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Abstract: Negative Road Anomalies (Potholes, cracks, and other road anomalies) have long posed a risk for drivers 
driving on the road. In this paper, we apply deep learning techniques to implement a YOLO-based (You Only 
Look Once) network in order to detect and identify potholes in real-time providing a fast and accurate 
detection and sufficient time for proper safe navigation and avoidance of potholes. This system can be used 
in conjunction with any existing system and can be mounted to moving platforms such as autonomous vehicles.  
Our results show that the system is able to reach real-time processing (29.34 frames per second) with a high 
level of accuracy (mAP of 82.05%) and detection accuracy of 89.75% when mounted onto an Electric-
Powered Wheelchair (EPW). 

1 INTRODUCTION 

Negative Road Anomalies is the term we have chosen 
to describe potholes, cracks, and any anomaly located 
at a negative position of the road surface.  

Potholes pose the highest risk in all negative road 
anomalies as they are a danger to drivers when 
driving on roads, and im some cases motorways. 
They could cause severe injury to the driver in form 
of neck pain, back pain, whiplash and more severe 
health risks. Not to mention, the damage which could 
be caused to the car’s mechanical system and tires 
putting the driver under numerous risks of accidents 
and even threatening their life as a result of a torn tire 
or other mechanical damage which could be caused 
to the vehicle driven when passing over a pothole at 
high speed. Potholes were also a significant limitation 
to the driverless car advancement projects due to the 
stochasticity of their nature and the difference in their 
depth and severity making them hard to identify and 
detect, and rendering many detection techniques 
futile as they sometimes contain some characteristics 
which could fall within the limitations of the 
detection techniques (for example, water-filled 
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potholes cannot be detected via ultrasonic sensing 
techniques). 

In our ongoing project, we apply deep learning 
techniques in order to detect and identify potholes. 
Our project is mainly focused on object detection 
neural networks which can be used in real-time in 
order to detect and classify potholes from the video 
stream obtained through the use of an RGB Camera, 
and to provide a fast and reliable detection method 
which allows sufficient time and distance for a safe 
avoidance and navigation of manual and autonomous 
vehicles and moving platforms. 

YOLO (Redmon et al.,2015) (You Only Look 
Once) is the candidate network which is used in this 
project due to its high accuracy and fast performance, 
especially in real-time detection scenarios. The 
project was implemented over the Darknet (Redmon 
et al.,2020) environment which was developed by the 
authors and creators of YOLO and was optimized and 
tested in real-time scenarios where it returned 
significant promising results. 

Many attempts to detect potholes were made, and 
different technology was used in order to implement 
solutions to the proposed problem. Some solutions 
were implemented via the use of laser imaging as  
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Figure 1: Pothole Detection System Diagram. 

input (Yu and Salari,2011), (Vupparaboina et. 
al,2015) where different regions of the laser colours 
were extracted with the help of image processing, 
thermal imaging was also used by fusing thermal 
imaging and convolutional neural networks (Aparna 
et al.,2019) while others used visible light RGB 
cameras with supervised learning techniques by 
analysing the road’s surface feature in order to 
classify potholes via HOG feature extraction  (Azhar 
et al.,2016), while  (Koch and Brilakis,2011) used 
segmentation in order to split mages into two 
categories (defective and non-defective) via the use 
of the histogram approach with shape-based 
thresholds [ (Ryu et. al,2015),  (Schiopu et. al,2016), 
and  (Saluja et. al,2019) on the other hand used video 
sequences taken by RGB cameras via their own 
thresholding algorithm which considers potholes as 
the images with high-intensity values. Other 
techniques such as Probabilistic Generative Models 
(PGM) fused with Support Vector Machine (SVM) 
techniques were used in order to detect the probability 
of occurrence of a road crack via the intensity details 
was used by  (Ai et. al,2018) while  (Youquan et. 
al,2011),  (Zhang et. al,2016) and  (Li et. al,2018) 
have relied on stereo-vision techniques in different 
setups in order to detect potholes via their shapes, or 
by estimating the difference between the surface of 
the road and the surface of the pothole.  (Moazzam et. 
al,2013) used a depth camera via the detection of the 
area, depth, length, width and volume of the pothole, 
while  (Avellaneda and López-Parra,2016),  (Buttlar 
and Islam,2014), and (Forslöf and Jones,2015) have 
used the accelerometer, compass and GPS found in 
mobile phones in order to achieve post-pothole 
detection, when  (Chellaswamy et. al,2018) have used 
ultrasonic sensors. A more detailed review can be 
found in our previous publication A Review on 
Negative Road Anomalies (Dib et. al,2020) 

