
A Hybrid Architecture for the Incremental Migration of a Web
Front-end

Benoît Verhaeghe1,2 a, Anas Shatnawi1 b, Abderrahmane Seriai1, Anne Etien2,
Nicolas Anquetil2 c, Mustapha Derras1 and Stéphane Ducasse3

1Berger-Levrault, France
2Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France
3Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, France

Keywords: Software Transformation, Incremental Migration, Hybrid Architecture, GWT, Angular.

Abstract: Nowadays, software migration is an effective solution to adopt new technologies while reusing the business
value of existing applications. Among other challenges, the size and complexity of large applications are
obstacles that increase the risks of migration projects. Moreover, the migration can imply a switch of pro-
gramming languages. This is the case when migrating from Java to TypeScript. Thus, it is hard to migrate
large and complex applications in one straightforward step. Incremental approaches have been designed to
counter this problem. These approaches are based on hybrid architecture usages. However, none of the ap-
proaches use a hybrid architecture for GUI defined with different programming languages. In this paper, we
propose a new hybrid architecture that enables the incremental migration of web applications. Our architecture
is based on Web Components that allow legacy technology artifacts to work with modern ones. We imple-
ment the architecture and use it in the case of migrating GWT applications to Angular. Then, we validate its
usability in a real context by migrating an industrial web application.

1 INTRODUCTION

In the context of a collaboration with Berger-Levrault,
a major IT company, we work on the migration of web
applications written in GWT (Google Web Toolkit) to
Angular.

Approaches easing the migration of such a front-
end application have already been proposed (Robil-
lard and Kutschera, 2019, Sánchez Ramón et al.,
2014, Verhaeghe et al., 2021). They propose a partial
GUI migration, manually fixing the remaining code,
and delivering the new system. However, the manual
step can require many man-months of effort for large
applications. Thus, the final user would not receive
any update during this period and developers would
be unable to develop new functionalities in the legacy
technology (planned to be abandoned) or the new one
(not yet up and running). Such an approach is not fea-
sible in an industrial context with a strong pressure to
deliver.

a https://orcid.org/0000-0002-4588-2698
b https://orcid.org/0000-0002-5561-4232
c https://orcid.org/0000-0003-1486-8399

One solution is to migrate the application incre-
mentally. Kontogiannis et al. (2010), and Teppe
(2009) proposed to migrate a part of an application,
integrating it into a hybrid architecture mixing legacy
and migrated parts, and delivering the hybrid applica-
tion to the final user. However, their hybrid archi-
tecture can not be adapted straightforwardly to the
web GUI context. Indeed, communication between
the legacy and migrated parts is based on a foreign
function interface (FFI) (Polito et al., 2020) that en-
ables one programming language to call methods de-
fined in shared libraries. FFI is a common solution for
desktop applications. However, one can not use it for
web applications. Indeed, a website accessing user
personal files would create a security threat. Robil-
lard and Kutschera (2019) used a hybrid architecture
to mix JavaSwing and JavaFX, but their solution is
simplified by the use of the same language (Java) in
both frameworks. In our case, GWT uses Java while
Angular uses Typescript. Moreover, their hybrid ar-
chitecture is based on an already existing JavaFX fea-
ture allowing one to integrate JavaSwing components
inside a JavaFX GUI. Such a feature is not available
for several GUI frameworks.

Verhaeghe, B., Shatnawi, A., Seriai, A., Etien, A., Anquetil, N., Derras, M. and Ducasse, S.
A Hybrid Architecture for the Incremental Migration of a Web Front-end.
DOI: 10.5220/0011338900003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 101-110
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

101



To support the migration of large industrial web
GUI applications, we designed a hybrid architecture
that authorizes one to mix GUI defined with different
GUI frameworks using different programming lan-
guages. It also allows communication between the
different GUIs.

We implemented the hybrid architecture and used
it during an industrial migration project from GWT to
Angular. The results show that our hybrid architecture
enables the migration of the application. It allows one
to mix GWT and Angular without perceivable perfor-
mance issues.

The contributions of this paper are:

1. a hybrid architecture that allows one to integrate
legacy and modern modules in the same web ap-
plication;

2. an implementation of our hybrid architecture for
the case of migrating GWT applications to Angu-
lar ones; and

3. an evaluation of the usability of the hybrid archi-
tecture on an industrial application.

The remaining of the paper is organized as fol-
lows: In Section 2, we review the literature on hy-
brid architectures. In Section 3, we present our hy-
brid architecture. In Section 4, we present the im-
plementation of our architecture in the case of mix-
ing GWT and Angular. In Section 5, we evaluate our
hybrid architecture by migrating part of an industrial
GWT application to Angular pages. In Section 6, we
present threats to validity. In Section 7, we conclude
and present future work.

