obtain optimal results for such instances within 
feasible CPU-time). OBP optimization is beyond the 
scope of this paper and we here treat SBI primarily as 
a black-box which outputs ground-truth costs for 
Equation 1. Steps ii, iii, iv and v are repeated until a 
final timeout in step vi, when the candidate with 
minimal OBP cost is selected as the best solution.  

The algorithm in Figure 1 is an adaptation of the 
MCMC sampling algorithm proposed by Christen & 
Fox (2005), with two major differences: 1. CPU-time 
parameters are used to dictate total number of 
produced samples instead of convergence. 2. Step iv 

selects multiple candidate solutions rather than one. 
The latter step provides a convenient method with 
which to validate the performance of the QAP model: 
If all samples are accepted in iv and submitted to SBI 
estimation, the predictive strength of the QAP model 
can be easily evaluated.  

In Figure 1 we note that steps iii and iv will be 
useless for the overall optimizer if iv outputs random 
candidate solutions. Steps iii and iv should therefore 
perform better than a random baseline to be of use 
(Freund et al., 2003; Freund & Schapire, 1996). In 
Section 5 we follow this track and propose an 
experimental set up where the QAP model is 
benchmarked against a random baseline.  

5 EXPERIMENTS 

5.1 Experimental Set up 

The main aim of the experiment is to empirically 
validate the predictive strength of the QAP model 
against ground truth values obtained through OBP 
optimization. The diagram below shows the 
experimental set up: 

 
Figure 2: The modules in the experimental set up. 

A test-instance is loaded in step i (orders with 
products). In step ii, 𝑛 SLAP solution candidates are 
generated semi-stochastically according to Algorithm 
1. In step iii the cost of the generated solutions is 
estimated using the QAP model and the OBP 
optimizer SBI. The predictive strength of the QAP 
model is defined as its ability to rank the solution 
candidates according to NDCG (Section 3); 𝐼𝐷𝐶𝐺 is 
computed from the ranking of costs according to the 
OBP optimizer and  𝐷𝐶𝐺  is computed from the 
ranking of costs according to the QAP model. 
Relevance values 𝑓థ(𝒙) and 𝑓థ∗(𝒙) are chosen to be 
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the ranking of samples 𝒙 according to respective cost 
functions. For 𝑛  candidate solutions the values are 
defined as 𝑓థ∗(𝒙) = (𝜋௙∗(𝒙)(𝑛), 𝜋௙∗(𝒙)(𝑛 −1), … , 𝜋௙∗(𝒙)(1))  and 𝑓థ(𝒙) = (𝜋௙(𝒙)(𝑛), 𝜋௙(𝒙)(𝑛 −1), … , 𝜋௙(𝒙)(1)) (this corresponds to the set up shown 
in Figure 4).  

5.2 Benchmark Datasets 

The TSPLIB format datasets (Reinelt, 1991) in 
L6_2031 and L09_2512 are modified for the SLAP 
and publicly shared in L17_5333. L17_533 includes 
instances with one conventional and 5 
unconventional warehouse obstacle layouts, various 
depot configurations and vehicle capacities. The 
number of orders range from 4 to 1000 and number 
of products range between 10 to 3000. The SLAP 
modification of the instances includes the tagging of 
a number of products for storage assignment (𝒫௦ in 
Section 3 and “SKUsToSlot” in the instance set). The 
tag “assignmentOptions” is also added and includes 
tagging of locations for assignment and how cost is to 
be computed (it is always set to the “empty storage 
location” scenario, Section 2). For analysis, instances 
are divided into classes according to vehicle 
capacities, number of orders and products and 
number of candidate solutions. The global best OBP 
result is tracked and then uploaded as the current 
benchmark result for the corresponding instance. We 
refer to the documentation in L17_533 for further 
details. All instances are optimized using Intel Core 
i7-4710MQ 2.5 GZ 4 cores, 16 GB RAM. 

5.3 Experiment Result 

Figure 3 and Table 1 summarize the results of the 
QAP NDCG estimates versus the random value 
baseline. On average, the QAP NDCG values are in 
the range 0.83-0.90 (average over six 𝑛 values). They 
are generally better than the random value baseline by 
1-3%, with standard deviations ranging between 0.5-
2% (Figure 3). Most QAP estimates beat the random 
baseline, but there are numerous exceptions, 
especially for larger instances. The fraction of CPU-
time required by the QAP model versus the OBP 
optimizer is between 0.008-0.019, meaning that it is 
50-122 times faster. Table 1 also shows that this ratio 
grows with instance size.  

