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Abstract: Precision positioning of industrial robots is a vital requirement on the factory floor. Robot end effector 
positioning using joint angle readings from joint encoders and industrial robot forward kinematics (FKs) is a 
common practice. However, mechanical wear, manufacturing and assembly tolerances, and errors in robot 
dimension measurement result in parameter uncertainties in the robot FK model. Uncertainties in robot FK 
result in inaccurate position measurement. In this paper, we use a multi-output least squares support vector 
regression (MLS-SVR) method to improve the positioning accuracies of industrial robots using a highly 
accurate laser tracker system, Leica AT960-MR. This equipment is a non-contact metrology one capable of 
performing measurements with error of less than 3݉ߤ/݉ . To perform this task, industrial robot FK is 
formulated as a regression problem whose unknown parameters are tuned using laser tracker position data as 
target values. MLS-SVR algorithm is used to estimate the industrial robot FK parameters. It is observed that 
using the proposed approach, the accuracy of industrial robot FKs in terms of mean absolute errors of static 
and near-static motion in all three dimensions decreases from its measured value: from 71.9݉ߤ to 20.9݉ߤ 
(71% decrease). 

1 INTRODUCTION 

Industrial robots are vital factory elements to perform 
various tasks including assembly, object 
manipulation and object handling (Khanesar & 
Branson, 2022). Precision positioning is a 
predominant requirement for industrial robots to 
maintain their high-quality production and 
manufacturing. To precisely position industrial 
robots, accurate forward kinematics (FK) are required 
to be integrated into control methodologies. 
Irregularities in industrial robot geometry, robot 
manufacturing tolerances, tolerances associated with 
assembly procedure, possible structural 
deformations, and environmental factors may result 
in differences between the actual physical parameter 
values and their nominal counterparts. This 
discrepancy can lead to uncertainty in industrial robot 
FK and therefore reduce the overall precision of the 
robot motion. To overcome the inherent uncertainties 
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in industrial robots FK, calibration approaches are 
generally used to compensate for differences between 
nominal and actual parameters (Gao, Li, Liu, & Han, 
2021; Nguyen, Zhou, & Kang, 2015). 

Industrial robot calibration is usually performed 
in three levels of joint angle calibration, FK 
calibration, and non-kinematic calibration (Roth, 
Mooring, & Ravani, 1987). At calibration level I, 
joint angle readings from encoder are calibrated using 
an appropriate relationship between actual joint angle 
values and encoder angle readings. Robot calibration 
at level II includes corrections to FK. On level III, 
non-kinematic calibration includes corrections to 
robot position due to robot flexibilities. In this paper, 
calibration is performed at Level II. 

Level II calibration, FK calibration, is the process 
of using real-time data gathered from industrial robots 
and extra independent measurement equipment to 
improve positioning precision. The heterogeneous 
information gathered from multiple measurement 
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Figure 1: Overall block diagram of the proposed algorithm. 

systems increases the perception capability of the 
overall calibration system. To calibrate industrial 
robots 3D positioning using neural networks, a Leica 
SMART310 laser tracker is already used to calibrate 
a PA10 robot arm (Aoyagi, Kohama, Nakata, 
Hayano, & Suzuki, 2010). Leica AT960 and Leica 
AT960-MR are used for neural networks position 
calibration purpose of IRB1410 and a collaborative 
industrial robot, respectively (Bai et al., 2021; Duong, 
Trang, & Pham, 2021). A similar approach is used in 
(Aoyagi et al., 2010; Nguyen et al., 2015) for 
calibration purpose of Hyundai HH800 robot, a heavy 
duty industrial robot, using a laser tracker system. To 
avoid black box robot FK calibration, this paper 
performs level II calibration of industrial robots by 
tuning the parameters of its geometrical FK. 
Therefore, the calibrated industrial robot FK is a 
traceable one. 

To perform level II calibration, this paper 
proposes the use of multi-output least squares support 
vector regressions (MLS-SVR), an advanced 
regression model, to tune industrial robots FKs. This 
algorithm is a variant of LS-SVR which is a powerful 
regression algorithm originally introduced by 
(Vapnik, 1999; Vladimir & Vapnik, 1998). LS-SVR 
replaces convex quadratic programming problem 
with convex linear system solving problem. Although 
the original version of LS-SVR is meant for single 
output case, its multi-output case has been developed 
by (Xu, An, Qiao, Zhu, & Li, 2013). Using multi-
output LS-SVR (MLS-SVR), it is not required to treat 
every single output individually. The superior 
estimation power of MLS-SVR over partial least 
squares (Abdi, 2003) and kernel partial least squares 
regression (Rosipal & Trejo, 2001) for benchmark 
regression problems has already been shown by 
examples (Xu et al., 2013). Inspired by successful use 
of MLS-SVR in literature, it is the preferred 
algorithm in this paper to calibrate industrial robot 
FK.  