2 RELATED WORK

To perform an incremental GUI migration, the solu-
tion proposed in the literature is to use a hybrid appli-
cation mixing both the source and target GUI (Kon-
togiannis et al., 2010, Robillard and Kutschera, 2019,
Teppe, 2009). We identified various publications re-
lated to designing or using a hybrid architecture.

First, authors report several issues that must be
considered when designing a hybrid architecture.
Terekhov and Verhoef (2000) and Chisnall (2013) de-
tail the challenges to make two programming lan-
guages interoperable and Robillard and Kutschera
(2019) present the challenge raised when mixing
GUIs:

Communication. In the case of a hybrid applica-
tion, several programming languages might be in-
volved in the implementation. Each language has
to communicate with the other(s) (e.g., invoking

methods from one programming language to an-
other). Chisnall (2013) details the difficulties of
bridging two programming languages, reporting
the need for C interfaces to enable communica-
tion between Java and C++.

Type Matching. Another major challenge is the
matching of data types (Chisnall, 2013, Terekhov
and Verhoef, 2000). The two programming lan-
guages might have different structure represen-
tations for a type. For instance, Java primitive
types are implemented using specific Java wrap-
ping classes, whereas, in JavaScript, primitive
types are classic JavaScript types. Thus, a number
in JavaScript can not be directly translated into a
Java Integer.

GUI Mixing. The need to mix GUI has only been
raised by Robillard and Kutschera (2019). In their
context, widgets defined in different GUI frame-
works are present within the same page. Thus, a
strategy must be developed to enable the integra-
tion of one GUI with the other.

Then, we identify existing research projects using
a hybrid architecture and the issues they deal with.

Robillard and Kutschera (2019) work on the mi-
gration of a Java Swing application to JavaFX. They
migrated the application incrementally by mixing
Java Swing and JavaFX components. Because both
framework uses Java, the communication and type
matching issues do not arise. The GUI mixing issue is
overcome using interoperability features of JavaFX1.

Comella-Dorda et al. (2000) detail different strate-
gies to mix application. To mix user interfaces, they
propose to use a screen scraping technique. It con-
sists of analyzing the source application rendered UI
at runtime, converting it, and wrapping it for the target
platform (web-based or desktop-based). Flores-Ruiz
et al. (2018) and Zhang et al. (2008) use this strat-
egy with different implementations. Although this
approach allows one to present the GUI of an appli-
cation in another context (e.g. desktop-based GUI in-
side a web browser), it does not discuss how enabling
communication between the source GUI and the tar-
get one. Using screen scraping technique, the authors
deal with the GUI mixing constraint but do not con-
sider the communication and the type matching be-
tween the hybridized elements.

Kontogiannis et al. (2010) propose a set of trans-
formation rules to migrate from one programming
language to another. Whereas they do not discuss how
two different languages can communicate, their trans-
formation rules deal with the type matching problem.

1https://docs.oracle.com/javase/8/javafx/
interoperability-tutorial/swing-fx-interoperability.htm

ICSOFT 2022 - 17th International Conference on Software Technologies

102



Table 1: Hybrid architectures fulfilling issues.

Communication Type matching GUI mixing
Robillard and Kutschera (2019) X X
Comella-Dorda et al. (2000) X
Flores-Ruiz et al. (2018) X
Zhang et al. (2008) X
Kontogiannis et al. (2010) X
Teppe (2009) X
Sneed et al. (2006) X X
Technical: iframe X

To do so, they created a type correspondence table
between PL/IX and C. GUI mixing was out of their
scope.

Teppe (2009) uses an iterative approach to migrate
an SPL2 application to C++. When performing the
migration, he had to deal with the type matching prob-
lem. The author uses a type correspondence table and
an intermediate layer that transforms a type defined
in one language to its equivalent type in another lan-
guage. This approach is only detailed for applications
without GUI and running on the desktop (rather than
the browser).

Finally, Sneed et al. (2006) propose to wrap legacy
code to make it available as a web service. This strat-
egy allows one to create communication between dif-
ferent programming languages. Relying on web ser-
vices, they also deal with the type matching problem
by serializing data in XML format.

Additionally, a common way to mix web GUI in
industry is the usage of the iframe tag3. It allows one
to insert inside one web page the content of another
one. This is convenient as it does not require design-
ing a new architecture. However, it comes with sub-
stantial limitations as it is strongly discouraged to en-
able communication with the content of an iframe for
security purposes, and the iframe content should not
access the main page.