 
1  https://github.com/johanoxenstierna/OBP_instances, 

collected 23-01-2022. 
2  https://github.com/johanoxenstierna/L09_251, 

collected 23-01-2022. 

 
Figure 3: The predictive strength of the QAP surrogate 
model, in terms of NDCG ranking, versus a random 
baseline (red line). The middle lines are the means and the 
outer edges are 95% and 99% confidence intervals, 
respectively. 

Overall, the result provides evidence that the QAP 
model may be of use within the larger algorithm 
proposed in Section 4. On the one hand, experiments 
suggest that the quality of the QAP model worsens 
with instance size (Figure 3), but on the other, it 
becomes relatively faster compared to the OBP 
optimizer (Table 1). This means that more samples 
can be chosen from when selecting candidates for the 
ground truth OBP valuation. As mentioned in Section 
4, we should also note that the quality of the “ground 
truth” estimates provided by the OBP optimizer 
decreases with instance size, making analysis of 
results for larger instance classes more difficult in 
general.  

Translating the result into a generally suitable 
sample size 𝑛 for the optimizer shown in step iv in 
Figure 1 is challenging due to the many various 
possible SLAP input parameters. One alternative is to 
estimate 𝑛  by using a normal distribution: 𝑛 =൫𝑧ఈ/ଶ𝜎/𝐸൯ଶ, with critical value 𝑧஑/ଶ  (1.96 for 95% 
confidence interval), sample size standard deviation σ and desired margin of error 𝐸, but choices for σ and 𝐸 can of course be debated. Another alternative is to 
use convergence-based conditions as in the MCMC 
algorithm proposed by Christen & Fox (2005). One 
implementational weakness with this alternative is 

3  https://github.com/johanoxenstierna/L17_533, 
collected 18-05-2022. 
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that it is fully sequential, meaning that it would be 
harder to parallelize (steps iii and iv in Figure 1). In 
summary, the proposed ranking-based NDCG model 
requires a parameter 𝑛 which is difficult to tune, but 
at the same time it brings some implementational 
advantages over a standard MCMC method.  

6 CONCLUSION 

In this paper new benchmark instances and a new 
optimization model for the Storage Location 
Assignment Problem (SLAP) are proposed. The 
overall optimization model includes a module and a 
sub-module: The sub-module consists of a Quadratic 
Assignment Problem (QAP) surrogate model, and it 
is used within a module where an Order Batching 
Problem (OBP) is optimized using Single Batch 
Iterated (QAP-SBI). QAP-SBI is loosely based on a 
Markov Chain Monte Carlo (MCMC) accept/reject 
sampling method. Both modules are used to estimate 
the aggregate travel cost of SLAP candidate solutions 
(samples). The intent is to increase computational 
efficiency by producing fast but noisy cost estimates 
using the QAP model, and then submitting the 
samples with the lowest cost to ground-truth 
evaluation using OBP optimization (SBI). 

In order to validate QAP-SBI, experiments were 
conducted to test the predictive strength of the QAP 
surrogate model. If its predictive strength is not high 
enough, its utility within the proposed MCMC 
method cannot be justified. Overall, results show that 
the QAP model meets this requirement: Its 
predictions are generally stronger than a random 
value baseline, while being 50-122 times faster than 
SBI. Establishing the number of solution candidates 
that should be estimated by the QAP model for every 
SBI estimate in the proposed MCMC model is left for 
future work. For future work we also invite further 
discussions into how to best represent SLAP features 
in public benchmark data. The many versions of the 
SLAP threaten generalizability, but the community 
needs to discuss suitable benchmark formats for the 
problem.  
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APPENDIX 

NDCG flowchart: The below example shows how 
Normalized Discounted Cumulative Gain (NDCG) 
can be computed from input permutations (products 
to locations), approximated (𝑓) and ground truth (𝑓∗) 
values. Note that 𝑓(𝑿)  denotes a sorting of 𝑿 
according to the cost valuation of elements in the cost 
step. Also note that relevance values can be 
formulated in several ways. 

 
Figure 4: NDCG flowchart. 
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Table 1: Summary of instances and results for the CPU-times of the OBP model (SBI) and the QAP model, as well as an 
aggregate of the results concerning the predictive strength of the QAP model.  
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