PhishGNN: A Phishing Website Detection Framework using Graph
Neural Networks

Tristan Bilot, Grégoire Geis and Badis Hammi
EPITA School of Engineering, France

Keywords:

Abstract:

Phishing Detection, Graph Neural Networks, Deep Learning, Cybersecurity.

Because of the importance of the web in our daily lives, phishing attacks have been causing a significant

damage to both individuals and organizations. Indeed, phishing attacks are today among the most widespread
and serious threats to the web and its users. Currently, the main approaches deployed against such attacks are
blacklists. However, the latter represent numerous drawbacks. In this paper, we introduce PhishGNN, a Deep
Learning framework based on Graph Neural Networks, which leverages and uses the hyperlink graph structure
of websites along with different other hand-designed features. The performance results obtained, demonstrate
that PhishGNN outperforms state of the art results with a 99.7% prediction accuracy.

1 INTRODUCTION

In the era of the Internet, malicious URLSs are a com-
mon threat to the Web users. Phishing aims at steal-
ing sensitive information by fooling victims with fal-
sified interfaces. In the case of phishing websites,
attackers usually try to impersonate well-known and
widely used services such as social media, banks and
e-commerce websites. Such spoofed websites are
often built from the same code base as the original
site, which could make them difficult to detect at first
glance. Thankfully, numerous other indicators can be
used to differentiate benign and phishing websites.
For instance, most phishing URLs tend to be very
long, with multiple sub-domains and special charac-
ters. Domains are often hosted on suspicious hosts
and use Secure Socket Layer (SSL) certificates de-
livered by non-trusted authorities. Since the begin-
ning of these attacks, numerous systems have been
implemented to try to overcome them. Some of these
implementations use traditional techniques such as
blacklists or URL lexical features’ analysis. Nonethe-
less, blacklists suffer from multiple drawbacks like
the need for human assistance to be updated and the
lack of exhaustiveness. Furthermore, they cannot be
used on unseen and hidden URLs. Other techniques
leverage Machine Learning to train a model to clas-
sify websites based on a number of examples (Sahoo
et al., 2017), (Benavides et al., 2020). However, in
most approaches, the hyperlink structure of websites
is not tackled.

428

Bilot, T., Geis, G. and Hammi, B.
PhishGNN: A Phishing Website Detection Framework using Graph Neural Networks.
DOI: 10.5220/0011328600003283

In this paper we introduce PhishGNN, a frame-
work that leverages and uses both hyperlink struc-
tural features along with other features that have been
proven to be successful for phishing classification '.
We also introduce features such as is_same_domain
which are essential for differentiating two websites
with the same structure. As many phishing web-
sites redirect to legitimate ones, each link pointing
to these websites has a different domain. However,
on the legitimate website, these links are redirecting
to the same domain, so the feature will be distinct in
both cases and the model will learn how to differen-
tiate them. We evaluated our approach through a real
implementation. The performance results obtained
demonstrate the efficiency and effectiveness of our
approach in terms of detection accuracy and its capac-
ity to outperform the existing detection approaches.

2 RELATED WORKS

The detection of phishing websites aims to classify
whether websites are phishing or benign. Research in
this area has increased sharply as the number of phish-
ing websites has exploded in recent years. While ad-
vanced techniques have been proposed for this task,
most solutions currently in production are based on
blacklists (Sahoo et al., 2017). However, phishing

Uhttps://archive.ics.uci.edu/ml/datasets/Phishing+
Websites

In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 428-435

ISBN: 978-989-758-590-6; ISSN: 2184-7711

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

PhishGNN: A Phishing Website Detection Framework using Graph Neural Networks

websites become more and more complex and there
is an urgent need for reliable and efficient techniques
to detect them on demand, without human interaction.

2.1 Traditional Techniques

The most common technique used for the detection of
phishing websites is the use of blacklists. However,
this technique reveals numerous drawbacks, mainly:
(1) it requires the manual curation of such a black-
list. (2) it requires the storage (space consumption)
or the querying (time and computing resource con-
sumption) of a blacklist. (3) crowdsourced black-
lists like PhishTank are centralized and lack trans-
parency. The resources consumption problem is ad-
dressed by the Google Safe Browsing API, notably
used in Chromium and in Firefox, which provides
both an online service and a small, downloadable
database of truncated hashes 2.