Table 1 summarizes the existing migration solu-
tions, none deal with the three problems identified.
Thus, to enable the incremental migration of large ap-
plications, one needs to consider all these issues and
propose solutions.

3 HYBRID ARCHITECTURE

Our hybrid architecture allows one to mix, inside a
web application, two GUIs defined with two different
web frameworks, possibly in different programming

2http://www.clifford.at/spl/
3https://developer.mozilla.org/en-US/docs/Web/

HTML/Element/iframe

languages. In the following, we present the architec-
ture we designed to mix two GUIs and how it is used
to build an application.

Section 3.1 presents the hybrid architecture. Sec-
tion 3.2 details the usage of Web Components to mix
GUIs in our hybrid architecture.

3.1 Hybrid Architecture Description

Our hybrid architecture tackles the three issues de-
picted in the literature (Section 2): communication,
type matching, and GUI mixing.

Figure 1 presents the hybrid architecture in which
the front-end is divided into three parts: controller,
original pages (not migrated), and migrated pages.

The controller is the central part of our hybrid ar-
chitecture. It can be developed in any programming
language, independent of the source or target GUI
frameworks. It is the front-end entry point of the web
application. End-users access web pages through the
controller by requesting URLs. The controller also
manages the context of the application (e.g., the cur-
rently logged user, the page currently displayed, etc.).
Finally, it is in charge of rendering web pages header
and footer.

The pages (original and migrated) contain the ac-
tual application GUI. No direct communication be-
tween pages is allowed, navigation and data trans-
fer must go through the controller. For instance, a
page can not request the value of a text field from
another page. Pages are migrated one at a time, en-
tirely, i.e., one page does not mix two GUI frame-
works. When a page is migrated, we package it so
that a packaged page includes all the code necessary
to represent the page GUI. We detail how we propose
to package pages in Section 3.2. It allows us to inte-
grate the pages inside the architecture independently
of their programming language. This tackles the GUI
mixing challenge.

Yet, some data needs to be transferred between
pages. For example, when navigating from one page
to another, the source page might need to send data
to the target one if a selected item in the source page

A Hybrid Architecture for the Incremental Migration of a Web Front-end

103



Hybrid web application
Web browser

Manage URL Mapping
Inject Session ID
Render header and Footer

Controller

Original 
framework

Original Pages

Migrated 
framework

Migrated Pages

Communications

Figure 1: Hybrid architecture.

is detailed in the target page. Such a data transmis-
sion is done through the controller. The source page
sends the data to the controller; then the other page
pulls the data from the controller. The central position
of the controller is thus used to tackle the commu-
nication challenge. Moreover, the controller checks
whether the two pages use the same programming
language. If not, the controller converts data before
sending it. An implementation example of this pro-
cess is described in Section 4.2. Using the controller
as a mandatory gateway when transmitting data and
enabling data conversion by the controller tackles the
type matching challenge.

3.2 Packaging Pages using Web
Components

Our hybrid architecture allows one to mix pages in-
side one web application. Since we are mixing pages
in a web environment, all pages are rendered using
the HTML, JavaScript, and CSS languages. Thus, to
package pages for the hybrid architecture, we used
Web Components4: reusable JavaScript modules in-
cluding a markup structure (HTML), its associated
script (JavaScript), and style (CSS). Any Web Com-
ponent can be inserted into any web application inde-
pendently of its original programming language and
GUI framework.

In the following, we present how we package
pages as Web Components and deploy them into the
hybrid architecture. It consists of four steps.
1 – Select and Migrate Original Page. This step
aims to select and migrate a page to the new frame-
work. Ideally, the migration is (partly) automated
(Verhaeghe et al., 2021), but this is not required. The

4Web Component: https://developer.mozilla.org/
en-US/docs/Web/Web_Components

output of this step is the migrated page.
2 – Build the Web Component. This step takes as
input a migrated page and builds a Web Component.
Solutions for this already exist for many web GUI
framework5.
3 – Register the Web Component. Every web
browser has a registry that contains all the Web Com-
ponents that can be used at runtime. We register each
Web Component with an associated HTML tag. This
tag will then be used to refer to the newly created Web
Component.
4 – Replace Legacy Code by the Web Component
Tag. The final step consists in modifying the original
source code by replacing all the content of a page with
the newly created Web Component tag. Thus, when
end-users access the page, the browser injects the Web
Component inside this tag in the HTML page.

