
A Process Model for Test Driven Development in the Big Data
Domain

Daniel Staegemann a, Matthias Volk b, Naoum Jamous and Klaus Turowski
Magdeburg Research and Competence Cluster VLBA, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Keywords: Big Data, Test Driven Development, TDD, Process Model, Design Science Research, DSR, Microservice.

Abstract: Big data has emerged to be one of the driving factors of today’s society. However, the quality assurance of
the corresponding applications is still far from being mature. Therefore, further work in this field is needed.
This includes the improvement of existing approaches and strategies as well as the exploration of new ones.
One rather recent proposition was the application of test driven development to the implementation of big
data systems. Since their quality is of critical importance to achieve good results and the application of test
driven development has been found to increase the developed product’s quality, this suggestion appears
promising. However, there is a need for a structured approach to outline how the corresponding endeavors
should be realized. Therefore, the publication at hand applies the design science research methodology to
bridge this gap by proposing a process model for test driven development in the big data domain.

1 INTRODUCTION

Today’s society has developed to be heavily driven by
knowledge, information and technology (Levin and
Mamlok 2021). Consequently, big data (BD),
respectively big data analytics (BDA) have gained
huge popularity among organizations that want to
profit from this rather new resource. Furthermore,
those who do incorporate BDA into their processes
experience (on average) a significant increase in
productivity (Müller et al. 2018), further justifying the
positive sentiment. Yet, this only does apply to proper
use, which is, however, not always a given, since it is
a highly challenging endeavor (Volk et al. 2019). The
arguably most common issues in this regard are a low
input data quality (Abdallah et al. 2022; Staegemann
et al. 2021b), human error or bias in the use of the
applications, and erroneous implementations of the
respective systems (Staegemann et al. 2019).

For the publication at hand, the focus is on the
latter. While there have been numerous works to
facilitate the testing of BD applications, it is still a
rather immature topic (Staegemann et al. 2021c).
Therefore, further work in this field is needed. This
includes the refinement of existing approaches and
strategies as well as the exploration of new ones. One

a https://orcid.org/0000-0001-9957-1003
b https://orcid.org/0000-0002-4835-919X

rather recent proposition was the application of test
driven development (TDD) to the implementation of
BD systems (Staegemann et al. 2020).

When done correctly, this could solve several
issues at once. Not only would the quality and
flexibility of the developed applications be increased,
but possibly also the trust of the users, which is crucial
to assure the frequent and genuine incorporation into
the decision processes (Günther et al. 2017). However,
so far, there has been no structured approach
formulated how the corresponding endeavors should
be realized. To bridge this gap, the following research
question (RQ) shall be answered:

RQ: How can the process of applying test driven
development in the big data domain be structured?

To answer the RQ, the publication at hand is

structured as follows. After the introduction, the
background is briefly delineated. This is followed by
an overview of the applied methodology. Afterwards,
in the main part, a process model for TDD in the BD
domain is developed, which is also this work’s main
contribution. Subsequently, the model is further
discussed and avenues for future research are outlined.
Finally, a conclusion is given.

Staegemann, D., Volk, M., Jamous, N. and Turowski, K.
A Process Model for Test Driven Development in the Big Data Domain.
DOI: 10.5220/0011337200003335
In Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2022) - Volume 3: KMIS, pages 109-118
ISBN: 978-989-758-614-9; ISSN: 2184-3228
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

109

2 BACKGROUND

To establish a solid foundation and a common
understanding for the further explanations, in the
following, the most important terms and concepts are
briefly introduced.

2.1 Big Data

The amount of data that is being produced, captured,
and analyzed as a result of today’s society’s
digitization has been and is still rapidly growing
(Dobre and Xhafa 2014; Statista 2021; Yin and
Kaynak 2015). Concurrently, its complexity and the
demands for its processing also increased.
Consequently, the systems that were previously used
for this purpose are oftentimes no longer sufficient
(Chang and Grady 2019). Therefore, new tools and
techniques are needed to deal with the new
requirements and simultaneously the term big data
emerged to describe this phenomenon. Even though
the origins of a term are not conclusively clarified
(Diebold 2012) and there is also no unified definition
for it (Al-Mekhlal and Khwaja 2019; Volk et al.
2020b), most of the relevant literature follows a
similar understanding. The arguably most influential
description (Chang and Grady 2019) is based on four
characteristics, which are sometimes also termed the
4 Vs of big data. Those are volume (number and/or
size of data entries), velocity (speed of data ingestion
and/or required processing speed), variety (diversity
of data and content), and variability (changes in the
other characteristics over time). Due to the
widespread need for high quality decision making,
BDA is used in numerous domains, such as
manufacturing (Nagorny et al. 2017), management
support (Staegemann et al. 2022a), fashion (Silva et
al. 2019), education (Häusler et al. 2020), sports
(Goes et al. 2020), agriculture (Bronson and Knezevic
2016), or healthcare (Bahri et al. 2019).