                                                                                                 
1  https://www.hexagonmi.com/-/media/Hexagon%20MI% 

20Legacy/m1/metrology/general/brochures/Leica%20A
T960%20brochure_en.ashx (visited: 1/5/2022) 

In this paper, an MLS-SVR is used to calibrate an 
industrial robot’s FK model. Using a highly accurate 
laser tracking system, Leica AT960, the absolute 3D 
positions of an industrial robot are measured. The 
measurement error of the laser tracking system which 
is used in this paper is 31݉/݉ߤ. This equipment is a 
non-contact metrology one to accurately measure 3D 
positions. The absolute positions from the laser 
tracker are then used to estimate industrial robot FK 
parameters. To do so, first industrial robot FK is 
formulated as a regression problem. The parameters 
of industrial robot FK are then estimated using MLS-
SVR which is a batch estimation approach. It is 
observed that using the proposed calibration 
approach, it is possible to decrease positioning error 
in terms of mean absolute error (MAE) from its 
measured value of 71.9݉ߤ  to 20.9݉ߤ . In other 
words, using the proposed approach, MAE in all three 
dimensions decreases by 71%. 

This paper is organized as follows: in Section 2, 
the overall methodology including an industrial robot 
FK, and the proposed calibration approach are 
introduced. The experiment setup to perform the 
measurements is presented in Section 3. Experimental 
results are presented in Section 4. Section 5 concludes 
the paper. Acknowledgements and references for this 
paper are presented in Section 6 and Section 7, 
respectively.  

2 METHODOLOGY 

The overall calibration algorithm is presented in this 
section. Robot joint angle encoders are generally used 
in industrial robots for positioning purposes. 
However, uncertainties in robot FK parameters and 
geometrical uncertainties impose error on the 
positional accuracies. To increase the accuracies of 
FK parameters, MLS-SVR method is used in this 
paper. Figure 1 demonstrates the overall block 
diagram of the proposed approach. It is required to 
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formulate industrial robot FK in terms of a regression 
problem. Synchronisation is required as joint angle 
measurements and absolute position measurements 
are conducted using two independent equipment. 
Joint angle data gathered from industrial robot are at 
higher frequency of 125Hz. Hence, they are 
resampled at the laser tracker frequency to obtain 
synchronisation between the robot and laser tracker. 
No resampling is conducted on the measurements 
gathered from laser tracker system to maintain its 
high accuracy. The data samples occurring at linear 
robot speed less than 2mm/s are used for static and 
near static measurement and calibration. MLS-SVR 
algorithm is then applied to industrial robot FK using 
the resulting synchronised data. Details of the overall 
process are explained in the coming subsections 2.1 
and 2.2. 

2.1 FK Model of UR5 

Industrial robot FK is a function which expresses the 
Cartesian coordinates of robot within 3D space as a 
function of robot joint angles. Inverse kinematic is the 
reverse procedure to assign appropriate joint angles to 
industrial robots to maintain the desired positions and 
orientations. The link transformation matrix from the 
link ݅-1 to the link ݅  using the Denavit–Hartenberg 
(D-H) parameters of the robot as in Table 1 depends 
on the corresponding joint angle of the industrial 
robot and its D-H parameters (Kufieta, 2014; Sun, 
Cao, Li, Liang, & Huang, 2017). 

ܶିଵ = ൦ܿݍ ݍݏߙܿ− ݍݏߙݏ ܽܿݍݍݏ ݍܿߙܿ ݍܿߙݏ− ܽݍݏ0 ߙݏ ߙܿ ݀0 0 0 1 ൪ (1)

Table 1: The DH parameters of the 6DOF robot. 