Web Components allow one to insert pages inside
an application defined with another GUI framework,
answering the GUI mixing challenge.

We presented the main concepts to mix GUI of
applications inside a hybrid architecture. Our hybrid
architecture tackles the three major issues: communi-
cation, type matching, and GUI mixing. In the follow-
ing, we detail an implementation for the migration of
GWT applications to Angular and detail how it deals
with the three issues.

4 IMPLEMENTATION

Our implementation allows one to mix GWT and An-
gular applications. We used it to enable the migration
of GWT web pages to Angular ones. We first present
the operational architecture (Section 4.1) dealing with

5For example: http://www.gwtproject.org/doc/latest/
polymer-tutorial/introduction.html, or https://angular.io/
guide/elements#how-it-works

ICSOFT 2022 - 17th International Conference on Software Technologies

104



Hybrid application source code Compilation Runtime

communication

Front-end

Back-end

Angular
compiler

GWT 
compiler

Back-end 
code

compiler
Back-end Services

Web browser

Angular
JavaScript

Hybrid web application

RPC/Rest

Angular
pages 
source
code

GWT
pages 
source
code

Controller
source code

Controller
code

compiler Controller
JavaScript

GWT 
JavaScript

Back-
end
code

Figure 2: Operational architecture of hybrid application for GWT and Angular.

the GUI mixing challenge. Then we describe how
we enabled communication in the architecture (Sec-
tion 4.2) to deal with the communication and type
matching issues.

4.1 Mixing GWT and Angular GUIs

We now present the operational architecture to mix
GWT and Angular GUIs.

Figure 2 presents the operational architecture for a
GWT and Angular hybrid application. The hybrid ap-
plication source code (left) includes the front-end and
the back-end parts. The front-end contains the source
code of the GWT pages, the source code of the An-
gular migrated pages, and the source code of the con-
troller. Note that the controller can be developed in
any programming language. In our implementation,
we used the existing GWT controller because switch-
ing to an Angular controller would require packaging
every GWT original page as a Web Component and
this is more tedious to do than for Angular. The back-
end can be developed in any other programming lan-
guage.

At compilation time (center), we use one compiler
for each programming language. Thus, GWT pages
are compiled using the GWT compiler, Angular with
the Angular compiler, and the back-end with its own
compiler (i.e., in our case, Java).

At runtime (right), the compilers produce the hy-
brid application using our hybrid architecture pre-
sented Figure 1. Typically, web front-ends are com-
piled to JavaScript to be run in web browsers. This
is the case for GWT and Angular. The hybrid web

application is also linked with the back-end.
When all pages are migrated, only the Angular

pages are used. The back-end does not need to be
migrated. The controller can be migrated in the target
technology (i.e., Angular in our example).

4.2 Enabling Communication between
Angular and GWT Controller

In the hybrid architecture, all communications be-
tween pages go through the controller (see Sec-
tion 3.1). For example, it is the case when one page
displays information selected in another one. To do
so, the pages need to communicate with the controller
in charge of the data transmission. Since we use the
pre-existing GWT controller, we need communica-
tion between the GWT pages and the GWT controller
and between the Angular pages and the GWT con-
troller.

GWT pages to GWT controller communication is
trivially supported.

We faced two challenges to enable communica-
tion between Angular pages and GWT controller:
calling methods, (instanciation of the communication
challenge), and sending/receiving data (instanciation
of the type matching challenge).
Calling Methods. To enable communication, we first
need to allow Angular to call methods of the GWT
controller. For example, Angular calls a method of
the controller to navigate to another page or access
some data. To enable method invocation, we stud-
ied the Angular and GWT compilers. We observed
that they both translate source code (Java for GWT,

A Hybrid Architecture for the Incremental Migration of a Web Front-end

105



Typescript for Angular) into JavaScript code to be ex-
ecuted on the client-side (see Section 4.1). This is
a common choice for web frameworks. Thus, both
end up executed in the same programming language
(i.e., JavaScript), in the same runtime (i.e., the web
browser runtime). So, the Angular/JavaScript code
has direct access to the methods of GWT/JavaScript.
However, when GWT is compiled into JavaScript, the
Java types and methods are normally not exposed ex-
ternally, as names are mangled. Thus, they can not be
used by other programs.

To expose Java methods and Java classes exter-
nally, GWT developers created the JSInterop library6.
It allows developers to add annotations in their Java
code that will tell the GWT compiler to expose the
generated code to other programming languages by
declaring the identifiers to use.