Prakash et al. (2010) also show that it is possible
to build blacklists that, based on their current entries,
can predict new entries with no human involvement.

As lists are inherently flawed, other techniques
have been proposed to detect phishing using human-
defined heuristics, designed after identifying inherent
characteristics of known phishing websites. Indeed,
since obtaining legitimate domains requires compro-
mising their corresponding entity, phishing websites
often use patterns in the URL to appear like legiti-
mate domains while being subtly different. Further-
more, Sonowal and Kuppusamy (2020) suggest that
having symbols such as ”-” and ”@”, or having more
than three dots in the domain name is suspicious, and
considers long URLs suspicious as well because they
make it harder for users to read the significant part
of the URL. Sonowal and Kuppusamy (2020) assign
lower legitimacy scores to web pages that have low
accessibility scores and to those whose lexical signa-
ture does not appear within the first results of search
engines.

It was often assumed that legitimate websites are
protected by Transport Layer Security protocol (TLS)
and that phishing websites are not. However, this as-
sumption no longer holds true because most recent
phishing websites are also protected by TLS (82%
in 2021 3). Despite this, new techniques exist to as-
sess the legitimacy of TLS certificates (Sakurai et al.,
2020).

Phishing websites can protect themselves against
content-based phishing detection by obfuscating the

Zhttps://developers.google.com/safe-browsing/v4/
urls-hashing

3https://docs.apwg.org/reports/apwg_trends_report_q2_
2021.pdf

content of their pages. In response, researchers have
used image snapshots of suspicious pages to extract
text content using optical character recognition (Dun-
lop et al., 2010), or to look up whether the suspi-
cious page used logos that are typically associated
with other domains (Wang et al., 2011).

Finally, it has been shown that using combinations
of different techniques leads to more accurate results
(Sonowal and Kuppusamy, 2020).

2.2 Machine Learning Techniques

Machine Learning (ML) and Deep Learning (DL)
have known a real boom during the last decade and
have been widely used in the phishing classification
task (Sahoo et al., 2017), (Benavides et al., 2020).
When using such techniques, the first step is usually
to extract a set of features from the URL. Although
Deep Learning models have the ability to learn fea-
tures by themselves from raw data, it is challenging to
exploit them directly because a website is not only de-
fined by its raw HTML content. Many useful features
can be extracted by hand from the website’s URL
in order to build a more powerful and robust model.
Deep Learning can be used on top of the features to
let the model learn other kinds of representations that
could improve the classification accuracy. These fea-
tures can be divided in three classes: lexical, content
and domain features.

Lexical Features: features that could be extracted
from the URL as a string. Some examples are
the URL length, the entropy, the number of spe-
cial characters, the number of sub-domains, and
SO on.

Content Features: features related to the HTML
content of the web page. Such features are ob-
tained by fetching the DOM of the pages and then
processing it to extract useful information like the
number of anchors, the presence of a form, the
number of Javascript imports, and so on.

Domain Features: features obtained from the do-
main name extracted from the URL. By request-
ing that domain, it is possible to extract features
from the underlying server such as its location, the
connection speed, "WHOIS” information, Secure
Socket Layer (SSL) certificate and so on.

According to Sahoo et al. (2017), content-based and
lexical-based features are mostly used in Machine
Learning techniques, compared to host-based fea-
tures, due to the complexity of extracting these ones.

Most state of the art approaches for phishing clas-
sification are URL-based. That is, they focus on the
extraction of useful features directly from the raw

429

SECRYPT 2022 - 19th International Conference on Security and Cryptography

URL. Some studies use traditional Machine Learning
with hand-crafted features to make predictions (Jain
and Gupta, 2018), while others prefer using Deep
Learning to let the model learn the features on its own
(Sahoo et al., 2017). Deep Learning methods have the
benefit of avoiding human-assisted feature engineer-
ing and thus do not require the assistance of domain
experts. Thanks to these benefits, numerous recent
studies (Benavides et al., 2020) apply Deep Learning
to URL classification. URL-based classification is a
key process in the overall phishing classification task.
This is due to the numerous lexical features possible
to extract from a raw URL string.

