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Abstract: This paper presents a novel collision avoidance technique that allows the robot to reach a desired position by 
avoiding obstacles passing through preferred regions. The method combines the classical elements of the 
artificial potential fields in an original manner by handling local attractors and repulsors. The exact solution, 
which is given in a closed form, allows to sculpt a potential field so that local minima related to the local 
attractors are prevented and the global minimum is unperturbed. The results show the algorithm applied to 
mobile robot navigation and prove the capability of local attractors to influence the robot path. 

1 INTRODUCTION 

Collision avoidance has long been one of the most 
exciting challenges in robotics. It consists in finding 
robot commands that satisfy task and spatial 
constraints so that the robot reaches a desired 
configuration through collision-free motion.  

Over the years, several techniques have been 
proposed (LaValle, 2006; Siciliano, Sciavicco, 
Villani, & Oriolo, 2009). A possible classification can 
be made by distinguishing global and local methods 
(Abhishek, Schilberg, & Arockia Doss, 2021). Global 
methods allow to find a collision-free path from the 
initial to the final pose and require prior information 
of the environment. They are usually based on 
optimization problems, roadmaps or cell 
decomposition. On the other hand, local methods 
consist of observing the proximity of the robot to 
change the path locally in the presence of an obstacle. 
Among them it is worth mentioning artificial 
potential field (APF), probabilistic roadmaps and 
bidirectional RRT. 

In particular, APF has been widely investigated 
because it is simple to implement and has low 
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computational cost. For this, it performs very well in 
dynamic environment, where decisions on the 
alternative path must be taken online and a fast robot 
response is required.  

A first formulation of APF was given by Khatib, 
1986. The robot undergoes to virtual forces obtained 
from the negative gradient of a potential field, built 
considering the target as the attractor, i.e. the global 
minimum of the potential, and the obstacles as 
repulsors, i.e. confined regions with high potential. 
Thereafter, major efforts have been focused on the 
local minimum problem, which is the main drawback 
of this approach. The most famous examples are the 
superquadratic potential function proposed by Volpe 
& Khosla, 1990 and the navigation function 
introduced by Rimon & Koditschek, 1992 and 
extended in Filippidis & Kyriakopoulos, 2011. Other 
studies that have been inspired by the drawback of the 
artificial potential fields lead to alternative methods, 
like the harmonic potential functions (Connolly & 
Grupen, 1993), the dynamic window (Fox, Burgard, 
& Thrun, 1997), the collision cone (Chakravarthy & 
Ghose, 1998) and the attractor dynamics (Haddadin 
et al., 2010). 
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Another branch of the potential field research 
moved towards more practical approaches that 
consider robot command in terms of a velocity vector 
computed from the gradient (Güldner & Utkin, 1996), 
or directly obtained in function of the distance from 
the obstacle (Mauro et al., 2017; Melchiorre et al., 
2021, 2019; Scimmi et al., 2018, 2019, 2021). This 
allows for exact tracking of gradient lines and the 
convergence to the goal.  

In general, the gradient vector field can be 
coupled with additional vector terms to prevent local 
minima or to generate convenient paths, that is the 
case with tangential fields (De Medio & Oriolo, 1991) 
and selective attraction (Murphy, 2000). Another 
example is the virtual target approach, that consists of 
substituting the global target with a local one around 
the object to avoid local minima (Long, 2020; Zou & 
Zhu, 2003). Alternatively, the robot goal position can 
be temporarily moved or projected to overcome local 
minima (Arslan & Koditschek, 2019; Castelnovi, 
Sgorbissa, & Zaccaria, 2006; Paromtchik & Nassal, 
1995). Other studies consider solving optimization 
problem to find the global minimum (Pozna, Troester, 
Precup, Tar, & Preitl, 2009). 

Plenty of literature works studied how to solve or 
improve potential fields built from a single goal and 
multiple obstacles but there is a lack of contribute on 
techniques to influence trajectory selection in order to 
go through specific areas. This can be fundamental 
for robot navigation when the obstacle has preferred 
approaching directions. For example, socially 
acceptable pre-collision criteria suggest that choosing 
a certain side when crossing the human path can 
improve legibility of robot motion (Qian, Ma, Dai, & 
Fang, 2010). Similar aspects arise in human-robot 
collaboration, where controlling the robot trajectory 
towards predictable regions may result in a more 
fluent interaction (Koppenborg, Nickel, Naber, 
Lungfiel, & Huelke, 2017).  