1 public class PhaseManager {
2 @JsMethod(name="displayPhase")
3 public void displayPhase(

PhaseMetadata pm) {
4 // ...
5 }
6

7 public void addData(String data) {
8 // ...
9 }

10 }

Listing 1: Exposed (displayPhase) and not exposed
(addData) methods to hybrid architecture.

Listing 1 exemplifies this with one exposed
method (displayPhase), through the use of the @Js-
Method(<Name>) annotation (line 2), and one not-
exposed (addData). Both methods are exported to
JavaScript, but the not exposed one, addData, will
have a mangled name making it impossible to be
called from any hand-written code. On the contrary,
the exposed method will get the name specified in the
@JsMethod(<Name>) annotation. Using the JSIn-
terop library, we ensure the calling method capability
and tackle the communication challenge.

In the hybrid architecture for the GWT to Angular
migration, we exposed 14 methods of the controller:
nine for page navigation (including several options),
two to check logged user rights, one to retrieve the
currently opened page, and two to send and receive
data during navigation and deal with the type match-
ing challenge.
Sending/Receiving Data. We implemented a spe-
cific process to send and receive data between the

6http://www.gwtproject.org/doc/latest/
DevGuideCodingBasicsJsInterop.html

pages and the controller. There are two cases: clas-
sic communication when data are sent and received
by pages defined with the same GUI framework,
i.e. GWT/GWT and Angular/Angular communica-
tion; and hybrid communication when data are sent
and received by pages defined with different GUI
frameworks, i.e. GWT/Angular and Angular/GWT
communication.

For classic communication, a page (1) calls the
navigation method of the controller with the data.
Then, the controller (2) stores the data and opens the
navigated page. The navigated page (3) asks the data
to the controller, which, (4) returns it as it was stored.

For hybrid communication, the process is more
complex due to the type matching challenge. Type
matching is achieved through serialization and dese-
rialization of the data. Because of its central position,
this step is implemented in the controller.

:Controller

(4) Serialize 
data

:Source page :Target page

(1) Navigate with data
(3) Ask data

(5) Return data

(6) Deserialize 
data

(2) Open page

Figure 3: Data transformation process in hybrid communi-
cation.

To present the data transformation, we detail how
the navigation between two pages is done. The data
is sent by a source GWT page, goes through the
controller, and is retrieved by a target Angular page
(Figure 3). There are two exposed methods in the
controller to retrieve the data: one for Angular, the
other for GWT. Thus, based on the called method, the
controller knows which framework, GWT or Angu-
lar, is retrieving the data. The controller also knows
which framework sent the data by analyzing the data
structure (Java instances coming from GWT, or plain
JavaScript objects coming from Angular). Alterna-
tively, two exposed methods to store the data could
be created. Concretely, the source page (1) calls the
navigation method of the controller with the data as a
parameter. The controller stores the data as-is (i.e.,
does not perform any transformation) and (2) per-
forms the navigation. Then, the navigated page (3)
requests the data from the controller. Recognizing
a hybrid communication, the controller (4) serializes
the data in JSON and (5) returns it to the navigated
page. Then, the navigated page (6) deserializes the
data. Using this serialization/deserialization strategy,
we dealt with the type matching challenge.

ICSOFT 2022 - 17th International Conference on Software Technologies

106



5 EVALUATION

5.1 Case Study: Omaje Application

To evaluate our hybrid architecture in a real industrial
set-up, we used it to migrate a GWT application to
Angular at Berger-Levrault. The application is called
Omaje and was selected by its development team as
representative of other Berger-Levrault GWT appli-
cations.

Omaje is a client subscription management appli-
cation used internally and, therefore, a safe case study
for our experiment. The Omaje application includes
20 main web pages distributed into 9 modules built
using 6,683 GWT graphical elements. In total, in its
original version, Omaje weights 191 KLOC in 2,669
Java classes and 14,882 methods.

5.2 Research Questions and Evaluation
Methods

To evaluate our approach, we defined three research
questions. For these RQs, we used three versions of
the Omaje application: a GWT version, an Angular
version, and a hybrid version with a controller written
in GWT, three pages migrated to Angular and inte-
grated into the application, and the remaining pages
still in GWT.
RQ 1. Does data communication overhead impact
the speed of browsing between pages?

This RQ aims to evaluate the impact of the se-
rialization and deserialization approach we used to
tackle the type matching problem. We expect that
GWT to GWT and Angular to Angular communica-
tions are fast since they do not require additional data
manipulation (i.e., they are handled by the controller
of the hybrid architecture but do not require serial-
ization and deserialization). Hybrid communications
might require additional time but need to be imper-
ceptible to the end-user.