Saxe and Berlin (2017) proposed eXpose, a so-
lution based on a Convolutional Neural Network
(CNN), where convolutions are applied to the raw
URL at character-level. The convolutions are used to
find patterns between characters that could lead to in-
teresting hidden features. In the same context, URL-
Net (Le et al., 2018) is a framework where a character-
level CNN is used in combination with a word-level
CNN. It is stated that using word-level features along
with character-level features achieve better results for
the URL classification task. Other techniques such as
HTMLPhish (Opara et al., 2020), take profit of CNNs
to learn the semantic dependencies in the textual con-
tent of the raw HTML page. Using this architecture,
they achieve 93% accuracy with no feature engineer-
ing required.

Similar to our solution, Tan et al. (2020) propose
a graph-based detection system where hand-crafted
features are extracted from the hyperlink structure of
the webpage, achieving 97.8% accuracy using a C4.5
classifier. However, this implementation solely de-
pends on human-created features that could be biased.
The authors do not leverage the Deep Learning to let
the model learn by itself the most useful features to
differentiate benign and phishing examples. Further-
more, a dataset of only 1000 samples is used (500 be-
nign, 500 phishing), resulting in a model that could
difficultly generalize on new data.

To the best of our knowledge, the sole applica-
tion of Graph Neural Networks to phishing detec-
tion is based on the HTML structure of the website
(Ouyang and Zhang, 2021). In this approach, a graph
is built from the HTML DOM and a GNN is fed with
this graph. However, this method only relies on the
HTML content, which could be easily stolen from be-
nign websites in order to build perfect website copies.
This method could thus be easily bypassed by cloning
the HTML structure of legitimate websites.

Unlike previous approaches, our solution takes ad-
vantage of the internal links structure of the website,
along with the traditional features that led to success-

430

ful results as shown in previous papers. By analysing
many phishing websites, we figured out that most of
them use similar href” patterns in <a>, <form> and
<iframe> tags. These links are usually self-loops an-
chors (URLs starting by #) or outgoing links to ex-
ternal domains (usually pointing to a legitimate web-
site like a bank or a social media). Such patterns
are useful for phishing classification because a neu-
ral network can be trained to learn how to distin-
guish websites with different structures. Malicious
websites could hardly bypass this detection system
because most of the outgoing links present on these
websites redirect to external websites from other do-
main names in order to fool victims by persuading
them that the website is legitimate.

3 PROPOSED APPROACH

3.1 Graph Neural Networks

Graph Neural Networks (GNNs) represent a type of
neural networks that takes graph data as input. Unlike
other neural network architectures, GNNs can handle
non-euclidean data with complex relations between
objects. Most GNNs follow the message-passing
framework (MPNN) (Gilmer et al., 2017) and can be
considered as a generalization of convolutional neural
networks (CNN) for graphs. This message-passing
algorithm takes as input a graph G = (7, E) with n
nodes v; € 7 and m edges (v;,v;) € ‘E, where G could
be directed or undirected. Each node and edge can
store a vector of features, respectively named node
and edge features. Generally, all this information is
represented through three matrices:

* A: the graph-structure matrix, of shape n x n in
the case of an adjacency matrix and 2 x n for a
CSR (Compressed Sparse Row) or COO (COOr-
dinates) sparse matrix

* X: the node features matrix of shape n x d
 E: the edge features matrix of shape m x e

where n = |V|, m = |E|, d and e are respectively the
number of features per node and per edge.

The message passing framework consists of four
steps, where steps 1 to 3 are implemented by one
GNN layer and are repeated as many times as there
are layers. Step 4 is a final step that should be applied
after passing through every GNN layers.

1. MESSAGE: every node creates a message based on
its node features and sends it to all neighbors.
2. AGGREGATE: nodes aggregate the incoming mes-

sages from every neighbor by using an aggrega-
tion function.

PhishGNN: A Phishing Website Detection Framework using Graph Neural Networks

XcR™ = XcB"

X2 X2

/

(}1\‘\> x X

A

4
Xs a) X5

SN ¢4/ nxh
8 GNN X eR

—
linear

y € R?