2.2 Microservices

The general idea of the microservice concept is to
decompose an envisioned application into several
smaller services that then interact with each other to
accomplish the given task (Nadareishvili et al. 2016).
Usually, the services are based on business
functionality. This, in turn, allows it to benefit from a
high degree of specialization. The microservices all
run in their own processes and for the communication
among each other, only lightweight mechanisms are
utilized. Due to their independent nature, the
particular services implementation can be

heterogeneous (Freymann et al. 2020). This, inter
alia, refers to the utilized programming languages and
technology stacks. Moreover, their properties allow
an independent deployment and usage. For this
purpose, usually continuous deployment tools and
pipelines are used, allowing for the automation of the
procedure.

Even though in software engineering
componentization is generally considered a good
practice, achieving a high degree of modularity is
often seen as challenging task (Faitelson et al. 2018).
However, when using microservices, this is achieved
by design. This also reduces the effort for maintenance
and the implementation of modifications, since it is
often sufficient to only redeploy the affected service
when incorporating changes. As a result, through the
use of microservices, an evolutionary design, which is
driven by frequent and controlled changes, is
promoted (Krylovskiy et al. 2015).

2.3 Test Driven Development

TDD is generally seen as a development approach
that (for the cost of a reduced speed) is feasible to
improve an implementation’s quality (Staegemann et
al. 2021a). The corresponding advantages are
twofold. On the one hand, the test coverage is
increased. This helps to detect errors (early) and
prevents that they affect the productive users. On the
other hand, the system’s design is also influenced,
since a major part of TDD is its decomposition into
the smallest reasonable pieces. This reduced
complexity also helps to avoid errors and increases
maintainability (Crispin 2006; Shull et al. 2010).
Even though the primary application area of TDD,
and also the one that is relevant for the remainder of
this paper, is in software development, it is also used
in other contexts, such as process modelling (Slaats et
al. 2018) or ontology development (Davies et al.
2019; Keet and Ławrynowicz 2016).

In the traditional software development approach,
new features are at first envisioned, then implemented
and finally tested. However, in TDD, this order is
changed. While the first step remains the same, the
identified functionality is broken down into small
parts (Fucci et al. 2017). In the following, tests for
those parts are written. To assure that they indeed test
new aspects, they are run and should, for a lack of the
actual implementation, fail (Beck 2015). If they
don’t, they need to be reworked due to the premise.
After the tests failed, the productive coding takes
place, resulting in the desired functionality. The main
focus here is just to make it work. In turn, other
aspects, like the elegance of the code, are not

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

110

important, as long as the previously written tests are
passed (Crispin 2006). If this is the case, the code is
then refactored to improve the readability, its
adherence to standards, best practices, and
conventions and to improve its overall quality (Beck
2015). While doing so, the previously written tests are
utilized as a safety net to make sure that no errors are
introduced during this procedure. As mentioned
earlier, this focus on incremental modifications and
small tasks (Williams et al. 2003) does not only affect
the coverage, but also the design of the developed
solution. Moreover, developers are provided with
more immediate feedback, due to the shorter test
cycles (Janzen and Saiedian 2005). While unit tests
are usually the backbone of TDD, they can (and
should) also be amended by other types of tests, such
as system, tests, or integration tests (Sangwan and
Laplante 2006). Hereby, especially the latter can be
seen as essential (Kum and Law 2006). Furthermore,
to make sure the necessary test frequency can be
achieved without the developers having to
cumbersomely deal with it manually, TDD is often
combined with a continuous integration (CI) pipeline
to enable test automation (Karlesky et al. 2007;
Shahin et al. 2017). Consequently, whenever a
change is committed, a CI server runs the existing
tests, checking if the last change has introduced any
new errors that need to be fixed.

2.4 Test Driven Development in Big
Data

As it was already described earlier, applying TDD is
a promising new approach for the engineering of
high-quality BD applications. For this purpose, the
use of microservices as a technical foundation has
been proposed (Staegemann et al. 2020). Since a
major component of TDD is to break down the
desired application into small parts and microservices
facilitate exactly this architectural concept, there is a
huge synergy that can be exploited (Shakir et al.
2021). Their use allows to realize each business
functionality as a separate service, which also gives
the option for independent scaling, depending on the
respective workloads. Further, this also impacts the
implementation process, since the development of the
respective services can be distributed across different
teams. Additionally, those don’t have to use a

homogenous toolset, but can instead rely on the
technology set they deem the most suitable for the
given task, due to the independence of the services
from each other. In another context, TDD also
increases the flexibility. The created tests allow for
easier and safer changes to the developed application
because they can be immediately validated through
the existing tests, leading to faster feedback, the
avoidance of newly introduced errors and
consequently more trust by the users. However, even
though the general idea of applying TDD in the BD
domain seems promising and there are already some
works in the domain (Staegemann et al. 2022b), to
facilitate its diffusion and make its application more
accessible, it is still necessary to develop further
corresponding patterns, frameworks, process models,
best practices, and approaches to provide developers
with a solid foundation they can lean on for their
projects, instead of having to determine all steps (and
their order) on their own.