To evaluate this RQ, we execute scenarios requir-
ing communications between GWT and Angular. The
scenarios include the transmission of data of different
sizes. Data includes objects with attributes of differ-
ent types: primitives (i.e., string, int, etc.), collections,
dictionaries, and other objects.

We ran the scenarios in a simulated environment,
i.e., not performed by a real end-user, using Microsoft
Edge version 87.0.664.66 on a laptop with 16 Go
RAM and the Intel Core i7-7500U CPU. No other
application was running on the computer during the
experiment. To measure the communication time, we
used the pre-built JavaScript feature console.time().

To avoid bias in the computed times, each scenario is
run 1,000 times, and we report the average time.
RQ 2. Does the build time of the hybrid and Angular
applications deteriorate compared to the GWT one?

To evaluate this RQ, we measure the required time
to build the GWT, the hybrid, and the Angular appli-
cation. Building an application consists of creating
the .class files and the transpilation of TypeScript (re-
spectively Java) to JavaScript. Build time for large
applications can be significant (hours), and it is im-
portant to ensure that building the hybrid application
is not prohibitively long.
RQ 3. Does the GUI performance of the hybrid
application deteriorate compared to the GWT original
and Angular migrated applications?

This RQ aims to compare the performance when
displaying the GUI of pages between the GWT, the
hybrid, and the Angular applications. We measured
the execution time of 4 execution scenarios for each
application. The execution scenarios are:

1. Accessing the first page of the application where
initial scripts are run;

2. Accessing a middle-sized page including about
100 widgets;

3. Accessing a large page that requests and displays
a lot of data;

4. Modifying data with several requests to the
database and updating the page UI.

When evaluating performance for the hybrid ap-
plication, the accessed pages are in Angular, whereas
the controller is in GWT. Thus, for the hybrid appli-
cation, this research question evaluates if using Web
Components tackles down the GUI mixing problem.

To measure the execution times, we used the built-
in performance tool of Microsoft Edge browser7.
It gives us detailed results on the GUI execution.
We report the performance in scripting (executing
JavaScript file), rendering (computing widgets po-
sition), and painting (displaying the resulting page)
time.

5.3 Results

In the following, we present the result to the research
questions.
RQ 1. Does data communication overhead impact
the speed of browsing between pages?

We compute and report the average time of over
1,000 executions of communications between GWT
and Angular in Table 2. During the communication,

7https://docs.microsoft.com/en-us/microsoft-edge/
devtools-guide-chromium/evaluate-performance/

A Hybrid Architecture for the Incremental Migration of a Web Front-end

107



data of different sizes were exchanged, with several
fields and cyclic references.

Table 2: Communications performance in millisecond (av-
erage on 1,000 executions).

Source
Target GWT Angular

GWT 2 ms 49 ms
Angular 7 ms 2 ms

For the communications between pages defined
with the same GUI framework, both GWT-to-GWT
and Angular-to-Angular communications need 2 ms.
Classic communication through the controller does
not require additional data manipulation.

For the hybrid communications, GWT-to-Angular
communications require 49 ms, and Angular-to-GWT
communications require 7 ms. So there is a cost for
converting data. After investigation, we found that
GWT-to-Angular communications are slower because
the Angular deserialization library we used is less ef-
ficient than the GWT one. The poor performance of
the Angular deserialization library is a known issue8

and might be solved in the future.

Summary: Hybrid communications cost does not
impact the end-user. Although GWT-to-Angular
communication is slower, it remains imperceptible for
the end-user.

RQ 2. Does the build time of the hybrid and Angular
applications deteriorate compared to the GWT one?

Table 3: Building performance in second.

Application Building time
GWT 497 s
Hybrid 526 s
Angular 96 s

We measured the compilation time to build each
application. Table 3 summarizes the time required to
build the GWT, the hybrid, and the Angular applica-
tions. In GWT, there are two compilations: the build
of the Java project and the Java to JavaScript transpi-
lation when first accessing the application. Building
the Java project costs 366 seconds, and the transpila-
tion requires 131 seconds. Thus, the complete GWT
compilation costs 497 seconds.

For the hybrid application, the build time is the
same as for GWT (366 seconds). However, the tran-
spilation time requires 160 seconds. The additional
time for the transpilation comes from the usage of

8https://github.com/pichillilorenzo/jackson-js/issues/18

the JSInterop library that exposes the GWT controller
methods. Thus, the hybrid architecture required 526
seconds.

The Angular application has a single compilation
that requires 96 seconds.