The previously mentioned techniques were all 
limited due to the fact that post-detection of potholes 
cannot be used in order to avoid potholes. Ultrasonic 
sensors, laser-imaging techniques, surface difference-

based techniques and depth camera-based techniques 
are limited when it comes to water-filled potholes as 
water can be reflective, and there will be no or 
insignificant surface difference between the surface 
of the water and the surface of the pothole. 

This paper describes the current progress of the 
negative anomaly detection project and proposes the 
use of a normal RGB camera where the stream being 
fed to a custom-trained YOLO network which will 
achieve the real-time detection of the pothole. A 
dataset of pothole images was collected, preprocessed 
and used to train the neural network in order to fulfil 
the task required. 

2 PROPOSED APPROACH 

We propose the use of deep learning neural networks, 
mainly YOLO developed using the Darknet 
environment having an input obtained by an RGB 
camera mounted on any moving platform. This could 
be a self-driven car, driven car, truck, motorcycle, or 
even an electric-powered wheelchair or a robot.  

A core computing unit will be mounted onto the 
moving platform. The RGB Camera’s video feed will 
be processed by the computing unit which will be 
running the Robot Operating System (ROS) (ROS 
Wiki,2020) and will process the video feed and feed 
it into the pothole detection system (Figure 1). 

First, the captured video feed will be pre-
processed by converting the feed into RGB format (if 
it is not already in RGB format), then, the frames are 
downscaled to 416x416 pixels. Padding is used in the 
event where the downscaled frames have either a 
height or a width less than 416 pixels. Then, the 
frames will be processed by the YOLO convolutional 
neural network in order to detect and localise the 
potholes based on the features which the network is 
trained to detect. Potential pothole candidates will be 
detected, and the probability of the candidate being a 
true positive detection will be calculated according to 
the formulas discussed in Part 3 of this paper.  If the 
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network’s confidence is more than 0.7 (70%) the 
detected object is considered a pothole, it will be 
considered a positive detection, the x1,y1,x2,y2 
coordinates of the bounding box are calculated, and 
the bounding box is drawn around it marking its 
location within the video frame. At this stage, this 
approach ensures reliability, scalability, and high 
performance. 

Our approach’s main goal is to ensure real-time 
detection with the least possible computing and 
power requirements. This will enable the use of the 
system in real-time scenarios without the need to rely 
on equipment with high computational power which 
could drain the battery used. This will ensure the 
ability to use our system in real-life scenarios and 
potentially provide a standard platform for both 
negative and positive obstacle detection and 
avoidance. 

3 EXPERIMENT 

For this experiment (Figure 2), different versions of 
the YOLO network were trained on a self-collected 
dataset which includes photos from different 
scenarios which could be encountered within an 
everyday usage of any vehicle/moving platform. 

The images dataset which has been used to train 
the neural network was collected during the research 
phase using a Samsung Galaxy Note 8 phone camera 
taking images at 13 Megapixels. Images were 
collected within Kent County in the United Kingdom 
from different roads and cities in different weather 
conditions (sunny, cloudy, and rainy days and nights). 
Figure 4 presents a sample from our dataset:  

(a) represents a general-looking pothole, i.e. a 
hole within the tarmac in an quasi-circular 
shape. 

(b) represents a shallow circular broken 
surface/crack within the tarmac floor which is 
usually hard to detect by laser-based systems. 

(c)  represents a stochastic-shaped pothole, filled 
with water and dirt with a completely different 
pattern than the tarmac surrounding it. This 
cannot be detected by laser-based or sonar-
based systems. 