3 METHODOLOGY

In order to assure scientific rigor while answering the
RQ, the design science research (DSR) approach
(Hevner et al. 2004) is applied. This constructive
methodology is geared towards the development and
evaluation of artifacts in the information systems
research domain. The purpose of those is to solve
organizational problems. They can be “constructs
(vocabulary and symbols), models (abstractions and
representations), methods (algorithms and practices),
and instantiations (implemented and prototype
systems)” (Hevner et al. 2004). To further enhance
the comprehensibility, the workflow of the design
science research methodology (DSRM) presented in
(Peffers et al. 2007) is followed. The DSRM
decomposes the DSR into a sequence of six steps,
which are depicted in Figure 1.

The DSRM begins with the problem
identification and motivation, which are outlined in
the beginning of the next section. In the second
activity, the researcher shall define the objectives for
a solution. This will also be part of the same
subsection. The third step, design and development,
will be discussed in the succeeding subsection,
resulting in the construction of the DSR artifact as the

Figure 1: Process Sequence of the DSRM According to (Peffers et al. 2007).

A Process Model for Test Driven Development in the Big Data Domain

111

main contribution of the publication at hand.
Furthermore, the underlying explanations will serve
as an implicit, preliminary evaluation, which
corresponds to activity five. The final activity,
communication, is performed through the publication
at hand. However, due to the artifact being a process
model, whose phases need to be filled with concrete
activities (which is out of this work’s scope) for its
actual implementation, the demonstration will be
deferred to the future.

4 THE PROCESS MODEL

In the following, using the DSRM by Peffers et al.
(2007), a process model is proposed, facilitating the
application of TDD in the BD domain through the
provisioning of a structured approach that supports
developers in implementing their respective BD
endeavors in a test driven manner.

4.1 Motivation

When applying the DSRM, the first activity is to
identify the problem that shall be solved, and to
motivate, why this should be done. In the case at hand,
it was already outlined why big data is of great
significance for today’s society. Further, the
importance of proper quality assurance was outlined,
and it was discussed how the application of TDD
might help in the implementation of the corresponding
systems. However, to our knowledge, an actual
procedure for this has not yet been formalized. While
it is necessary to maintain a certain degree of freedom
to reflect the individual nature of such projects, this
also constitutes both, a barrier for entry, as well as a
potential source for errors and inefficiencies. Since the
proposed concept for the application of microservice-
based TDD in the big data domain (MBTDD-BD)
contains several levels and types of tests, there is a big
number of activities required for its implementation.
Developers that don’t have extensive experience with
TDD in the BD domain might be deterred by the huge
number of different possible orders of those (with
wrong decisions leading to extra work or worse
results), as well as the threat of overlooking important
activities, which would reduce the effectiveness of the
approach. Since TDD is usually more time consuming
than the traditional approach (Staegemann et al.
2021a), this additional effort can only be justified if
the corresponding benefits can actually be reaped.
Therefore, it is necessary to provide developers with a
structured procedure to reduce this uncertainty,
eliminate potential sources of error and, hereby,

facilitate the use of TDD in the BD domain to increase
the overall quality of the developed solutions.
Furthermore, this process should be easy and
unambiguous to follow, which on the one hand refers
to the outlined sequence of steps, but on the other hand
also on the utilized notation.

4.2 Development of the Artifact

Since this work builds upon the MBTDD-BD
proposition (Staegemann et al. 2020), it will also
follow the general structure, which results in the
existence of several levels (system, component,
subcomponent/ microservice, method). Furthermore,
the wording is adopted, increasing the
comprehensibility. Moreover, even though in the
following only tests are explicitly mentioned, as
suggested in the MBTDD-BD, benchmarks can also
be added alongside them to introduce another
dimension of quality assurance. However, the main
focus is on the functional testing.

To start the process, it is at first necessary to know
the requirements for the system that shall be
developed (ISO 2018; Sommerville 2007). However,
in the context of this work, outlining their gathering
would be out of scope. Therefore, the list of
requirements is considered as an available input.
Based on those, concrete features of the system can be
derived. While it is not yet determined how they will
be implemented, this step turns the identified needs
into high level tasks and is therefore a prerequisite for
the actual realization. In the TDD methodology, after
determining what is to be implemented, the
corresponding tests shall be written. Accordingly, the
next step is to define the tests for the system as a
whole. Those might be automated, manual, or a hybrid
approach and are supposed to show if it provides the
desired functionality. Implementing the system tests at
such an early stage on the one hand corresponds with
the TDD philosophy, and on the other hand potentially
also brings practical advantages. This step, as the
previous one, immensely benefits from having domain
knowledge and a comprehensive overview of the
product’s business side, respectively the purpose it is
developed for. Therefore, the process should heavily
involve experts or potential users from that domain.
Meanwhile the further steps are of rather technical
nature and do not need that much comprehensive
knowledge of all usage related aspects of the product.
By creating the system tests early, it is possible to
focus the involvement of the needed knowledge
carriers on the starting phase, which allows them to
focus on their day to day tasks afterwards, while the
technical experts take over from then. (Even though