Summary: This analysis shows that building the hy-
brid architecture is 6% slower than building the orig-
inal GWT application. Thus, using a hybrid archi-
tecture has no important impact on building perfor-
mance. Moreover, building the application is only
done by developers, so end-users are not impacted by
the building performance. It can be used to perform
incremental migration.

RQ 3. Does the GUI performance of the hybrid
application deteriorate compared to the GWT original
and Angular migrated applications?

We compare the performance of each application
for the four scenarios: home page first access, middle-
size page first access, database request, and large page
first access. Figure 4 presents the results of the per-
formance evaluation. Each bar presents the time in
milliseconds reported when evaluating the GWT ap-
plication, the hybrid application, and the Angular ap-
plication.

For the first access to the home page, the GWT ap-
plication is the fastest. GWT pre-compiles the home
page during compilation, thus, home page access is
fast. On the other hand, when accessing the home
page of the Angular application, the Angular runtime
is loaded with the application script. This step is time-
consuming for the Angular application. Finally, the
hybrid application is the worst case because it com-
bines the worst of both worlds. We investigated the
reasons that make home page access slow when using
Angular and discovered that our implementation does
not use the lazy loading feature of Angular. Using this
feature is part of our future work. Additionally, us-
ing the ahead-of-time9 compilation option of Angular
could improve further the performances.

For the middle-size web page access, both the hy-
brid and the Angular applications are faster than the
GWT one. The hybrid application benefits from the
Angular speed, and the Web Components usage does
not significantly deteriorate the time required to ren-
der the GUI. This scenario also highlights the low per-
formance of GWT to render the GUI as compared to
Angular.

The third group presents the performance of the
application when users request the database (for in-
stance, to update the data). Making a request implies
a scripting step where the data are serialized, sent to

9https://angular.io/guide/aot-compiler

ICSOFT 2022 - 17th International Conference on Software Technologies

108



Figure 4: Performance evaluation result.

the back-end, new data are received, and the UI is up-
dated. Again, the hybrid and the Angular applications
are the fastest. It is due to a switch of communication
protocol with the back-end and to the time required by
GWT to render the new UI after retrieving the data.

Finally, the last group presents the performance
when accessing a page displaying a lot of data. In
the case of GWT, the Microsoft Edge built-in plugin
crashed during the evaluation. So, we do not have ex-
ecution time data. This is because GWT took several
minutes to process the received data and the plugin
ran out of memory. When performing the migration
from GWT to Angular, the developers improved the
performance of the page. In fact, they were able to
use already optimized existing Angular widgets to fix
this page. With the fix, the hybrid and Angular appli-
cations have better performances than the GWT one.
We also note that thanks to the optimization, the large
page became the fastest one.

Summary: Except for the first page access, the hy-
brid application has better performances than the orig-
inal one. It is also the case of the migrated Angular
application. The hybrid application takes benefits of
the Angular features. RQ3 validates the usage of Web
Components to tackle the GUI mixing problem.

6 THREATS TO VALIDITY

This section discusses the validity of our case study
using the validation scheme defined by Runeson and
Höst (2009). The construct validity, the internal va-
lidity, the external validity, and the reliability are pre-
sented.

6.1 Construct Validity

Construct validity indicates whether the studied mea-
sures really represent what is investigated according
to the research questions. The purpose of this study
is to evaluate the ability to use our hybrid architecture
to migrate applications with GUIs.

For developers, we validated that the build time
of the hybrid architecture is not prohibitively long.
We manually recorded the time needed to compile
and transpile the application, which corresponds to
the time spent by the developer waiting to see the ap-
plication running. The scale of time required to build
the application (more than 8 minutes), ensures that
our conclusion is still valid, even considering some
imprecision in the time manually recorded.

For the end-users, we evaluated the application
usability against four scenarios. We reported the to-
tal time needed to perform the scenarios. To prevent
possible bias, we selected four scenarios with differ-
ent characteristics: size of the page, kind of request
made to the database, and the first page in which ini-
tialization scripts are run. Time performances were
recorded automatically and averaged over 1,000 runs
to ensure the reliability of the results.

6.2 Internal Validity

Internal validity indicates whether no other variables
except the studied one impacted the result.

Our validation is one industrial experiment con-
sisting of the migration of a closed-source applica-
tion. Even if we paid extra care to the tools we used
to report the performance results of our hybrid archi-
tecture, it is rather difficult to isolate variables that
might have impacted our results.

A Hybrid Architecture for the Incremental Migration of a Web Front-end

109



6.3 External Validity

External validity indicates whether it is possible to
generalize the findings of the study.