Figure 1: PhishGNN architecture comprises two steps: PRE-CLASSIFICATION (a) and MESSAGE-PASSING (b). Example
using a graph with one root URL x; and 4 outgoing links x<;<5. The input feature matrix X is processed in these 2 steps to
result in a prediction vector y containing the probability of the 2 classes.

3. UPDATE: the old features of a node are updated
by merging them with new features aggregated,
creating node embeddings.

4. READOUT: combines every node embeddings into
a representation that could be used in downstream
Machine Learning algorithms for prediction.

Every step is generally a function with learnable pa-
rameters, that is, weight matrices and activation func-
tions are used in the computation of both steps. One
GNN layer usually corresponds to the propagation of
features within a 1-hop neighborhood, so stacking n
GNN layers will result in node features propagating
up to n distant nodes. In each of these layers, every
node gathers its neighbors’ features to result in graph
embeddings.

3.2 PhishGNN

We propose PhishGNN, a framework for websites
classification (phishing or benign) based on Graph
Neural Networks. This framework can be considered
as an additional layer to GNN architectures. There-
fore, it can be easily plugged-in existing GNN imple-
mentations. We use graphs to leverage the hyperlink
structure of websites. In the context of GNNs, we
consider the task of phishing websites classification
as a node classification task, where the node to clas-
sify is a given URL and the other nodes represent ev-
ery possible link coming from that URL until a user-
defined depth. From these links, it is possible to build
a graph where nodes represent URLSs, and edges are
the links between URLs, extracted either from <a>,
<form> or <iframe> tags. More precisely, the graph
is a rooted graph where the root node is the website to
classify (named root URL). The input dataset (fed to
our classifier) contains a list of root URLs, mapping
to a label: phishing or benign. For each URL in the
dataset provided, a feature vector is extracted, as well

as a vector of all URLs (children URLSs) going from
that root URL. Features are also extracted for the chil-
dren URLs. The feature vectors are used to build the
feature matrix X. The children URLSs are used to build
the actual graph-structure matrix A.

In our approach, we suggest to train a model in
a semi-supervised mode. The known labels are the
actual root URLs and the unknown labels represent
every child URL (i.e. we do not know if these URLs
are phishing or not). Our contribution highly relies on
the fact that knowing the label of every node around
the root node makes that node much easier to clas-
sify. Given that labels are not known for every child
URL, a classifier could be used to find an approxi-
mation for these labels. This classifier is trained on
every supervised example available in the dataset and
is then used for inference on all other unsupervised
examples. Afterwards, using a traditional GNN with
message passing will gather information from classi-
fied nodes to build the embeddings. We use pooling
methods such as add, max or mean on top of the em-
beddings to reduce graph dimension to a single node
embedding. A linear layer is used as a final layer to
make a prediction.

As Figure 1 shows, the architecture is divided into
two steps:

(a) PRE-CLASSIFICATION: initially, the graph com-
prises n nodes, where each node x;(1 <i <n) is
a vector of d features extracted from the corre-
sponding i URL. x; is the root URL node and
every node x;(1 < i < n) represent a link com-
ing from x;. At this first step, a binary classi-
fier is used to predict in a semi-supervised mode
whether a node is phishing or benign, for each fea-
ture node x;(1 <i<n). The classifier is a function
g: RY — B, where B is the Boolean domain. After
this step, the feature matrix X is transformed to a
vector X containing respectively zeroes and ones

431

SECRYPT 2022 - 19th International Conference on Security and Cryptography

for legitimate and phishing predictions.

(b) MESSAGE-PASSING: the predictions are then
passed through a traditional message passing
GNN with £ hidden layers, to propagate the infor-
mation in the graph and learn node embeddings.
This results into a matrix X’ where each node is
an embedding vector of size h. A pooling method
is used to reduce the dimension of node embed-
dings to a single node of shape 1 x 4. Finally, a
dot product is applied between this node and a lin-
ear layer of shape 2 x h, resulting into a vector §
containing the probability of belonging into each
class: phishing or benign.

The graph-structure matrix A is stored in memory
using the COO format, which requires only O(|E|)
memory space, i.e. it grows linearly according to
the number of edges. The feature matrix X uses
O(]?V| x d) memory as it stores fixed-size feature vec-
tors for each node.