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

112

some involvement of distinct business experts/users
might still be needed for some decisions that might
arise later.) Once the system tests have been created,
the implementation can be progressed. For this
purpose, the previously identified features are
translated into distinct microservices, which
inherently also determines the system’s architecture.
Further, not only the services and their functionality
are defined, but also their interfaces. The result of this
step is an overview of the required microservices as
well as their interconnections. However, the concrete
implementation of the services is not yet designed. In
the following, those microservices, which are also
called subcomponents in the MBTDD-BD, are
grouped to components. A component constitutes a
contentual unit that is deemed belonging together by
the developers, respectively architect. Those could for
example be the loading of data that consists of several
services that are each specialized to provide data from
one specific (type of) source or the preprocessing that
comprises multiple steps that are each realized as a
separate microservice. However, there are no fixed
rules, instead the definition of components is subject
to the individual assessment of the decision makers.
Moreover, depending on the context, components can
also overlap (e.g. a microservice can belong to several
components), or just comprise a single subcomponent,
in case it is rather standalone. Yet, for the sake of
coherence, each microservice has to belong to at least
one component.

Subsequently, to later on assure that not only the
components itself but also the communication
between them works as intended, corresponding tests
have to be created. While all those steps, that happen
on the system level, are only conducted once, the
succeeding activities are performed repeatedly until
the implementation of all components is finished. At
first, is has to be chosen, which component shall be
worked on next. The criteria for this decision can be
individually determined. Possible reasoning could, for
example, be based on factors such as the availability
of certain experts, the perceived importance or
complexity, or contentual relations and
interdependencies. It is also possible that a specific
microservice shall be implemented at this stage (for
example based on above mentioned criteria) and
therefore the corresponding component is chosen at
this stage. After the decision is made, the system level
is left and the work on the component level begins.

If the component has not yet been worked on
before, the next step is to create the tests for the
component, otherwise this can be skipped, since it has
already been done in the past. Then it has to be
determined which microservice will be implemented

next. Further, in succession, there is also a change
from the component level to the subcomponent level.
There, analogous to the previous levels, at first, tests
for the unit (in this case the microservice) as a whole
are written, allowing to later on confirm that the
envisioned capabilities have actually been
successfully realized. When the creation of those tests
is assigned to a team that is different from the one that
is responsible for the implementation, this can also act
as an additional safety net by adding another
perspective on potential issues and edge cases. This
also constitutes a deviation from the proposition
expressed in the original MBTDD-BD paper
(Staegemann et al. 2020), since there, the assurance of
the functionality of the microservice as a whole was
described as only being implemented indirectly,
through the tests within the developed service.
Explicit tests were not intended. However, since the
inclusion of such tests for the entire service allows to
incorporate a view on the slightly bigger picture,
which is not necessarily given on the method level,
their integration reduces the risk of overlooking issues
that are not as apparent when only operating on the
method level.

The creation of the tests for the microservice as a
whole is followed by the test driven implementation
of that service, as it is described in the related
background section. Therefore, at first, the tests for a
function are written, then the functionality is
implemented and finally the code is refactored to
increase its quality and readability. This procedure is
repeated until the entire service is completed. While
the described process as a whole takes place on the
subcomponent level, the implementation of the
particular functions corresponds to the method level.
Once the implementation is finished, the
aforementioned tests for the entirety of the
subcomponent are run. In case that they do not pass
completely, the service goes back to the previous
implementation stage, where it is worked on until the
issue is deemed resolved. Once the subcomponent
tests pass, the subcomponent level is left, the process
again enters the component level and the microservice
can be integrated into the current iteration of the
component.

However, this is not the final step concerning the
regarded service. It is possible that a microservice in
itself is not erroneous and, therefore, the testing is
positive, but there are issues with the interplay with
other services. An example (even though it is not big
data related) that made the news was the NASA
climate orbiter crash from 1999, where one involved
partner used English units and the other metric ones,
leading to a failed mission, despite both parts in itself

A Process Model for Test Driven Development in the Big Data Domain

113

being functional (NASA 2019). To avoid a similar
situation, the integration of the subcomponent needs
to be followed by a run of the component tests as well
as the relevant tests for the communication. Only if
those also pass, the microservice can be deemed
finished. Otherwise, the developers have to go back to
the development stage. However, in case of success,
the component level is left and the system level is
entered again. Now, the further procedure depends on
the current status of the system’s implementation. If
there are still components that are not entirely
finished, it has to again be decided, which component
should be worked on next. From there, the process
continues as already outlined above.

In case every component, and therefore every part
of the envisioned system, has been implemented and
individually tested with success, a final test run that

comprises all tests (including those for the system as a
whole) allows to check for a last time, if everything is
working as intended. Should there be any problems,
those have to be thoroughly analyzed. Once the source
of error is identified, the developers shall fix the
underlying issues, using the comprehensive test
collection to assure that no new errors are introduced.
However, if this last instance of quality assurance is
also passed without the occurrence of any problems,
the development process is finished and the system
can be used productively.