The importance of finding a simple and effective 
solution to deal with obstacles in a controlled manner 
motivated the authors of this paper. The original idea 
is to introduce local attractors in APF in order to 
design the trajectories with a higher precision. Few 
authors consider applications of potential fields with 
multiple attractors and repulsors. An introduction to 
is given in (Beard & McClain, 2003), where, the 
possibility to model and combine the potential fields 
of each element by using quadratic or exponential 
function is discussed. However, (Beard & McClain, 
2003) is limited to introducing the concept of multiple 
attractors and does not distinguish the roles of the 
global and local attractors. 

This work investigates the possibility of using 
local attractors to make the robot reach the final goal 
by avoiding obstacles and passing through attractive 
regions. The main aspect that distinguishes this work 
from the previous ones is the addition of strategical 
attractive points to the one related to the global 
minimum. In particular, the attractive points are 
modelled as deflections of the potential field, without 
being local minima. 

2 POTENTIAL FIELD WITH 
LOCAL ATTRACTORS 

In this section, the problem of artificial potential field 
with local attractors is formulated. The avoidance 
objectives are: i) to reach a desired position from a 
starting configuration; ii) to avoid obstacles choosing 
the side of local attractors; iii) to prevent local minima 
related to local attractors. 

The approach is described in ℝ2. The potential 
field is modelled combining quadratic and 
exponential functions (Beard & McClain, 2003; 
Khatib, 1986). Thus, some considerations on the 
choice of the attractor intensity are given. 

2.1 Problem Formulation 

Consider the robot end-effector as a point in the two-
dimensional cartesian space, whose task is to reach 
the desired position xd from a starting position xs. The 
desired position can be seen as an attractive potential 
field Ud, which is modelled with the quadratic 
function (Khatib, 1986): 

 𝑈ௗ(𝒙) = ଵଶ𝜎‖𝒙 − 𝒙ௗ‖ଶ (1)

where 𝜎 is a positive parameter which regulates the 
intensity of the quadratic function and x = [x y]T 
represents the generic point in the cartesian space. In 
(1), it is written Ud (x) to exploit the dependency on 
x. In general, it is Ud (x, xd, 𝜎) but xd is given by the 
task and the parameter 𝜎 is supposed to be chosen. To 
simplify the reading, hereafter, only the spatial 
variable x is exploited, except where otherwise 
specified. 

Suppose the presence of an obstacle. In general, it 
may have any geometry. Sometimes it is convenient 
to approximate objects by composing simple shapes, 
i.e. spheres, cylinders and planes. Other applications 
may need more accurate potential functions to 
describe the obstacles. For the discussion, only the 
case of the disc in two dimensions, is considered. The 
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reader is referred to the literature for general obstacle 
modelling (Khatib, 1986; Ren, Mcisaac, Patel, & 
Peters, 2007; Rimon & Koditschek, 1992; Volpe & 
Khosla, 1990).  

The obstacle is centred in xo, with radius Ro 
(Figure 1a). It produces a repulsive potential field Uo, 
which is modelled with the exponential function 
(Beard & McClain, 2003): 

 𝑈௢(𝒙) = 𝛽௢𝑒షം೚మ ‖𝒙ష𝒙೚‖మ (2)

where βo and γo are the positive parameters that 
determine the shape of the gaussian around the 
obstacle; in particular, βo is the peak value, while γo is 
the exponential decay parameter. In Figure 1a, the 
outer circle centred in xo identifies the active region 
U*

o, defined as the circle with radius R*
o so that the 

gradient of Uo goes to zero outside U*
o. The radius R*

o 
can be calculated by solving |∇Uo| = sϵ, where sϵ is a 
small positive value, hereafter named “zero 
threshold” (see Appendix A for further details): 

 𝑅௢∗ = ቈ− 1𝛾௢ 𝑊ିଵ ቆ− 𝑠ఢଶ𝛽௢ଶ𝛾௢ቇ቉ଵ ଶ⁄
 (3)