Link ࢻ ࢇ ࢊ 
2/ߨ ଵ ݀ଵ 0ݍ 1
ଶ 0 ܽଶ 0ݍ 2
ଷ 0 ܽଷ 0ݍ 3
2/ߨ ସ ݀ସ 0ݍ 4
2/ߨ− ହ ݀ହ 0ݍ 5
 ݀ 0 0ݍ 6

where ݍ′ݏ, ݅ = 1,… ,6  represent the joint angle ݅ ,ݏ′ߙ ,  ݅ = 1,… ,6, ܽ′ݏ, ݅ = 1,… ,6, and  ݀, ݅ = 1,… ,6 
present other DH parameters of robot. Furthermore, ܿݍ, ,ݍݏ ,ߙܿ and		ߙݏ, ݅ = 1, . . .6 represent ܿݏ(ݍ), 
                                                                                                 
2  https://www.universal-robots.com/articles/ur/application 

-installation/dh-parameters-for-calculations-of-kinematic 
s-and-dynamics/ (visited: 1/5/2022) 

,(ݍ)݊݅ݏ ,ߙݏܿ   and ݊݅ݏ(ߙ), ݅ = 1, . . . ,6 , 
respectively. Overall robot transformation matrix in 
robot base coordinates is obtained as follows.   

ܶ = ܶ = ܶଵ ܶଶଵ ܶଷଶ ܶସଷ ܶହସ ܶହ  (2)

The end effector coordinates in all three dimensions 
are obtained as follows. ݔ = ݀ସݏଵ + ܽଶܿଵܿଶ + ݀ܿହݏଵ + ܽଷܿଵܿଶܿଷ −ܽଷܿଵݏଶݏଷ	 + ݀ହܿଵܿଶܿଷݏସ + ݀ହܿଵܿଶݏଷܿସ 	+݀ହܿଵݏଶܿଷܿସ − ݀ହܿଵݏଶݏଷݏସ −݀ܿଵܿଶܿଷܿସݏହ + ݀ܿଵܿଶݏଷݏସݏହ +݀ܿଵݏଶܿଷݏସݏହ + ݀ܿଵݏଶݏଷܿସݏହ 

(3)

ݕ  = ܽଶݏଵܿଶ − ݀ܿଵܿହ − ݀ସܿଵ + ܽଷݏଵܿଶܿଷ −ܽଷݏଵݏଶݏଷ + ݀ହݏଵܿଶܿଷݏସ +	݀ହݏଵܿଶݏଷܿସ +݀ହݏଵݏଶܿଷܿସ − ݀ହݏଵݏଶݏଷݏସ −݀ݏଵܿଶܿଷܿସݏହ + ݀ݏଵܿଶݏଷݏସݏହ +݀ݏଵݏଶܿଷݏସݏହ + ݀ݏଵݏଶݏଷܿସݏହ 

(4)

ݖ  = ݀ଵ + ܽଶݏଶ + ܽଷܿଶݏଷ + ܽଷݏଶܿଷ −݀ହܿଶܿଷܿସ − ݀ହܿଶݏଷݏସ+݀ହܿଶݏଷݏସ +݀ହݏଶܿଷݏସ + ݀ହݏଶݏଷܿସ − ݀ܿଶܿଷݏସݏହ −݀ܿଶݏଷܿସݏହ − ݀ݏଶܿଷܿସݏହ + ݀ݏଶݏଷݏସݏହ (5)

Although the values of FK parameters are unknown 
and will be estimated in this paper, their numerical 
values according to the robot manufacturer are as 
follows2. 
 ݀ଵ = 0.08916݉, ܽଶ = −0.425݉, ܽଷ = −0.392݉, ݀ସ = 0.1092݉, (6)݀ହ = 0.0947݉, ݀ = 0.0823 + ݀ (7)
 
where ݀  is the distance between the centre of the 
retroreflector and the centre of the robot end-effector 
(see Figure 2) which is approximately equal to 0.1695݉. Furthermore,  ݀ଶ = ݀ଷ = 0, and ܽ = 0, ݅ = 1,4,5,6. (8)