The complete process model is displayed in
Figure 2. To give an easy to follow overview of the
proposed process model, its graphical depiction is
heavily leaning onto the BPMN notation. However,
this also introduces some constraints. The levels of
the process are depicted as separate BPMN pools.

Figure 2: Process Model for Test Driven Development in the Big Data Domain.

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

114

While this slightly deviates from the idea behind the
concept of pools in BPMN, it increases visual clarity
and was therefore implemented. Since the test driven
implementation of the microservice is depicted as one
step and not further broken down, there are only three
levels shown, with the method level being omitted.

Furthermore, especially in larger projects, it is
likely that several teams work in parallel, whereas the
depicted process presents a linear sequence. This is
also for the sake of visual clarity. However, in reality,
there might be several microservices (also from
different components) be worked on at the same time.
Yet, this does not crucially affect the actual flow,
wherefore it is only mentioned but not graphically
represented. Additionally, the outlined process refers
to projects that are created from scratch. If an
application that was built according to the proposed
procedure shall be modified, the already existing tests
can be utilized. Changes on any other pre-existing
systems are out of scope of the proposed process
model and individual approaches have to be found.

5 DISCUSSION AND FUTURE
WORK

With the steady increase of the number of BD
applications that are being used and their quality
assurance being one of the major challenges
(Staegemann et al. 2019), finding ways to tackle that
issue is highly important. While the MBTDD-BD
approach seems generally promising to increase the
quality as well as the modifiability of the developed
systems, up to now, there was no structured procedure
for its application. The proposed process model is
directed towards bridging this gap. By following the
comprehensive sequence of steps, the necessary
activities can be covered, while also assuring that the
order is actually sensible and corresponds to the spirit
of the TDD methodology.

However, several factors have to be taken into
account. The first aspect is that the requirements for
the system are taken for granted. While this makes
sense for the aspired scope, they are extremely
important for the success of an implementation
project. Therefore, it is mandatory to find a suitable
approach for their collection. This also means that the
proposed process model cannot be seen as a panacea
but has to be used in conjunction with other suitable
methods. To a lesser degree this also applies to the
test driven implementation of the distinct
microservices not being described in detail. However,
on this level, the development does not crucially

differ from other development contexts, so that a
specific description is not necessary.

Another aspect that is highly important but not
directly covered by the process model is the selection
of tools and technologies. While the modular nature
of the MBTDD-BD allows for a high degree of
flexibility and gives the developers the choice, which
programming languages, frameworks or existing
solutions they want to use, respectively incorporate,
there is no support provided for those decisions. Since
there is a plethora of available options, this task can,
however, also be highly challenging. While there are
already existing works that focus on a general
decision support for the technology selection in BD
projects (Volk et al. 2020a), additional material that
is geared towards this specific situation might be
helpful for prospective developers and, hence, also
help to facilitate the dissemination of TDD in the BD
domain in general.

Additionally, as previously mentioned, the
proposed model slightly simplifies the development
process by presenting it as a sequential flow. While is
reality, several teams might work in parallel on
several services, the increased comprehensibility was
deemed worth it to accept that slight simplification as
a trade-off. When applying the model in a parallel
scenario, it is therefore necessary to account for this
decision and adjust the actual workflow accordingly.

Further, the model only outlines which actions
should be taken in which order, but not by whom.
Even though the specifics of this decision obviously
heavily depend on the structures of the organizations
and teams that are involved, the identification of best
practices and recommendations could still prove to be
valuable support. Therefore, this might be a
worthwhile task for future researchers that has strong
practical implications.

Since the quality of big data applications heavily
depends on the correct architectural choices (Ataei
and Litchfield 2020) and there are numerous patterns
proposed for the implementation of microservices, it
also appears reasonable to regard those two aspects in
context of each other to determine, which
microservice patterns are best suited to deal with
certain challenges of big data development and the
underlying big data characteristics.

6 CONCLUSION

Big data and the corresponding tools, technologies,
and applications have emerged to be one of the
driving factors of today’s society. Countless

A Process Model for Test Driven Development in the Big Data Domain

115

organizations from numerous domains rely on the
ability to utilize information to an unprecedented
extent to improve their inherent processes and
decision making, and, thereby, inter alia, reduce their
costs, increase their productivity, strengthen their
marketing, support their maintenance, improve their
logistics, or identify new opportunities. However, the
implementation of those systems is a highly
challenging and error-prone task, while at the same
time their quality is crucial for the successful use.
Therefore, their quality assurance is very important.
Yet, this domain is still far from being mature.
Therefore, further work in this field is needed. This
includes the improvement of existing approaches and
strategies as well as the exploration of new ones. One
rather recent proposition was the application of test
driven development to the implementation of big data
systems. However, it was not outlined how the
corresponding process should be designed.

The publication at hand bridges this gap and
provides developers that are interested in the
application of TDD in the BD domain with a process
model that outlines, which activities should be
performed in which order and, therefore, helps in
structuring the implementation process. Thereby, it
helps in disseminating the general approach,
facilitates its effective utilization, promotes a stronger
focus on the topic of quality assurance, and can be
used as a foundation to advance the scientific
discourse in the domain. An overview of the research

endeavor in its entirety is given in Figure 3, in the form
of the DSR Grid (Vom Brocke and Maedche 2019).