(d)  represents a random-shaped pothole filled 
with water which is nearly clear and located 
on the side of the road where the double lines 
are clearly shown making it very difficult to be 
detected by normal image-based systems, 
laser-based systems, and sonar-based systems. 

(e) represents a stochastic-shaped broken side of 
the road filled with rabble which is also very 
challenging for image-based, laser-based, and 
sonar-based systems due to the stochastic 
shape, and the reflective randomly-located 
rabble. 

This dataset will be made available online at a later 
stage.  

 
Figure 2: Network Training Process. 

The collected images were pre-processed by 
downscaling them to 30% in order to obtain a width 
of around 415 pixels and then they were labelled 
individually using the labelling tool LabelImg 
(GitHub,2020) for Python ensuring that all the 
surrounding boxes cover the exact corners of the 
pothole without adding a lot of background data 
which could cause any diversion in the learning 
process.  

 
Figure 3: Labeling the dataset images via LabelImg. 
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The network training phase was done by using 
more than one platform and more than one version of 
YOLO in order to collect numerous test results and 
perform benchmarking. 

All training experiments were done using an Intel 
Core i7 desktop with an NVIDIA RTX2080 6GB 
memory graphical processing unit (GPU) running a 
Windows 10 OS with Anaconda (Anaconda,2020) as 
a platform to run the Python environment on 
Windows. 

In order to calculate the accuracy of the detection 
denoted by precision, we have considered the 
detection a true positive if the maximum overlap 
between the detected region (detected box) and the 
original annotation (annotated box of the RoI (Region 
of interest i.e. pothole) within the validation dataset) 
is larger than or equal to the Intersection over Union 
(IoU) (Rosebrock,2020) which is the area of overlap 
between the detected region and the annotation region 
divided by the area of the union which is the union of 
both areas combining the detected region and the 
annotated region: 

After calculation, the precision of every detection, 
the mean average precision (mAP) is calculated via 
the calculation of the precision envelope, the area 
under the curve (points where the recall changes) and 
then the summing of those values. This has been 
described extensively in  (Medium,2020) 

The precision and recall formulas are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

where TP is the number of true positives, FP is the 
number of false-positive, and FN is the number of 
false negatives. 

The mean average precision (mAP) is the mean of 
the average precisions calculated, i.e. the sum of all 
average precisions divided by the number of 
detections. 

𝑚𝐴𝑃 = ∑ 𝐴𝑃ே௜ୀଵ𝑁  

where N is the number of detections, and AP is the 
Average Precision (described in  (Anaconda,2020)) 

In addition to the previous values, we have 
recorded the frame rates achieved by the algorithm  
 

 
(a) (b) (c) (d) (e) 

Figure 4: Samples images taken from our manually-
collected dataset. 

when tested in order to assess whether the detection 
is in real-time or not. 

In our training experiments, we have set the IoU  
to 70 so detection is considered a true positive when 
there is an overlap that is more than 70% (YOLO uses 
a default IoU threshold of 0.3 (30%) which we have 
raised to 0.7). 

We have attempted more than one training 
experiment and split them into three main sets. In 
every set, we have tried several different number of 
training and validation datasets as follows: 

• 80% of the total number of images in the 
dataset is used as training data, the rest is used 
as validation images. 

• 70% of the total number of images in the 
dataset is used as training data, the rest is used 
as validation images. 

• 60% of the total number of images in the 
dataset is used as training data, the rest is used 
as validation images. 

We have also attempted more than one different 
learning rate, as follows:  

• Learning Rate = 1e-4 
• Learning Rate = 1e-5 
• Learning Rate = 9e-5 

The first training set of experiments was made 
using YOLOv2 (Redmon et al., 2015) trained using 
Keras (Team K.,2020) (Keras Website) open-source 
neural network library with the following training 
parameters:  

• Training Images: 574 (80% of the dataset) 
• Validation Images: 143 (20% of the dataset) 
• Learning Rate = 1e-4 
• IoU = 0.7 

The training resulted in a best mAP of 71.5%, 102 
true positives, 41 false positives, and upon testing the 
neural network performance on a “challenging” input 
with more than one pothole present, the following 
results were obtained: 
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Figure 5: YOLOv2 Test Results. 