The propagation rule of PhishGNN with a
Graph Convolutional Network (GCN) as MESSAGE-
PASSING step is the same as the original GCN propa-
gation rule:

FEHEY.A) = f(HD,A) (1
FHD A =c(DTADT HOWD) (2
where A is the adjacency matrix, H\!) is the propa-
gation at layer [, ¢ is the ReLU non-linear activation
function (Rectified Linear Unit), w0 isa weight ma-
trix at layer /, A is the adjacency matrix with self loops
such that A = A +1 (I is the identity matrix), and Dis
the diagonal matrix of A.
However, instead of starting with H © =X in
the original GCN, PhishGNN applies the PRE-
CLASSIFICATION step to X such that H®) = g(X),
where g is a Random Forest prediction function.

4 PERFORMANCE EVALUATION

4.1 Evaluation Framework

To train the model and later evaluate arbitrary in-
puts, raw features related to a given URL must be ob-
tained. Unlike traditional classifiers operating on con-
tent features, PhishGNN must crawl web pages re-
cursively to provide features for the pages referenced.
Several existing crawlers were considered, but ulti-
mately we implement a crawler specifically designed
for PhishGNN with the following functionalities.

1. ROBUSTNESS: Servo’s HTML and URL parsers
were used, while domain names are parsed us-
ing Mozilla’s Public Suffix List. rustls is used

432

for establishing safe TLS connections. Pages that
take more than 10 seconds to read, or that are over
1 MiB, or that lead to more than 10 redirects are
dropped.

2. CONCURRENCY: multiple processes can operate
on the same database at the same time, and each
process contains workers which run in parallel
(using OS threads) and concurrently (using asyn-
chronous tasks).

3. DOMAIN-SPECIFICITY: two types of workers are
available; core workers extract lexical and con-
tent features. Domain workers extract domain fea-
tures. Thus, each domain is processed only once,
no matter how many pages are hosted on it.

4. EXTERNAL STORAGE: the processing queue lives
entirely on a database separate from the workers.
This enables distributed workers to be stopped or
resumed at will, and direct interaction with the
database to, for instance, monitor progress.

Crawling websites can be a heavy and time-
consuming task, which is why the crawler stops pro-
cessing URLs after a specified depth is reached; in
this study, we have set the crawling depth to 1 (that
is, both pages of depth 0 and 1 are crawled for their
features). A total of 25 features per URL are extracted
during crawling. We classify the most important fea-
tures as follows.

1. LEXICAL FEATURES: is_ip_address,
domain_length, domain_depth (number of
dots in the domain name), dashes_count,
has_at_symbol.

2. CONTENT FEATURES: is_valid_html,
has_iframe, has_form_with_url. Refer-
ences are added for <a>, <form>, and <iframe>
elements with valid (i.e. statically known and
leading to a valid HTTP or HTTPS URL after
resolution) href, action, and src attributes.

3. DOMAIN FEATURES: is_cert_valid (i.e. active
and accepted by rustls), cert_reliability
(computed using the duration of the certificate
and whether its issuer is trusted), has_whois,
domain_age (seconds between the last update
date and the expiry date).

After extraction, features are exported to a file which
can be read and pre-processed in Python. To better
understand the underlying structure of each website,
we have developed a tool to visualize every graph
from the dataset. In Figure 2, two crawled web pages,
with different structures, are represented as graphs.

PhishGNN: A Phishing Website Detection Framework using Graph Neural Networks

0900 [e)
B0 OOOoogODoD
00500 0° 90%6%0 o
9060 o0 9390 0.0 o
OL00 S 00 0 o) o
Doog 60 000 o%ooo o o o
00 O 00 o)
8g 000) %o (g o (o1} Oc?’ o o (o) 0o
Q000 0099 0. ©
026" o 0922 o 0" ©
o o o
2% 06 000 o)
2508 % T o e °©
050 9 oo o o
03000 %0 o
oo 4 °o
o o o
o s 0o
o 53 o % o
O 000900 (6]
@ root url 000700 Q7350 ©] (©]
O same domain = QON200 000 6 o
O external Co0c0005°
O error page S}

Figure 2: Graph representation of two websites after crawl-
ing with depth=1. Graph on the left contains multiple chil-
dren URLs already crawled in previous iterations so their
children are inserted in the graph as nodes of depth 2. Graph
on the right contains children URLs never crawled before.
Node in dark blue is the root URL, nodes in cyan and yellow
are respectively URLs from the same domain and different
domain, while red nodes are URLs returning an error code
(HTTP status not in range 200-299).