REFERENCES

Abdallah, M., Hammad, A., and Al-Zyadat, W. (2022).
“Towards a Data Collection Quality Model for Big Data
Applications,” in Business Information Systems
Workshops, W. Abramowicz, S. Auer and M. Stróżyna
(eds.), Cham: Springer International Publishing, pp.
103-108 (doi: 10.1007/978-3-031-04216-4_11).

Al-Mekhlal, M., and Khwaja, A. A. (2019). “A Synthesis
of Big Data Definition and Characteristics,” in
Proceedings of the 2019 IEEE International
Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on
Embedded and Ubiquitous Computing (EUC), New
York, NY, USA. 01.08.2019 - 03.08.2019, IEEE, pp.
314-322 (doi: 10.1109/CSE/EUC.2019.00067).

Ataei, P., and Litchfield, A. (2020). “Big Data Reference
Architectures, a systematic literature review,” in
Australasian Conference on Information Systems
(ACIS) 2020, Wellington, New Zealand, AIS.

Bahri, S., Zoghlami, N., Abed, M., and Tavares, J. M. R. S.
(2019). “BIG DATA for Healthcare: A Survey,” IEEE
Access (7), pp. 7397-7408 (doi:
10.1109/ACCESS.2018.2889180).

Beck, K. (2015). Test-Driven Development: By Example,
Boston: Addison-Wesley.

Bronson, K., and Knezevic, I. (2016). “Big Data in food and
agriculture,” Big Data & Society (3:1) (doi:
10.1177/2053951716648174).

Figure 3: The DSR Grid for the Presented Work.

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

116

Chang, W. L., and Grady, N. (2019). “NIST Big Data
Interoperability Framework: Volume 1, Definitions,”
Special Publication (NIST SP), Gaithersburg, MD:
National Institute of Standards and Technology.

Crispin, L. (2006). “Driving Software Quality: How Test-
Driven Development Impacts Software Quality,” IEEE
Software (23:6), pp. 70-71 (doi: 10.1109/MS.2006.157).

Davies, K., Keet, C. M., and Lawrynowicz, A. (2019).
“More Effective Ontology Authoring with Test-Driven
Development and the TDDonto2 Tool,” International
Journal on Artificial Intelligence Tools (28:7) (doi:
10.1142/S0218213019500234).

Diebold, F. X. (2012). “On the Origin(s) and Development
of the Term 'Big Data',” SSRN Electronic Journal (doi:
10.2139/ssrn.2152421).

Dobre, C., and Xhafa, F. (2014). “Intelligent services for
Big Data science,” Future Generation Computer
Systems (37), pp. 267-281 (doi:
10.1016/j.future.2013.07.014).

Faitelson, D., Heinrich, R., and Tyszberowicz, S. (2018).
“Functional Decomposition for Software Architecture
Evolution,” in Model-Driven Engineering and Software
Development, L. F. Pires, S. Hammoudi and B. Selic
(eds.), Cham: Springer International Publishing, pp.
377-400 (doi: 10.1007/978-3-319-94764-8_16).

Freymann, A., Maier, F., Schaefer, K., and Böhnel, T.
(2020). “Tackling the Six Fundamental Challenges of
Big Data in Research Projects by Utilizing a Scalable
and Modular Architecture,” in Proceedings of the 5th
International Conference on Internet of Things, Big
Data and Security, Prague, Czech Republic. 07.05.2020
- 09.05.2020, SCITEPRESS - Science and Technology
Publications, pp. 249-256 (doi:
10.5220/0009388602490256).

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juristo,
N. (2017). “A Dissection of the Test-Driven
Development Process: Does It Really Matter to Test-
First or to Test-Last?” IEEE Transactions on Software
Engineering (43:7), pp. 597-614 (doi:
10.1109/tse.2016.2616877).

Goes, F. R., Meerhoff, L. A., Bueno, M. J. O., Rodrigues,
D. M., Moura, F. A., Brink, M. S., Elferink-Gemser, M.
T., Knobbe, A. J., Cunha, S. A., Torres, R. S., and
Lemmink, K. A. P. M. (2020). “Unlocking the potential
of big data to support tactical performance analysis in
professional soccer: A systematic review,” European
journal of sport science, pp. 1-16 (doi:
10.1080/17461391.2020.1747552).

Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M.,
and Feldberg, F. (2017). “Debating big data: A
literature review on realizing value from big data,” The
Journal of Strategic Information Systems (26:3), pp.
191-209 (doi: 10.1016/j.jsis.2017.07.003).

Häusler, R., Staegemann, D., Volk, M., Bosse, S., Bekel, C.,
and Turowski, K. (2020). “Generating Content-
Compliant Training Data in Big Data Education,” in
Proceedings of the 12th CSEdu, Prague, Czech
Republic. 02.05.2020 - 04.05.2020, SCITEPRESS -
Science and Technology Publications, pp. 104-110
(doi: 10.5220/0009513801040110).