If only the goal and the obstacle are considered, 
the resulting total potential field Udo can be written as: 𝑈ௗ௢(𝒙) = 𝑈ௗ(𝒙) + 𝑈௢(𝒙) = = ଵଶ𝜎‖𝒙 − 𝒙ௗ‖ଶ + 𝛽௢𝑒షം೚మ ‖𝒙ష𝒙೚‖మ (4)

The generic potential field Udo is shown in Figure 2a. 
The control law can be chosen so that the command 
vector has the direction of the negative gradient. In 
the specific case of Figure 1a, if xs, xo and xd are 
aligned, by following the negative gradient the robot 
can potentially stuck at the classical saddle point 
(Rimon & Koditschek, 1992). This is a limit case. In 
fact, in presence of a small perturbation in the y 
direction, the robot can potentially trace either the 
continue or the dashed path.  

In this work, the idea is to introduce an attractive 
source xa nearby the obstacle, as depicted in Figure 
1b. To distinguish the local attractive effect of xa from 
the global one related to the desired position, xa is 
called the “local attractor”, while the name “global 
attractor” is used to identify xd. The local attractor 
potential field Ua is modelled with the negative 
exponential function ((Beard & McClain, 2003)): 

 𝑈௔(𝒙) = −𝛼௔𝑒షംమೌ ‖𝒙ష𝒙ೌ‖మ (5)

where αa and γa are the positive parameters that 
regulate the intensity and the decay of the attractive 
effect. In Figure 1b, the circle centred in xa identifies 
the active region U*

a, defined as the circle with radius 
R*

a so that the gradient of Ua goes to zero outside U*
a. 

The parameters αa and γa define the active region. For 
example, U*

a can be extended all around the obstacle 
to influence the robot obstacle avoidance on the local 
attractor side for a good range of approaching 
directions, i.e. for different xs (see the path lines in 
Figure 1b). Similar to (3), the active region U*

a is 
determined by solving |∇Ua| = sϵ: 

 𝑅௔∗ = ቈ− 1𝛾௔ 𝑊ିଵ ቆ− 𝑠ఢଶ𝛼௔ଶ𝛾௔ቇ቉ଵ ଶ⁄
 (6)

The total potential field with the obstacle and the 
two attractors becomes: 𝑈௧(𝒙) = 𝑈ௗ(𝒙) + 𝑈௢(𝒙) + 𝑈௔(𝒙) = = ଵଶ𝜎‖𝒙 − 𝒙ௗ‖ଶ + 𝛽௢𝑒షം೚మ ‖𝒙ష𝒙೚‖మ − 𝛼௔𝑒షംమೌ ‖𝒙ష𝒙ೌ‖మ (7)

A generic potential field Ut is shown in Figure 2b. The 
attractive source xa acts bending the potential on its 
side. For instance, given γa, a local minimum may 
result for high values of the intensity αa and the robot 
would stop at the equilibrium point close to xa. 
Anyway, there exist some values of αa and γa for 
which the total potential field deflates near xa without 
suffering local minima (Figure 3).  

 
Figure 1: Two-dimensional analysis of the possible robot 
paths obtained by following the gradient lines of a quadratic 
potential function, with a single obstacle and a local 
attractor modelled with the exponential functions. a) In 
presence of the obstacle, the robot can potentially follow 
either the dashed or the solid lines; in the same figure, the 
classical saddle point is shown. b) The robot path is 
influenced by the local attractor placed on the obstacle side; 
the styles of the lines identify alternative paths related to 
different starting positions, i.e. different approaching 
directions of the robot towards the obstacle.  
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Figure 2: Influence of the exponential repulsive and 
attractive potential fields on a quadratic potential field; the 
xy plane, in addition to the significant points, contains the 
isolines of the potential field. a) Case with a single obstacle; 
in the same figure, the classical saddle point is shown. b) 
Case with a single obstacle and a local attractor; the high 
intensity of the local attractor generates a local minimum, 
as indicated by the isolines. 

 
Figure 3: Potential field resulting from a single obstacle and 
a local attractor. The intensity of the local attractor is 
limited so that the local minimum does not show, as 
indicated by the isolines.   