Model Mean-Pool ~ Max-Pool Add-Pool Time
GIN 48+1.5 59+2.4 76+0.1 37.2
GAT 79+3.2 59+42.7 82+1.1 455
MemPooling 78+3.0 73+4.1 76+3.8 67.5
GCN, 91+0.5 93-+0.2 92+0.5 32.1
GCN; 91+0.3 92+0.1 89+0.7 344
GraphSAGE 92+0.4 924+0.5 89+0.7 29.4
ClusterGCN 93+0.3 93+0.6 72+2.8 37.8

Figure 3: Model accuracy in % on test set for 10 epochs, for
every implemented GNN. Each model is declined in three
versions using multiple pooling methods (mean, max, add)
as readout functions.

4.2 Dataset

Finding a reliable public phishing dataset is fairly
challenging because the lifetime of phishing web-
sites is really short (few days or weeks). Hence, we
have built a dataset based on around 30,000 mali-
cious URLSs, extracted from public phishing blacklists
such as OpenPhish* or PhishTank>. However, most of
these URLs redirect to 404 error pages as the corre-

Model Mean-Pool Max-Pool Add-Pool Time
PhishGNN_gy 524 53.2 71.2 23
PhishGNN_gar 88.9 62.1 95.0 90
PhishGNN _yempooling 75.8 99.2 98.0 23
PhishGNN_gcw, 99.7 99.7 99.1 20
PhishGNN_gcn, 99.7 99.7 99.2 22
PhishGNN _GraphsaGE 99.6 99.6 99.6 17
PhishGNN_cjysierGeN 99.7 99.7 97.2 24

Figure 4: Accuracy of PhishGNN framework on test set for
1 epoch using a Random Forest setting. PhishGNNgcn,,
PhishGNNgcn, and PhishGNNcyygserGen achieve best re-
sults with 99.7% accuracy.

“https://www.openphish.com/
Shttps://phishtank.org/

sponding websites are now out of service. The first
filtering operation to apply on the dataset is thus to
check that every website is responding with a success-
ful HTTP code (i.e. in the range 200-299). This step
has reduced the dataset size by 85%. Furthermore,
some of the filtered URLs are labeled incorrectly. In-
deed, totally legitimate websites like wikipedia.org or
baidu.com are sometimes classified as phishing in-
stead of benign. These incorrect classifications could
lead to a biased model and therefore to incorrect pre-
dictions. To prevent this, we used the Google Safe
Browsing API in order to filter the dataset. Using
this service on every URL from the dataset improves
the reliability of each training example and brings a
fairly better data quality but also removes a significant
amount of data. This filtering step reduces the size of
the dataset again by around 40% but has proven to be
profitable. Furthermore, only websites containing at
least a <form>, <input> or <textarea> tag are used
for training. Indeed, we assume that phishing web
pages usually request the user’s personal information.
A web page not containing such HTML tags is there-
fore not trying to steal any information.
Benign URLs are extracted from the Alexa top 1 mil-
lion sites dataset ©. The same filtering process is ap-
plied, except for the Safe Browsing API filter. We use
approximately the same number of training examples
in both classes in order to obtain a balanced dataset.
After the filtering steps, the overall dataset con-
tains 4633 high quality URLs: 2300 benign and 2333
phishing. Graph matrices are built from the crawled
URLs of the dataset. These graphs possess the fol-
lowing statistics: 90 average and 31 median nodes,
ranging from 1 to 5185 nodes, 138 average and 45
median edges, ranging from 0 to 5214 edges.

4.3 Numerical Results and Discussion
4.3.1 Evaluation of Existing GNNs

A total of 7 well-known GNNs have been imple-
mented and trained on the crawled dataset. Every
model was implemented’ in Python using the Py-
Torch Geometric library. In this section, we de-
scribe the benchmarking performances of the mod-
els based on the raw features, without considering the
PhishGNN implementation. Models performance is
measured using 10-fold cross-validation during train-
ing. Cross-validation allows to test the model on ev-
ery dataset example and thus gives a better indication
of how well the model performs on unseen data. For

Shttps://www.kaggle.com/datasets/cheedcheed/top Im
TExperiments done in this paper are available on
GitHub: https://github.com/TristanBilot/phishGNN.