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
“Design science in information systems research,” MIS
quarterly, pp. 75-105.

ISO. (2018). “International Standard ISO / IEC / IEEE
29148 Systems and Software Engineering — Life
Cycle process - Requirements Engineering,”
ISO/IEC/IEEE 29148:2018.

Janzen, D., and Saiedian, H. (2005). “Test-driven
development concepts, taxonomy, and future direction,”
Computer (38:9), pp. 43-50 (doi:
10.1109/MC.2005.314).

Karlesky, M., Williams, G., Bereza, W., and Fletcher, M.
(2007). “Mocking the Embedded World: Test-Driven
Development, Continuous Integration, and Design
Patterns,” in Embedded Systems Conference, San Jose,
California, USA. 01.04.2007 - 05.04.2007, UBM
Electronics.

Keet, C. M., and Ławrynowicz, A. (2016). “Test-Driven
Development of Ontologies,” in The Semantic Web.
Latest Advances and New Domains, H. Sack, E.
Blomqvist, M. d'Aquin, C. Ghidini, S. P. Ponzetto and
C. Lange (eds.), Cham: Springer International
Publishing, pp. 642-657 (doi: 10.1007/978-3-319-
34129-3_39).

Krylovskiy, A., Jahn, M., and Patti, E. (2015). “Designing
a Smart City Internet of Things Platform with
Microservice Architecture,” in Proceedings of the 2015
3rd International Conference on Future Internet of
Things and Cloud (FiCloud 2015), I. Awan (ed.), Rome,
Italy. 24.08.2015 - 26.08.2015, Piscataway, NJ: IEEE,
pp. 25-30 (doi: 10.1109/FiCloud.2015.55).

Kum, W., and Law, A. (2006). “Learning Effective Test
Driven Development - Software Development Projects
in an Energy Company,” in Proceedings of the First
International Conference on Software and Data
Technologies, Setúbal, Portugal. 11.09.2006 -
14.09.2006, SciTePress - Science and and Technology
Publications, pp. 159-164 (doi:
10.5220/0001316101590164).

Levin, I., and Mamlok, D. (2021). “Culture and Society in
the Digital Age,” Information (12:2), p. 68 (doi:
10.3390/info12020068).

Müller, O., Fay, M., and Vom Brocke, J. (2018). “The
Effect of Big Data and Analytics on Firm Performance:
An Econometric Analysis Considering Industry
Characteristics,” Journal of Management Information
Systems (35:2), pp. 488-509 (doi:
10.1080/07421222.2018.1451955).

Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen,
M. (2016). Microservice architecture: Aligning
principles, practices, and culture, Beijing, Boston,
Farnham, Sebastopol, Tokyo: O´Reilly.

Nagorny, K., Lima-Monteiro, P., Barata, J., and Colombo,
A. W. (2017). “Big Data Analysis in Smart
Manufacturing: A Review,” International Journal of
Communications, Network and System Sciences (10:03),
pp. 31-58 (doi: 10.4236/ijcns.2017.103003).

NASA. (2019). “Mars Climate Orbiter,” available at
https://solarsystem.nasa.gov/missions/mars-climate-
orbiter/in-depth/, accessed on Feb 27 2022.

A Process Model for Test Driven Development in the Big Data Domain

117

Peffers, K., Tuunanen, T., Rothenberger, M. A., and
Chatterjee, S. (2007). “A Design Science Research
Methodology for Information Systems Research,”
Journal of Management Information Systems (24:3), pp.
45-77 (doi: 10.2753/MIS0742-1222240302).

Sangwan, R. S., and Laplante, P. A. (2006). “Test-Driven
Development in Large Projects,” IT Professional (8:5),
pp. 25-29 (doi: 10.1109/MITP.2006.122).

Shahin, M., Ali Babar, M., and Zhu, L. (2017). “Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices,” IEEE Access (5), pp. 3909-3943 (doi:
10.1109/ACCESS.2017.2685629).

Shakir, A., Staegemann, D., Volk, M., Jamous, N., and
Turowski, K. (2021). “Towards a Concept for Building
a Big Data Architecture with Microservices,” in
Proceedings of the 24th International Conference on
Business Information Systems, Hannover,
Germany/virtual. 14.06.2021 - 17.06.2021, pp. 83-94
(doi: 10.52825/bis.v1i.67).

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M.,
and Erdogmus, H. (2010). “What Do We Know about
Test-Driven Development?” IEEE Software (27:6), pp.
16-19 (doi: 10.1109/MS.2010.152).

Silva, E. S., Hassani, H., and Madsen, D. Ø. (2019). “Big
Data in fashion: transforming the retail sector,” Journal
of Business Strategy (41:4), pp. 21-27 (doi:
10.1108/JBS-04-2019-0062).

Slaats, T., Debois, S., and Hildebrandt, T. (2018). “Open to
Change: A Theory for Iterative Test-Driven Modelling,”
in Business Process Management, M. Weske, M.
Montali, I. Weber and J. Vom Brocke (eds.), Cham:
Springer International Publishing, pp. 31-47 (doi:
10.1007/978-3-319-98648-7_3).