2.2 Analysis of the Influence of Local 
Attractors 

When the obstacle is identified, the attractor xa can be 
placed near xo to affect the collision avoidance path. 
It is assumed that xa is sufficiently far from the active 
region U*

o. Without loss of generality the following 
relation must hold:  

 ‖𝒙௔ − 𝒙௢‖ > 𝑅௢∗ + 𝜀̃ (8)
 

so that the analysis of the local minimum related to 
Ua will simplify. The meaning and the lower bound 
of the positive quantity ε͂ will be pointed later. 
Moreover, the following assumption which regulates 
the size of U*

a must be satisfied: ‖𝒙௔ − 𝒙ௗ‖ ൒ 𝑅௔∗  (9)

otherwise, the global minimum would be perturbed. 
In Figure 4 a generic case which satisfies conditions 
(8)-(9) is depicted. 

To analyse the influence of αa, the local minimum 
problem related to xa is discussed. This can be dealt 
by considering the function Uda, defined as the sum of 
the two potential fields of the attractors: 𝑈ௗ௔(𝒙) = 𝑈ௗ(𝒙) + 𝑈௔(𝒙) = = ଵଶ𝜎‖𝒙 − 𝒙ௗ‖ଶ − 𝛼௔𝑒షംమೌ ‖𝒙ష𝒙ೌ‖మ (10)

In fact, because of assumption (8), the local minimum 
will appear in the region where Uo ≃ 0. By studying 
the points where the gradient vanishes, the condition 
is: 𝜕𝜕𝒙 𝑈ௗ௔(𝒙) = = 𝜎(𝒙 − 𝒙ௗ) + 𝛼௔𝛾௔(𝒙 − 𝒙௔)𝑒షംమೌ ‖𝒙ష𝒙ೌ‖మ = 0 

(11)

The problem can be further simplified by writing the 
system (11) in the auxiliary reference frame O'-x'y' 
with origin in O' ≡ xd and whose x' axis is aligned 
with xa (see Figure 4). Thus, by considering 
x'd = [0 0]T and x'a = [x'a 0]T the system becomes:  𝜕𝜕𝑥ᇱ 𝑈ௗ௔(𝒙ᇱ) = 𝜎𝑥ᇱ + 𝛼௔𝛾௔(𝑥ᇱ − 𝑥௔ᇱ )𝑒షംమೌ ൤൫ೣᇲషೣᇲೌ ൯మశ೤ᇲమ൨ = 0 (12)

𝜕𝜕𝑦ᇱ 𝑈ௗ௔(𝒙ᇱ) = 𝜎𝑦ᇱ + 𝛼௔𝛾௔𝑦ᇱ𝑒షംమೌ ൤൫ೣᇲషೣᇲೌ ൯మశ೤ᇲమ൨ = 0 (13)

where x' = [x' y']T is the spatial variable which 
identifies a point in the auxiliary reference frame. 
Since 𝜎, αa and γa are positive, (13) is true only for 
y' = 0. This suggests that the local minimum must lie 
on the x' axis. Therefore, the problem can be studied 
in one dimension. In fact, by considering y' = 0, (12) 
reduces to: 𝜕𝜕𝑥ᇱ 𝑈ௗ௔(𝑥ᇱ, 0) = = 𝜎𝑥ᇱ + 𝛼௔𝛾௔(𝑥ᇱ − 𝑥௔ᇱ )𝑒షംమೌ ൫ೣᇲషೣᇲೌ ൯మ = 0 

(14)

Given 𝜎, x'a and γa, equation (14) is parametric in αa 
and the number of solutions for x' depend on αa. This 
can be visualized by plotting the solution in a  
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graphical fashion. By considering: 

 𝐴 = 𝜎𝑥ᇱ , 𝐵 = 𝛼௔𝛾௔(𝑥ᇱ − 𝑥௔ᇱ )𝑒షംమೌ ൫ೣᇲషೣᇲೌ ൯మ
 (15)

the graphical solution is shown in Figure 5b, for fixed 𝜎, x'a and γa. In Figure 5a, the resulting potential 
Uda (x', 0) is plotted.  

For small values of αa, the curves identifying ˗A 
and B have only one intersection point at the global 
minimum, i.e. in x' = 0. By Increasing the value of αa, 
the potential starts bending around x' = x'a. The value 
of αa for which Uda (x', 0) shows a saddle point in 
x' = x͂', i.e. when the curves ˗A and B become tangent 
(dashed line), is then the upper bound ᾶa. For αa > ᾶa, 
the green and the blue curves intersect in 3 points, i.e. 
at the global minimum and at the local stationary 
points; in this case the local minimum lies in the 
interval 0 < x' < x'a.  