It is evident from the first test results (Figure 5) 
that this network is not really fit for purpose as its 
result is a larger region of interest (ROI) detected 
versus the optimal ROI which should have been 
detected. A larger ROI can be acceptable as it means 
that the network has detected the object of interest 
which means that avoidance can be achieved, 
however, our aim is to obtain the most optimal 
detection possible. In addition, the network has 
detected only 6 potholes within the first example and 
only two in the second example along with a larger 
ROI where two potholes were considered as only one. 
Not to mention that the detection accuracy is only 
0.7302 for the bottom pothole in the second example 
which is 73.02% for the most evident pothole. As for 
the frame rate achieved, it was 44 frames per second 
as reported by the algorithm. 

The second training set of experiments was made 
using YOLOv3 (Redmon and Farhadi, 2018) trained 
using Keras with the same parameters as the previous 
training. 

The network’s best mAP was 75.48%, the number 
of true positives was 108 along with 35 false positives 
and the test input returned the following results: 

 
Figure 6: YOLOv3 Test Results. 

The results obtained via YOLOv3 look slightly 
more promising than YOLOv2 as the network has 
detected 7 potholes in the first example and only two 
in the second but with tighter ROIs covering the exact 
borders of the potholes. In the second example, the 
evident pothole’s detection accuracy was 0.7719 
which is 77.19% which shows a slight improvement 
from the first network used. The frame rate was 
almost the same as the previous test (47 frames per 
second) 

The training set of experiments was made using 
YOLOv4 (Bochkovskiy et. al, 2020) trained using 
Darknet environment with the same parameters as the 
previous training. The network’s best mAP was 
82.05%, the number of true positives was 117, and the 
false positives were 26. The test input returned the 
following results: 

 

 
Figure 7: YOLOv4 Test Results. 

The results obtained via YOLOv4 were the most 
promising results as the network has detected 12 
potholes within the first example along with three 
potholes in the second example as the network has 
identified the two small potholes as an additional 
partial pothole. The accuracy of the detection for the 
evident pothole is 0.8975 which is 89.75% which was 
the highest obtained accuracy within the tests 
aforementioned. This experiment was achieved with 
a frame rate of 49 frames per second which is the 
highest frame rate achieved in all of our experiments. 

Knowing that the speed limit for vehicles in 
residential areas in England is 30 mph (48.28 km/h or 
13.411 m/s), and for other moving platforms such as 
electric-powered wheelchairs (EPWs) is 4 mph (6 
km/h or 1.67 m/s) offroad (on a footpath, on a 
pavement, etc.) and 8mph (12 km/h or 3.3333 m/s) on 
the road (on tarmac) we can easily calculate our 
detection-rate via the formula: 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑  
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Figure 8: Real-time testing of the YOLO Network applied on an online video [29] where three consecutive frames have been 
extracted. In the test above, the precision rate of the detection is respectively: pothole 1.a: 85%, pothole 1.b: 73%, and pothole 
1.c: 95% pothole 2.a: 56%, pothole 2.b: 82%, and pothole 2.c: 97%. pothole 3.a: 53%, pothole 3.b: 70%, and pothole 3.c: 
96%. The Average Frame Rate achieved is 52 fps which is considered real-time. 

By applying this formula to vehicles in rural areas, 
we can conclude that our detection rate is 4913.411 = 3.65 

i.e. 3.65 frames per meter, as for the off-road 
wheelchair, it is 29.34 frames per meter and the on-
road wheelchair detection rate is 14.70 frames per 
meter. These detection rates achieved are more than 
sufficient for safe navigation and avoidance of the 
pothole as the lowest detection rate (3.65 achieved 
when the system is mounted to cars in rural areas) 
allows at least 3 frames to be detected within every 
meter and as is known, 49 frames per second are 
larger than the commonly-used real-time threshold 
for frame-rate which is 30 frames per second. Figure 
8 represents the real-time results obtained when using 
an mp4 video (ITV News YouTube Channel, 2018)as 
input to the network. In order to demonstrate the 
result, we have extracted three consecutive frames 
from the resulting video showcasing the detection rate 
achieved with the real-time frame rate of an average 
of 52 frames per second. 