Sommerville, I. (2007). Software Engineering, eighth
edition, Addison-Wesley.

Staegemann, D., Feuersenger, H., Volk, M., Liedtke, P.,
Arndt, H.-K., and Turowski, K. (2022a). “Investigating
the Incorporation of Big Data in Management
Information Systems,” in Business Information Systems
Workshops, W. Abramowicz, S. Auer and M. Stróżyna
(eds.), Cham: Springer International Publishing, pp.
109-120 (doi: 10.1007/978-3-031-04216-4_12).

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2019). “Understanding Issues in Big Data Applications
- A Multidimensional Endeavor,” in Proceedings of the
Twenty-fifth Americas Conference on Information
Systems, Cancun, Mexico. 15.08.2019 - 17.08.2019.

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2020). “Exploring the Applicability of Test Driven
Development in the Big Data Domain,” in Proceedings
of the ACIS 2020, Wellington, New Zealand.
01.12.2020 - 04.12.2020.

Staegemann, D., Volk, M., Lautenschlager, E., Pohl, M.,
Abdallah, M., and Turowski, K. (2021a). “Applying
Test Driven Development in the Big Data Domain –
Lessons From the Literature,” in 2021 International
Conference on Information Technology (ICIT), Amman,
Jordan. 14.07.2021 - 15.07.2021, IEEE, pp. 511-516
(doi: 10.1109/ICIT52682.2021.9491728).

Staegemann, D., Volk, M., Saxena, A., Pohl, M., Nahhas,
A., Häusler, R., Abdallah, M., Bosse, S., Jamous, N.,
and Turowski, K. (2021b). “Challenges in Data
Acquisition and Management in Big Data
Environments,” in Proceedings of the 6th International
Conference on Internet of Things, Big Data and
Security, Prague,Czech/Online Streaming. 23.04.2021 -
25.04.2021, SCITEPRESS - Science and Technology
Publications, pp. 193-204 (doi:
10.5220/0010429001930204).

Staegemann, D., Volk, M., and Turowski, K. (2021c).
“Quality Assurance in Big Data Engineering - A
Metareview,” Complex Systems Informatics and
Modeling Quarterly (28), pp. 1-14 (doi:
10.7250/csimq.2021-28.01).

Staegemann, D., Volk, M., and Turowski, K. (2022b).
“Adapting the (Big) Data Science Engineering Process
to the Application of Test Driven Development,” in
Proceedings of the 19th International Conference on
Smart Business Technologies, Lisbon, Portugal.
14.07.2022 - 16.07.2022, SCITEPRESS - Science and
Technology Publications, pp. 120-129 (doi:
10.5220/0011289200003280).

Statista. (2021). “Volume of data/information created,
captured, copied, and consumed worldwide from 2010
to 2025,” available at
https://www.statista.com/statistics/ 871513/worldwide-
data-created/, accessed on Feb 13 2022.

Volk, M., Staegemann, D., Bosse, S., Nahhas, A., and
Turowski, K. (2020a). “Towards a Decision Support
System for Big Data Projects,” in WI2020 Zentrale
Tracks, N. Gronau, M. Heine, K. Poustcchi and H.
Krasnova (eds.), GITO Verlag, pp. 357-368 (doi:
10.30844/wi_2020_c11-volk).

Volk, M., Staegemann, D., Pohl, M., and Turowski, K.
(2019). “Challenging Big Data Engineering:
Positioning of Current and Future Development,” in
Proceedings of the 4th International Conference on
Internet of Things, Big Data and Security, Heraklion,
Crete, Greece. 02.05.2019 - 04.05.2019, SCITEPRESS
- Science and Technology Publications, pp. 351-358
(doi: 10.5220/0007748803510358).

Volk, M., Staegemann, D., and Turowski, K. (2020b). “Big
Data,” in Handbuch Digitale Wirtschaft, T. Kollmann
(ed.), Wiesbaden: Springer Fachmedien Wiesbaden, pp.
1-18 (doi: 10.1007/978-3-658-17345-6_71-1).

Vom Brocke, J., and Maedche, A. (2019). “The DSR Grid:
Six Core Dimensions for Effective Capturing of DSR
Projects,” Electronic Markets (July), pp. 1-17.

Williams, L., Maximilien, E. M., and Vouk, M. (2003).
“Test-driven development as a defect-reduction
practice,” in Proceedings of the 14th ISSRE, Denver,
Colorado, USA. 17.11.2003 - 20.11.2003, IEEE, pp.
34-45 (doi: 10.1109/ISSRE.2003.1251029).

Yin, S., and Kaynak, O. (2015). “Big Data for Modern
Industry: Challenges and Trends [Point of View],”
Proceedings of the IEEE (103:2), pp. 143-146 (doi:
10.1109/JPROC.2015.2388958).

KMIS 2022 - 14th International Conference on Knowledge Management and Information Systems

118