  
Figure 4: Generic case with the obstacle and the local 
attractor potential functions designed according to the 
geometrical constraints. 

 
Figure 5: Analysis of the parametric solution of equation 
(14). The different style of the lines refers to different 
values of αa; the square identify the saddle point related to 
the local attractor. a) Potential function Uda along the x' 
axis; the saddle point exists for the dashed line, at x͂'. b) 
Graphical solution by means of the intermediate variables 
(15); the saddle point is represented by the point of 
tangency.  

The important result is that, given 𝜎, x'a and γa, if 
αa < ᾶa no local stationary points occur. Hereafter, the 
saddle point represents the theoretical limit in this 
sense: the maximum admissible depression near x'a, 
i.e. the maximum attraction, is obtained by choosing 
an αa just below ᾶa.  

Notice that, except where otherwise specified, the 
saddle point here discussed is the one related to the 
local attractor; in fact, the one introduced in Figure 1a 
and Figure 2a has a different meaning and it is 
identified as the “classical” saddle point. 

To find ᾶa, the condition which generates the 
saddle is studied. In the saddle point, the first and the 
second derivative must vanish. Therefore, (14) must 
hold together with the following: 

𝜕ଶ𝜕ଶ𝑥ᇱ 𝑈ௗ௔(𝑥ᇱ, 0) = = 𝜎 + ൤ 1𝛾௔ − (𝑥ᇱ − 𝑥௔ᇱ )ଶ൨ 𝛼௔𝛾௔ଶ𝑒షംమೌ ൫ೣᇲషೣᇲೌ ൯మ = 0 
(16)

The system of equations (14) and (16) is verified if 
(see Appendix B): 

 (𝛾௔)𝑥ᇱଷ − (2𝑥௔ᇱ 𝛾௔)𝑥ᇱଶ + (𝑥௔ᇱଶ𝛾௔)𝑥ᇱ − 𝑥௔ᇱ = 0 (17)

which gives the x' = x͂' where the inflection arises (see 
Figure 5). The cubic (17) has 3 real solutions for x' if:  

 𝑥௔ᇱ > ඨ 274𝛾௔ (18)

In this case, the meaningful solution is:  

 𝑥෤ᇱ(𝑥௔ᇱ , 𝛾௔) = 23 𝑥௔ᇱ ൤cos ൬𝜃 + 4𝜋3 ൰ + 1൨ 𝜃(𝑥௔ᇱ , 𝛾௔) = cosିଵ ቆ 272𝛾௔𝑥௔ᇱଶ − 1ቇ 
(19)

And by substituting (19) in (14) it results:  

 𝛼෤௔(𝜎, 𝑥௔ᇱ , 𝛾௔) = −𝜎𝑥෤ᇱ𝛾௔(𝑥෤ᇱ − 𝑥௔ᇱ )𝑒షംమೌ ൫෥ೣᇲషೣᇲೌ ൯మ (20)

where it is stressed the dependency of ᾶa from 𝜎, x'a 
and γa 

In general, even if Ua is centred in xa, the sum 
with Ud causes a slight shifting of the inflection in the 
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direction of the x' axis, in x͂' = [x͂' 0]T. The shifting can 
be quantified considering the distance 
||x'a ˗ x͂'|| = x'a ˗ x͂'=𝜀  (see Figure 5). This aspect has 
been considered in the assumption (8), so that the 
saddle point falls outside U*

o.  
In particular, two scenarios can be distinguished. 

In the first one, the line segment xaxd does not 
intersect U*

o; in this case, the stationary point would 
fall outside U*

o. The second scenario arises if the line 
segment xaxd crosses U*

o: here, if ||xa ˗ xo|| ≤ R*
o + ε the 

saddle point of Uda may overlap with the obstacle; 
thus, when considering the total potential Ut, the 
saddle may not exist and the control on the attraction 
effect of xa is lost. In this case, the main issue is that 
the depression which can still manifest within U*

a 
would push the robot towards the obstacle, which is 
not advisable. On the other hand, if xaxd crosses U*

o 
but ||xa ˗ xo|| > R*

o + ε, this will not happen.  
From this analysis, the value ε͂  in condition (8) for 

the two different scenarios is: 

 𝜀̃ = 0              𝑖𝑓 𝒙௔𝒙ௗതതതതതതത ∩ 𝑈௢∗ = 0 𝜀̃ = 𝜀              𝑖𝑓 𝒙௔𝒙ௗതതതതതതത ∩ 𝑈௢∗ ≠ 0 (21)

The steps for sculpting the potential field with local 
attractors are summarized by the pseudocode in Table 
1. 