To conduct the calibration, the direction of the robot 
is considered on its downward orientation with its 
TCP axis-rotation vector equal to (ߨ 0 0). 
From (3)-(5), the regressor vectors corresponding to 
three dimensions: x, y, and z are formulated for MLS-
SVR to estimate robot FK parameters.  ܴ௫ = ሾݏଵܿହ, ,ଵݏ ܿଵܿଶݏଷܿସ, ܿଵܿଶܿଷܿସݏହ,	ܿଵܿଶݏଷݏସݏହ, ܿଵܿଶܿଷݏସ, ܿଵܿଶܿଷ, ܿଵܿଶ	,	ܿଵݏଶݏଷܿସݏହ, ܿଵݏଶܿଷܿସ, ܿଵݏଶݏଷݏସ, ܿଵݏଶݏଷ,	ܿଵݏଶܿଷݏସݏହ, 1ሿ, (9)
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ܴ௬ = ሾܿଵܿହ, ܿଵ, ,ଷܿସݏଵܿଶݏ ,ହݏସݏଷݏଵܿଶݏ	,ହݏଵܿଶܿଷܿସݏ ,ସݏଵܿଶܿଷݏ ,ଵܿଶܿଷݏ ,ହݏଷܿସݏଶݏଵݏ	,ଵܿଶݏ ,ଶܿଷܿସݏଵݏ ,ସݏଷݏଶݏଵݏ ,ହݏସݏଶܿଷݏଵݏ,ଷݏଶݏଵݏ 1ሿ (10)

and ܴ௭ = ሾݏଶݏଷݏସݏହ, ,ଷܿସݏଶݏ ,ସݏଶܿଷݏ	,ହݏଶܿଷܿସݏ ,ଶܿଷݏ ,ଶݏ ܿଶݏଷܿସݏହ, ܿଶݏଷݏସܿଶݏଷ,	ܿଶܿଷݏସݏହ, ܿଶܿଷܿସ, 1ሿ (11)

These regressor values are used in the next subsection 
to tune the FK parameters 

2.2 Multi-output Least Squares 
Support Vector Regression 

Let the multioutput regression problem to be solved 
be: Υ = Φ்Π (12)

where Υ = ሾܺ ܻ ܼሿ ∈ ℝே×ଷ, and ܺ, ܻ, and	ܼ are 
the position measurements in all three dimensions 
using the laser tracker system. The regressor matrix Φ is defined as follows. 

Φ = ܴ௫ଵ ܴ௬ଵ ܴ௭ଵ⋮ܴ௫ே ܴ௬ே ܴ௭ே
்
 (13)

where Φ ∈ ℝே×ସ  is the regressor matrix and Π =ሾΠଵ Πଶ Πଷሿ ∈ ℝସ×ଷ  is the vector of unknown 
parameters of industrial robot FK in laser tracker 
coordinates. ܴ௫୧ , ܴ௬୧ ,  and ܴ௭୧  represent the i-th 
regressor vector sample. Xu et al. recently proposed 
MLS-SVR for solving the multioutput regression 
problems. The objective function to be minimized in 
this case is as follows (Xu et al., 2013). minగబ∈ℝరబ,∈ℝరబ×య ℐ(ߨ, ܸ, Ξ) =12 trace൫ߨ் ߨ ൯ + 2݉ߣ trace(V்V) + 2ߛ .ݏ ,(Ξ்Ξ)݁ܿܽݎݐ .ݐ Υ = Φ்ߩ + Ξ 

(14)

where the matrix Ξ = ሾξଵ ξଶ ξଷሿ ∈ ℝାே×ଷ  is a 
matrix consisting of slack variables, Π = ߨ) ,ଵݒ+ ߨ + ,ଶݒ ߨ + (ଷݒ ∈ ℝସ×ଷ  and ߛ ∈ ℝା  is a 
positive real regularized parameter. The Lagrangian 
function to solve the problem of (13) is ℒ(ߨ, ܸ, Ξ, A) = ℐ(ߨ, ܸ, Ξ) −்ܣ)݁ܿܽݎݐ(Φ்ߩ)+Ξ − Υ) (15)

where ܣ = ,ଵߙ) ,ଶߙ (ଷߙ ∈ ℝே×ଷ , include all 
Lagrange multipliers, ߙ ∈ ℝே×ଵ, ݅ = 1,2,3 . Using 
the Karush-Kuhn-Tucker conditions for optimality 
and a set of algebraic modifications leads to an 
equivalent optimisation problem which does not 
include ߨ parameters. min∈ℝరబ×య ℐ(ܸ, Ξ) =  ଶ54ܸ1ଷ1ଷ்V்ߣ

6ߣ+ (V்V)݁ܿܽݎݐ + 2ߛ .ݏ ,(Ξ்Ξ)݁ܿܽݎݐ .ݐ Υ = Φ்ߩ + ݐܽ݉݁ݎ ൬3ߣΦ்ܸ1ଷ, 1,3൰ + Ξ
(16)

where 1ଷ = ሾ1 1 1ሿ்.  The solution to the 
optimisation problem of (16) is available using the 
method presented in (Xu et al., 2013). The method to 
solve the optimisation problem of (16) is summarised 
in the following six main steps. 