433

SECRYPT 2022 - 19th International Conference on Security and Cryptography

each GNN architecture, the network is trained for 10
epochs using Adam optimizer with a batch size of 32.
Hyperparameters have been tuned using a validation
set during training. The training starts with a learning
rate of 1072 and is decreased by 5% every 3 epochs,
most of the time resulting in a better performance
when set to 9025.1073. The loss is computed at
each epoch using cross-entropy. Implemented mod-
els are GIN (Xu et al., 2018), GAT (Velickovic et al.,
2017), MemPooling (Ahmadi, 2020), GCN (Kipf and
Welling, 2016), GraphSage (Hamilton et al., 2017)
and ClusterGCN (Chiang et al., 2019). GCN; and
GCN3 are respectively implementations of GCN with
2 and 3 GCN layers. Training has been done on a
NVIDIA Tesla K80 GPU using 16, 32 and 64 hid-
den neurons, where the setting with 32 hidden neu-
rons gave the best accuracy on the validation set. The
obtained results are therefore based on models trained
with hidden layers of size 32. Corresponding accu-
racies (mean *+ standard deviation) and the average
execution times are listed in Figure 3.

4.3.2 Evaluation of PhishGNN

In this section, we are interested in benchmarking
PhishGNN framework with every GNN architecture
implemented previously. Traditional Machine Learn-
ing techniques are also evaluated in order to find the
best classifier to integrate with PhishGNN. As Fig-
ure 5 describes, most traditional Machine Learning
methods achieve equivalent or even better results than
the previous GNNs. Thereby, the Random Forest
(i.e. the classifier with best accuracy) is chosen as
the default classifier used in the PhishGNN architec-
ture. By combining Random Forest predictions as
PRE-CLASSIFICATION step and GCN, as MESSAGE-
PASSING step, we outperform every other result by a
large gap with an accuracy of 99.7%. The accuracy
has been computed according to Equation 3:

C
Acc = —
ce= 3

where C is the number of correct predictions and N is
the total number of predictions. A detailed analysis
of true and false positives/negatives is demonstrated
in Figure 6.

As Figure 4 shows, we achieve high scores
with every pooling method in only one epoch. As
predictions are already pre-computed in the PRE-
CLASSIFICATION step, there is no need to train the
GNN multiple times, as we want to propagate the in-
formation one time to obtain node embeddings.

To better understand the model predictions, node
embeddings have been extracted directly after the
pooling step and are plotted in Figure 7, using the T-
distributed Stochastic Neighbor Embedding (TSNE)

434

T
Linear SVM [] 87.7 5
Naive Bayes []88.3 N
Feed Forward Network {192 8
Decision Tree | 1929 =
Logistic Regression {193 =
GON 93 -
RBESVM {1939 -

kNN |95.2 5
Random Forest |]95.8 =
PhishGNN - | 997

8 90 92 94 96 98 100

Figure 5: Classification accuracies between traditional Ma-
chine Learning methods, GCN and PhishGNN.

Benign | Phishing | Total

Benign 688 3 691
Phishing 2 802 804
Total 690 805 1495

Figure 6: Confusion matrix for a test set of 1495 examples
(30% of the overall dataset).

dimension reduction technique. Although the tradi-
tional GCN achieves great classification results, we
see in embedding space that the model fails to de-
limit many nodes. However, thanks to the the PRE-
CLASSIFICATION step in PhishGNN, node embed-
dings are more grouped and classes can be delimited
by a straight line, which leads to a better classifica-
tions.

S CONCLUSION AND FUTURE
WORKS

To the best of our knowledge, we introduced the first
Graph Neural Network framework applied to web-
site hyperlink structure for the phishing classification
task. Our experiments has shown that GNNs directly
applied on the website graph structure is less efficient
than traditional Machine Learning methods applied to
features. However, by leveraging the semi-supervised
structure of the graph, a classifier can be trained on
supervised examples and make predictions on unsu-
pervised ones. The semi-supervised predictions are

.
™ Bomes wmg

r Al 1 .
= 2 N
S e G R;—’ < 2

S0 60 0 20) 0 20 o 20 £

Figure 7: Embeddings of two models trained on our dataset.
GCN, without PhishGNN (left) and with PhishGNN
(right). Green: Benign; Red: Phishing.