Table 1: Pseudocode of the APF with local attractors. 

1.  define xs and xd 

2.  choose 𝜎 

3.  identify the obstacle xo, Ro 

4.  choose γo, βo and sϵ 

5.  use (3) to find R*o  

6.  place the local attractor xa outside U*o   

7.  obtain x'a = ||xa ˗ xd||, choose γa and verify (18)

8.  calculate ᾶa with (20) and choose αa < ᾶa 

9.  calculate 𝜀̃ with (21) and verify (8) 

10.  find R*a with (6) and verify (9) 

11.  obtain 𝑈௧ as (7) 

In the next section, the influence of local attractors 
modelled as in Figure 3 is analysed to demonstrate 
that this principle can be used to drive the robot on 
the side of the local attractor during the obstacle 
avoidance manoeuvre, without that the robot get 
stuck. 

3 APPLICATION 

The effectiveness of using local attractors is 
investigated considering the case study of a 
differential wheeled robot navigating in a structured 
environment. The gradient tracking method is chosen 
to take full advantage from the potential field 
generated with local attractors. This simple and 
effective technique produces an exact tracking of the 
gradient lines and can be applied to smooth artificial 
vector field (Guldner & Utkin, 1995). It consists in 
regarding the velocity vector rather than the 
acceleration vector as the variable under control. 

The motion is simulated in Gazebo with the 
Turtlebot®. Robot commands are given in terms of 
linear velocity 𝑣 and angular velocity 𝜔 (Figure 6a). 

The angular velocity command is chosen 
proportional to the angular error 𝜑  between the 
desired direction, identified by the vector vd, and the 
one of the actual velocity vr: 𝜔 = 𝐾∠𝒗ௗ𝒗௥ = 𝐾𝜑 (22)

where K is the proportional gain and vd is chosen as 
the negative direction of the gradient: 𝒗ௗ = −∇𝑈௧ (23)

 
Figure 6: Gradient tracking (a) and robot size (b). 

 

Figure 7: Obstacle potential field. a) three dimensonal view; 
b) lateral view. 

As regard the linear velocity command, if vr = 0 at the 
starting and desired positions, a suitable choice for the 
linear velocity magnitude is (Guldner & Utkin, 1995): 

 𝑣 = min ൬𝑎଴𝑡, 𝑣଴, (2𝑎଴𝑑௥(𝑡))ଵଶ൰ (24)
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where a0
 is the maximum acceleration, v0 the 

maximum velocity and dr (t) = ||xd ˗ xr (t)|| is the 
position error.  

Different tests are proposed. In each one, a 
cylindrical obstacle with radius Rc = 0.135 m is 
placed in the middle between the starting and the 
desired robot positions. To consider the robot size 
(see Figure 6b), the obstacle potential field is 
extended for a wider range, as in (Hossain, 
Habibullah, Islam, & Padilla, 2021). In particular, the 
parameter γo is chosen so that at a distance 
Ro = (0.135 + 0.105 + s) m the magnitude of the 
repulsive gradient is 30% of its maximum value, i.e. |∇𝑈௢|𝑅𝑜 = 0.3|∇𝑈௢|𝑚𝑎𝑥, so its value is set as γo = 80.35. 
The length s is a safety margin and it is set to 0.01 m. 
The obstacle and the related potential field obtained 
with βo = 1 are shown in Figure 7, together with the 
mobile robot in one of its starting positions.  

Test 1 is made considering the problem 
introduced in Figure 1b. The robot starts from 
different positions xs = [xs ys]T m, with xs = 0 and ys 
ranging between 0.05 m and 0.15 m. To influence the 
robot path regardless of the approaching direction 
against the obstacle, a local attractor is placed on one 
side of the obstacle, in xa  = [0.64 -0.46]T m. The 
slight displacement 0.05 m representing the lower 
limit for ys is chosen to exclude the limit case 
discussed in Figure 1a and to let the robot choose the 
side opposite to xa when the local attractor is 
removed, as will be seen later.  