1. solve ߟ , and ߥ  from ߥܪ = ܲ , and ߥܪ = Υ 
where ܲ = ,1ே)݈ܾ݃ܽ݅݀݇ܿ 1ே, . . . , 1ே) ∈ℝଷே×ଷ , and ܪ = Ω + ଷேܫଵିߛ + ܳ(ߣ/3) ∈ℝଷே×ଷே, ܳ = ,ܭ)݈ܾ݃ܽ݅݀݇ܿ ,ܭ (ܭ ∈ ℝଷே×ଷே ܭ , = Φ்Φ ∈ ℝே×ே 

2. Compute ܵ =  ߟ்ܲ

3. Find ܾ and ߙ as ܾ = ܵିଵ்ߟΥ, ߙ = ߥ −   ܾߟ

4. Find ܸ from ܸ = ଷఒΦA  

5. Find ߨ from ߨ = ∑ Φߙଷୀଵ  

6. Find Π from ߎ = ߨ) + ,ଵݒ ߨ + ,ଶݒ ߨ +  (ଷݒ

 

Figure 2: UR5 with retroreflector mounted on it as the target 
for laser tracker. 

d

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

266



 

Figure 3: Overall calibration system: UR5 industrial robot 
and Leica laser tracker system. 

3 EXPERIMENT SETUP 

3.1 Hardware Setup 

The hardware used to perform this experiment is 
composed of an industrial robot and a calibration 
equipment (see Figure 3). In this subsection, detailed 
explanations of the equipment are presented. 

3.1.1 Calibration Equipment 

To conduct the calibration test, the 3D real time 
position of a retroreflector mounted on the UR5 end 
effector is measured using a laser tracker. The laser 
tracker used in this experiment is AT960-MR from 
Hexagon metrology GMBH, Wetzlar. It is a widely 
used measurement device in industry to inspect 
critical distances, locations and surfaces (Kyle, 1999) 
(see Figure 4). The target used in these experiments is 
a precision Leica 1.5” red ring reflector which is 
detectable through the laser tracker at the maximum 
distance of 60 m @10Hz with the accuracy of 3݉ߤ/݉. The reflector used in this experiment is using 
the principle of corner cube. To reflect the beam, three 
plane mirrors at right angles to one another are used. 
The measurement point is the centre of the reflector. 
Further specifications and environmental conditions 
of the laser tracker are presented in Table 2. 

3.1.2 Industrial Robot 

The industrial robot used in these experiments is a 
Universal Robots, UR5 capable of handling 5Kg load 
with angular velocity of 180°/ܿ݁ݏ . Real time 
industrial robot joint angles are measured using on-
                                                                                                 
3  https://github.com/UniversalRobots/Universal_Robots_ 

ROS_Driver 

board joint angle encoders. To collect this data, wired 
network connectivity is used to connect the main robot 
controller to a PC. The software used for connectivity 
is ROS Melodic operating under Linux 18.04 
operating system. The ROS driver used for UR5 is the 
one available through a GitHub webpage3. This ROS 
driver publishes some rostopics which contain joint 
angle data including joint angle values, angular 
velocities, and motor currents. The sample time for the 
data transfer from robot to PC slightly varies but its 
mean value is equal to 8݉ܿ݁ݏ. Overall, 38 waypoints 
are programmed for the robot, and it travels them 
linearly in 600 sec. It is required to resample position 
data from the robot to match laser tracker frequency 
(10Hz). 

3.1.3 Data Gathering and Pre-processing 

To gather data points to perform static calibration, as 
it is required for a level II robot calibration, the 
absolute position data are gathered from the robot 
using the laser tracker system. The laser tracker is 
connected to the PC using a Wi-Fi connectivity. The 
software used for data gathering is Spatial Analyzer 
software (see Figure 5), and the sample time for this 
device is set to 100 msec. For measurements in Spatial 
Analyzer software, it is required to assign the three 
axes and the origin. To do so, two linear motions are 
performed using the robot along x-axis and y-axis. 
The zero coordinate for the laser tracker and its three 
axes are assigned within Spatial Analyzer software. 
The total number of points gathered using the laser 
tracker is equal to 6000. Moreover, since robot and 
laser tracker use different timing, it is required to 
synchronise them i.e., to shift them so that they match 
each other timewise. Finally, for performing static and 
near static calibration, the points at which the linear 
speed of the robot are less than 2mm/sec are extracted. 
Total number of these points are 209 points. 