PhishGNN: A Phishing Website Detection Framework using Graph Neural Networks

then taken by a GNN as new input features and af-
ter message-passing, outperforms both traditional and
Machine Learning techniques. The best accuracy has
been achieved using a GCN combined with a Random
Forest classifier. Furthermore, our approach is easily
pluggable with any GNN architectures or other down-
stream classification methods. Hence, can be adjusted
and improved in future works.

For future works we will focus on the establish-
ment of a larger dataset, that contains more diverse ex-
amples. This dataset will be used in further research
to improve benchmarking capabilities for phishing
classification based on GNNs. We will also focus on
improving the accuracy of our approach via leverag-
ing edge features in the graph.

REFERENCES

Ahmadi, A. H. K. (2020). Memory-based graph networks.
PhD thesis, University of Toronto (Canada).

Benavides, E., Fuertes, W., Sanchez, S., and Sanchez, M.
(2020). Classification of phishing attack solutions by
employing deep learning techniques: A systematic lit-
erature review. Developments and advances in defense
and security, pages 51-64.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. (2019). Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 257-266.

Dunlop, M., Groat, S., and Shelly, D. (2010). Goldphish:
Using images for content-based phishing analysis. In
2010 Fifth international conference on internet moni-
toring and protection, pages 123-128. IEEE.

Gilmer, J., Schoenholz, S. S., Riley, P. F.,, Vinyals, O., and
Dahl, G. E. (2017). Neural message passing for quan-
tum chemistry. In International conference on ma-
chine learning, pages 1263-1272. PMLR.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive
representation learning on large graphs. Advances in
neural information processing systems, 30.

Jain, A. K. and Gupta, B. (2018). Phish-safe: Url features-
based phishing detection system using machine learn-
ing. In Cyber Security, pages 467-474. Springer.

Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Le, H., Pham, Q., Sahoo, D., and Hoi, S. C. (2018). Url-
net: Learning a url representation with deep learn-
ing for malicious url detection. arXiv preprint
arXiv:1802.03162.

Opara, C., Wei, B., and Chen, Y. (2020). Htmlphish: en-
abling phishing web page detection by applying deep
learning techniques on html analysis. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1-8. IEEE.

Ouyang, L. and Zhang, Y. (2021). Phishing web page de-
tection with html-level graph neural network. In 2021
IEEE 20th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications
(TrustCom), pages 952-958. IEEE.

Prakash, P., Kumar, M., Kompella, R. R., and Gupta, M.
(2010). Phishnet: predictive blacklisting to detect
phishing attacks. In 2010 Proceedings IEEE INFO-
COM, pages 1-5. IEEE.

Sahoo, D., Liu, C., and Hoi, S. C. (2017). Malicious url
detection using machine learning: A survey. arXiv
preprint arXiv:1701.07179.

Sakurai, Y., Watanabe, T., Okuda, T., Akiyama, M., and
Mori, T. (2020). Discovering httpsified phishing web-
sites using the tls certificates footprints. In 2020 IEEE
European Symposium on Security and Privacy Work-
shops (EuroS&PW), pages 522-531. IEEE.

Saxe, J. and Berlin, K. (2017). expose: A character-level
convolutional neural network with embeddings for de-
tecting malicious urls, file paths and registry keys.
arXiv preprint arXiv:1702.08568.

Sonowal, G. and Kuppusamy, K. (2020). Phidma-a phish-
ing detection model with multi-filter approach. Jour-
nal of King Saud University-Computer and Informa-
tion Sciences, 32(1):99-112.

Tan, C. L., Chiew, K. L., Yong, K. S., Abdullah, J., Se-
bastian, Y., et al. (2020). A graph-theoretic approach
for the detection of phishing webpages. Computers &
Security, 95:101793.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.

Wang, G., Liu, H., Becerra, S., Wang, K., Belongie, S. J.,
Shacham, H., and Savage, S. (2011). Verilogo: Proac-
tive phishing detection via logo recognition.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.

435