 

Figure 8: Test layout. 

 

Figure 9: Frames of simulation of Turtlebot in Gazebo. 

The global attractor is modelled considering 
xd  = [2.5 0]T m, 𝜎 = 0.5, while the local attractor 
potential field is obtained with αa = 0.266 and 
γa = 17.02. The intensity of the local attractor is 
chosen as αa = 0.8ᾶa, where ᾶa is obtained from (20), 
given x'a = ||xa ˗ xd||. 

  The layout of test 1 and the potential field Ut are 
shown in Figure 8. The obstacle position xo is known. 
The gradient of the potential field is computed in 
Matlab and the commands are sent to the robot 
through the ROS toolbox, with a control frequency of 
30 Hz. The robot motion is characterized by 
a0 = 0.15 m/s2, v0 = 0.1 m/s. and K = 5. The robot 
trajectory is obtained through odometry feedback. 

Figure 9 shows the frame of the simulation 
obtained with xs = [0 0.05]T m. Results in terms of 
path are reported in Figure 10a. The robot is attracted 
by xs and avoids the obstacle passing on that side. The 
effect of the attractor can be seen in Figure 10b, where 
the gradient lines of Ut are depicted.  

To evaluate the effectiveness of the potential field 
with local attractors, test 2 is performed removing the 
local attractor, with xs = [0 0.05]T m. Results are 
shown in Figure 11a and Figure 11b. The robot 
follows the gradient and passes the obstacle on the 
opposite direction, compared to test 1. Moreover, 
because of the greater curvature of the gradient lines 
next to the obstacle, the Turtlebot® manoeuvre is less 
smooth. 

The last test, identified as test 3, is carried out to 
analyse the effect of the intensity of the local 
attractor. Figure 12a shows the different paths 
obtained with the same starting position 
xs = [0 0.05]Tm and with different values of αa. For 
αa = 0.9ᾶa, the path curve is sharper near the point x͂ 
where the saddle would occur for αa = ᾶa (see Figure 
12b). This is not recommendable, since regions with 
high curvature implies sudden change in direction and 
may saturate the control resources. However, with 
lower values of αa the robot can still be guided 
towards the side of xa, as shown by dashed and dotted 
paths in Figure 12a. 
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Figure 10: Results of test 1. 

 

Figure 11: Results of test 2. 

4 CONCLUSIONS 

A new collision avoidance method which aims to 
conditionate the robot trajectory by using local 
attractors has been presented. The method is inspired 
by the previous studies on artificial potential fields 
but moves the attention on the role of the attractors 
rather than the obstacles.  

 
Figure 12: Results of test 3. 

The state of the art of artificial potential fields has 
been discussed and a lack of works dealing with local 
attractors have been found. Thus, the idea of a new 
formula to handle attractors and repulsors coexistence 
has been developed with the intention to choose 
preferred directions while avoiding collision. 

Section 2 describes the theory. The analysis starts 
by considering classical exponential functions to 
model the potential field for the obstacles and the 
attractors. The intuition has been further investigated 
by looking for the optimal parameters of the potential 
functions to generate the maximum deflection in the 
proximity of a local attractor.  

In the result section, the algorithm has been tested 
on a differential wheeled robot. The robot can avoid 
the obstacle choosing the local attractor side, even 
considering different approaching directions. Also, 
different local attractor intensities have been 
considered to show how to obtain smooth trajectories 
by regulating the attractive effect.  

Future works will focus on the application to real 
world scenarios and on the extension to multiple local 
attractors or multiple obstacles, with the possibility to 
model the potential field related to the obstacles with 
different shapes besides disc. Moreover, as the 
method is based on potential field, it will be 
interesting to extend the theory with dynamic 
obstacles and to test how sensory data could affect 
collision-free trajectories. 
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APPENDIX A 

From (2), the gradient of the repulsive potential field 
is: ∇𝑈௢(𝒙, 𝛽௢, 𝛾௢) = 𝜕𝜕𝒙 𝑈௢(𝒙, 𝛽௢, 𝛾௢)= −𝛽௢𝛾௢(𝒙 − 𝒙௢)𝑒షം೚మ ‖𝒙ష𝒙೚‖మ 

(A1)