We are aware that our results can not be easily
generalized. We validated our incremental approach
and its hybrid architecture against a closed-source ap-
plication, and we can not publicly share the hybrid
architecture implementation. Moreover, we describe
a functional implementation to mix GWT and Angu-
lar GUI, but some issues might appear when mixing
GUI defined with other GUI frameworks.

However, our hybrid architecture implementation
is based on Web Components and the JSInterop li-
brary of GWT that are open-source projects. Thus, fu-
ture research can easily reuse these projects for other
hybrid architecture in a web context.

6.4 Reliability

Reliability indicates whether others can replicate our
results.

Since our case study is a closed-source applica-
tion, one can not replicate our result in the exact same
context. Moreover, we do not provide any source
code of the hybrid architecture.

To increase the reliability of our results, we per-
form the validation using standard free-to-use tools
such as Microsoft Edge and pre-built JavaScript fea-
tures. We also detailed our evaluation methods to
ease future researchers reproducing the same evalu-
ation set-up.

7 CONCLUSION AND FUTURE
WORK

In this paper, we proposed a hybrid architecture that
enables the migration of large and complex GUI ap-
plications. In particular, it deals with the communica-
tion, the type matching, and the GUI mixing issues.

The hybrid architecture can be reused for other
web-based GUI migrations. Web Components can
be used for other migration projects since it is nowa-
days a standard feature. However, future research
should pay attention to the communication and the
type matching issues that still might require specific
work depending on the GUI frameworks.

We implemented our hybrid architecture to enable
the integration of Angular pages inside a GWT appli-
cation. It allows us to successfully perform the mi-
gration of an industrial project and gives good perfor-
mance results.

Future work includes the implementation of our
hybrid architecture to perform other GUI migrations.
For example, we plan to migrate a large AngularJS
application to Angular. We also plan to enable An-
gular features such as lazy loading and ahead-of-
time compilation and evaluate their impact on perfor-
mance.

REFERENCES
Chisnall, D. (2013). The challenge of cross-language inter-

operability. Communications of the ACM, 56(12):50–
56.

Comella-Dorda, S., Wallnau, K., Seacord, R. C., and
Robert, J. (2000). A survey of legacy system mod-
ernization approaches. Technical report, Carnegie-
Mellon univ pittsburgh pa Software engineering inst.

Flores-Ruiz, S., Perez-Castillo, R., Domann, C., and Puica,
S. (2018). Mainframe migration based on screen
scraping. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
675–684. IEEE.

Kontogiannis, K., Martin, J., Wong, K., Gregory, R.,
Müller, H., and Mylopoulos, J. (2010). Code migra-
tion through transformations: An experience report.
In CASCON First Decade High Impact Papers, pages
201–213. Unknown.

Polito, G., Ducasse, S., Tesone, P., and Brunzie, T. (2020).
Unified ffi - calling foreign functions from pharo.

Robillard, M. P. and Kutschera, K. (2019). Lessons learned
while migrating from swing to javafx. IEEE Software,
37(3):78–85.

Runeson, P. and Höst, M. (2009). Guidelines for Con-
ducting and Reporting Case Study Research in Soft-
ware Engineering. Empirical software engineering,
14(2):131–164.

Sánchez Ramón, O., Sánchez Cuadrado, J., and Gar-
cía Molina, J. (2014). Model-driven reverse engineer-
ing of legacy graphical user interfaces. Automated
Software Engineering, 21(2):147–186.

Sneed, H. M. et al. (2006). Wrapping legacy software for
reuse in a soa. In Multikonferenz Wirtschaftsinfor-
matik, volume 2, pages 345–360. Citeseer.

Teppe, W. (2009). The arno project: Challenges and expe-
riences in a large-scale industrial software migration
project. In 2009 13th European Conference on Soft-
ware Maintenance and Reengineering, pages 149–
158. IEEE.

Terekhov, A. A. and Verhoef, C. (2000). The realities of lan-
guage conversions. IEEE Software, 17(6):111–124.

Verhaeghe, B., Anquetil, N., Etien, A., Ducasse, S., Seriai,
A., and Derras, M. (2021). GUI visual aspect migra-
tion: a framework agnostic solution. Automated Soft-
ware Engineering, 28(2):6.

Zhang, B., Bao, L., Zhou, R., Hu, S., and Chen, P. (2008).
A black-box strategy to migrate gui-based legacy sys-
tems to web services. In 2008 IEEE International
Symposium on Service-Oriented System Engineering,
pages 25–31. IEEE.

ICSOFT 2022 - 17th International Conference on Software Technologies

110