4 EXPERIMENTAL RESULTS 

4.1 Results 

The results of the calibration process proposed in this 
paper are presented in Figures 6- 8. These figures 
show that the positions obtained through the 
calibrated UR5 FK are much closer to its real 3D 
positions measured by laser tracker. The numerical 
values presented in Table 3 demonstrate the  
 

Industrial 
robot 

Calibration 
tool 
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Table 2: Measuring equipment characteristics and specifications. 

Environmental working conditions IP54: The IEC-certified sealed unit guarantees ingress protection 
against dust and other contaminants. 

Operating temperature Wide operating temperature range of -15 to 45 degrees Celsius 

Temperature compensation MeteoStation: Integrated environmental unit monitors conditions 
including temperature, pressure, and humidity to compensate for 
changes 

ISO certification ISO 17025 

Connectivity Wifi and LAN 

Detector features Red ring reflector - 1.5” radius: 19.05 mm ±0.0025 mm, centring of 
optics: < ±0.003 mm, ball roundness: ≤0.003 mm, acceptance angle: 
±30°, weight:170gr 

Data output rate Measurement rate of up to 1000 points per second 

Distance accuracy 40 metres in diameter and a 6DoF measuring volume of up to 20 metres 

Laser safety Laser class 2 
 

Figure 4: Laser tracker system (a) Camera and tracking 
system (b) Controller unit. 

improvement made using the proposed calibration 
method. In all three positional dimensions, the MAE 
associated with the calibrated FK of UR5 is less than 
its uncalibrated value. It is further observed that the 
mean MAE of all three dimensions is reduced 
from71.9݉ߤ for uncalibrated FK to 20.9݉ߤ for the 
calibrated FK using the proposed calibration method, 
which is 71% improvement in the measurement.  

The trend of error associated with original FK of 
industrial robots and its calibrated version are 
presented in Figures 9- 11, respectively. It is observed 
from these figures, that errors corresponding to the 
calibrated FK are much less than the ones associated 
with uncalibrated FK.  

 

Figure 5: Points measured by laser tracker system in Spatial 
Analyzer software. 

 

Figure 6: Robot movements in 3D coordinates, x-axis. 
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Figure 7: Robot movements in 3D coordinates, y-axis. 

Table 3: FK error indexes. 

Performance 
indexes 

Calibrated Uncalibrated

MAE X 24.4݉ߤ94.6 ݉ߤ 

Y 21.7݉ߤ67.9 ݉ߤ 

Z 16.5݉ߤ53.3 ݉ߤ 

Mean 20.9݅ߪ ݉ߤ71.9 ݉ߤ X 32.0݉ߤ124.2 ݉ߤ 
Y 28.6݉ߤ99.1 ݉ߤ 
Z 23.7݉ߤ67.6 ݉ߤ 
Mean 28.3݉ߤ99.8 ݉ߤ 

 

Figure 8: Robot movements in 3D coordinates, z-axis. 

5 CONCLUSIONS AND FUTURE 
RESEARCH 

The uncertainties associated with FK of industrial 
robots are mainly due to manufacturing and assembly 
tolerances, dimension measurement uncertainties, 
and wears and tears of robot. FK uncertainties result 
in positioning error. This paper presents an  
FK calibration method for industrial robot using laser 

 

Figure 9: Position error in x-axis. 

 

Figure 10: Position error in y-axis. 

 

Figure 11: Position error in z-axis. 

tracker measurement system. Robot joint angles are 
measured using on board joint encoders. Robot joint 
angles are collected and transferred to PC using ROS-
Melodic software. Static and near static 
measurements are performed on the robot. The 
industrial robot FK is formulated as a multi-output 
regression problem. The industrial robot coordinates 
measured by a laser tracker system (Leica AT960) is 
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then used in an MLS-SVR algorithm to calibrate FK. 
The industrial robot used in the calibration 
experiment is an UR5, an industrial robot 
manufactured by Universal Robots. It is observed that 
using the proposed calibration approach, it is possible 
to decrease the position errors in terms of mean 
absolute errors from its measured value of 71.9݉ߤ to 20.9݉ߤ which is 71% improvement. 

As a future study, data fusion between data 
gathered from inertia measurement unit and 
gyroscopic measurements will be considered to 
improve the accuracy of positional measurements.  
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