More precisely, it is written ∇Uo (x, βo, γo) to stress the 
dependency on βo and γo, that are the design 
parameters of the potential field related to the 
obstacle. By considering ro = ||x ˗ xo||, the modulus of 
the gradient can be written as: 

 |∇𝑈௢|(𝑟௢, 𝛽௢, 𝛾௢) = 𝛽௢𝛾௢𝑟௢𝑒షം೚మ ೝ೚మ  (A2)

Outside of the active region the gradient goes to 
zero. To quantify this condition, it is assumed that the 
gradient magnitude is less than or equal to a small 
value sϵ. Thus, by placing |∇Uo| (ro, βo, γo) = sϵ in (A2) 
and by taking the square, the following relation holds: 

 −𝛾௢𝑟௢ଶ𝑒ିം೚௥೚మ = − 𝑠ఢଶ𝛽௢ଶ𝛾௢ (A3)

which can be written as: 

 𝑤𝑒௪ = 𝑢ఢ 𝑤 = −𝛾௢𝑟௢ଶ ,  𝑢ఢ = − 𝑠ఢଶ𝛽௢ଶ𝛾௢ (A4)

Equation (A4) can be solved with the Lambert W 
function as long as sϵ2 ≤ βo

2γo/e. Since the latter 
condition is easily verified in practice, (A4) has two 
real solutions. Without loss of generality, the 
meaningful solution corresponds to the lower branch 
W-1: 𝑤 = 𝑊ିଵ(𝑢ఢ) (A5)

Equation (A5) solved for ro gives (3). 

APPENDIX B 

From (14): 

 𝛼௔𝛾௔𝑒షംమೌ ൫ೣᇲషೣᇲೌ ൯మ = −𝜎𝑥ᇱ(𝑥ᇱ − 𝑥௔ᇱ ) (B1)

By recognizing this term in (16) and substituting, it 
results the cubic (17), which can be written as: 

 𝑥ᇱଷ − (2𝑥௔ᇱ )𝑥ᇱଶ + (𝑥௔ᇱଶ)𝑥ᇱ − 𝑥௔ᇱ𝛾௔ = 0 (B2)

Equation (B2) can be solved using the cubic formula 
(Weisstein, 2021). By considering b2 = 2x'a, b1 = x'a2 
and b0 = ˗x'a /γa, the cubic has three real solutions if the 
polynomial discriminant D is negative: 

 𝐷 = 𝑄ଷ + 𝑃ଶ = 𝑥௔ᇱଶ ቆ 14𝛾௔ − 𝑥௔ᇱଶ27ቇ < 0 

   𝑄 = ଷ௕భି௕మమଽ = − ௫ᇲೌమଽ    

  𝑃 = ଽ௕మ௕భିଶ଻௕బିଶ௕మయହସ = − ௫ᇲೌయଶ଻ + ௫ᇲೌଶఊೌ 

(B3)

Since x'a is positive, condition (B3) translates into 
(18). In this case, the three solutions are: 

 𝑥ூᇱ = 2ඥ−𝑄 cos ൬𝜃3൰ − 𝑏ଶ3  𝑥ூூᇱ = 2ඥ−𝑄 cos ൬𝜃 + 2𝜋3 ൰ − 𝑏ଶ3  𝑥ூூூᇱ = 𝑥෤ᇱ = 2ඥ−𝑄 cos ൬𝜃 + 4𝜋3 ൰ − 𝑏ଶ3  𝜃 = cosିଵ ቆ 𝑃ඥ−𝑄ଷቇ 

(B4)

By substituting the three roots in (14), as many 
values for αa can be found.  
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Figure B1 shows the meaning of the three solutions 
of a generic case, given 𝜎, x'a and γa. The first root x'I, 
represented by the dashed curve, gives a negative αa. 
The dotted curve refers to the root x'II and to a high 
positive value of αa, which gives the tangency nearby 
the global minimum still producing a local minimum 
around x'a. The only meaningful solution for the case 
study of this paper is then x'III, which can be written in 
the form (19).   

 
Figure B1: Analysis of the parametric solution of equation 
(14). The different style of the lines refers to the 3 values of 
αa obtained with xI, xII and xIII. a) Potential function Uda 
along the x' axis. b) Graphical solution by means of the 
intermediate variables (15); the squares identify the points 
of tangency. 
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