In addition to the previous training attempts, a 
separate attempt was made with the same training and 
validation ratios, along with different learning rates in 
order to attempt to find additional methods of 
improving the detection and studying the effect of the 
learning rate and the training/validation ratio on the 
mean average precision of the network’s detection 
performance. The results were as follows: 

 

Table 1: YOLO with Learning Rate = 1e-4. 

Ratio 
Training/Validation

0.8 0.7 0.6 

mAP 0.765 0.725 0.702
True Positives 109 156 302
False Positives 34 59 128

Table 2: YOLO with Learning Rate = 2e-4. 

Ratio 
Training/Validation

0.8 0.7 0.6 

mAP 0.5939 0.474 0.455
True Positives 85 102 196
False Positives 58 113 234

Table 3: YOLO with Learning Rate = 1e-5. 

Ratio 
Training/Validation

0.8 0.7 0.6 

mAP 0.521 0.497 0.434
True Positives 75 107 187
False Positives 68 108 243

Table 4: YOLO with Learning Rate = 9e-5. 

Ratio 
Training/Validation

0.8 0.7 0.6 

mAP 0.616 0.605 0.603
True Positives 88 130 259
False Positives 55 85 171
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Table 5: YOLO with Learning Rate = 8e-5. 

Ratio 
Training/Validation 

0.8 0.7 0.6 

mAP 0.681 0.671 0.532
True Positives 97 144 229
False Positives 46 71 201

Table 6: YOLO with Learning Rate = 7e-5. 

Ratio 
Training/Validation 

0.8 0.7 0.6 

mAP 0.617 0.582 0.532
True Positives 88 125 229
False Positives 55 90 201

Table 7: YOLO with Learning Rate = 6e-5. 

Ratio 
Training/Validation 

0.8 0.7 0.6 

mAP 0.615 0.647 0.543
True Positives 88 139 233
False Positives 55 76 197

As we can observe from this experiment, the 
detection’s mAP is generally larger when the number 
of images used for training is larger which can be 
observed when comparing the mAP values at the 
different training/validation ratios. In addition, we 
can observe that setting the learning rate to 1e-4 
returned the highest mAP value. However, 8e-5 and 
9e-5 did return acceptable results at a 
training/validation ratio of 0.8 which leads us to 
conclude that a variable learning rate would be more 
ideal in respect to the validation loss, this could 
improve the results obtained and will be assessed in 
future work. 

4 CONCLUSIONS 

In this paper, we have implemented a deep learning-
based system which detects and localises different 
types of potholes regardless of the stochasticity in 
their shapes, textures, patterns, and colours in real-
time (i.e. high frame rates achieved within the 
experiments undertaken), and with high accuracy. 

The results obtained show that the accuracy of 
the detection was very high even in the case of water-
filled potholes which is usually considered the main 
limitation of many sensing techniques. Not to 
mention that the detection rate and the frame rates 
achieved were more than sufficient for our detection 
rate to be considered real-time providing sufficient 

detection speed and distance for a safe navigation and 
avoidance of potholes. 

We can also conclude that the training results 
could be improved by varying the learning rate 
throughout the learning process, and by increasing the 
size of the training dataset used. 

The next steps will focus on further use of deep 
learning object detection convolutional neural 
networks. In future work, there will focus on 
including more functionalities, such as object 
localization in real-world 3D coordinates and more 
additional functionalities via the use of additional 
sensing techniques fused by a data fusion algorithm. 
This algorithm will combine the use of more than one 
sensing technique in such a way that every technique 
used will cover the other techniques’ weaknesses and 
limitations via the use of multimodal sensing 
techniques combined with deep learning. The 
proposed algorithm could be the backbone of a wide 
range of systems and it can be used to make decisions 
ensuring safe navigation of the moving platform 
when needed. 
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