
Novel Design for IE-Cache to Mitigate Conflict-based Cache-side
Channel Attacks with Reduced Energy Consumption

Saqib Javed1, Muhammad Asim Mukhtar1, Muhammad Khurram Bhatti1 and Guy Gogniat2

1Information Technology University, Lahore, Pakistan
2Universite Bretagne Sud, Lorient, France

Keywords: IE-Cache, V-Way Cache, Timing Cache Side Channel Attacks, Prime+Prune+Probe, Prime+Probe Attack.

Abstract: Cache-based side-channel attacks have raised serious security concerns in the contemporary cache architec-
tures. To mitigate these attacks, various cache architectures have been proposed that rely on cache partitioning
and random memory-to-cache mapping based methods. Unfortunately, these cache methods are not adopted
by the mainstream processors because of unfavorable security and performance trade-off. In literature, the
Indirect-Eviction Cache (IE-Cache), a random memory-to-cache mapping based cache architecture, has shown
high security and faster execution time by introducing the principles of multi-indexing and relocating the cache
lines. However, IE-Cache requires relocation of cache lines that result in high energy consumption along with
security. In this paper, we alleviate the energy consumption issue in IE-Cache by introducing a pointer-based
mapping between tag and data store, which we call PIE-Cache (Pointer-based IE-Cache). This enables relo-
cation of pointers in the tag-store without relocating a large cache line in the data-store, yielding low energy
consumption compared to IE-Cache. We have developed the PIE-Cache model in the gem5 simulator to eval-
uate the energy consumption with Micro-benchmark. The results show that the energy consumption of 1MB
PIE-Cache with 4 ways and 3 levels is 20% less compared to IE-Cache with the same capacity, ways and
levels over Micro-benchmark. Moreover, we have performed the security evaluation of PIE-Cache in the same
way as proposed in IE-Cache study to compare the learning time of eviction sets. These results show that the
complexity of learning eviction sets is similar to IE-Cache.

1 INTRODUCTION

Cache-based side-channel attacks have raised serious
security concerns in the contemporary cache archi-
tectures. To mitigate these attacks, various cache
architectures have been proposed. Among these
countermeasures, indirect eviction cache (IE-Cache)
has shown a high security against conflict-based
cache side-channel attacks and faster execution time
(Mukhtar et al., 2020). It introduces the cache line
relocation and multi-indexing mechanism to generate
a sequence of random cache conflicts on one mem-
ory access, and the cache line is evicted as a result
of the last cache conflict. This introduces the non-
evicting cache conflicts, which has shown impractical
to learn by the attacker using existing and expected
eviction set profiling techniques. However, this incurs
high energy consumption because of the cache lines
relocation. In this paper, we provide a solution for
the high energy utilization problem so that IE-Cache
can provide prevention against eviction-base cache

side-channel attacks along with low energy consump-
tion. We have observed that two types of relocation
are happening in IE-Cache, i.e., tag lines and data
lines relocation. We have replaced the direct map-
ping of tag-to-data lines with pointers-based mapping.
This mapping allows for the relocation of tag lines
only. This reduces the relocation overhead and en-
ergy consumption along with the same security level
against conflict-based cache side-channel attacks as
IE-Cache. The contribution of this paper are men-
tioned below:

• A solution is proposed for low energy utilization
in IE-Cache by adding a pointer in tag-store to-
wards data-store.

• The performance of PIE-Cache is analyzed ex-
perimentally using gem5 simulator and compared
with IE-Cache and set-associative cache.

• Security performance is also analyzed and as ex-
pected, the security performance of IE-cache re-
mains intact in PIE-Cache.

Javed, S., Mukhtar, M., Bhatti, M. and Gogniat, G.
Novel Design for IE-Cache to Mitigate Conflict-based Cache-side Channel Attacks with Reduced Energy Consumption.
DOI: 10.5220/0011326700003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 675-680
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

675



• Energy utilization and cache performance are
evaluated on gem5 simulator using Micro-
benchmark. Energy utilization is reduced of about
20% on average for 1MB PIE-Cache with 4 ways
and 3 levels.

2 BACKGROUND AND
MOTIVATION

This section describes the background on conflict-
based cache side-channel attacks, IE-Cache and evic-
tion set profiling techniques.

2.1 Conflict-based Cache Side-Channel
Attacks

In conflict-based cache side-channel attacks, the at-
tacker tries to observe the conflicts on specific cache
lines with a victim program. For example, in
Prime+Probe attack (Liu et al., 2015), the attacker ex-
ecutes an attack in four steps to observe cache con-
flicts: profiling of eviction set, initialization of cache
state, waiting state, observation of cache state. Using
this memory access pattern, the attacker can steal se-
cret information (Liu et al., 2015; Gruss et al., 2016;
Yarom and Falkner, 2014).

2.2 Indirect Eviction Cache (IE-Cache)

Indirect eviction cache (IE-Cache) belongs to the
class of random memory-to-cache mapping based
countermeasures. IE-Cache basic organization is like
skew associative cache with one way in each skew. To
make it resilient against the conflict-based cache at-
tacks, IE-cache proposed multi-indexing and reloca-
tion of cache lines for eviction. On cache miss, cache
controller selects the cache line from each way and
picks one of them at random, let us say this picked
cache line as first level candidate. This first level can-
didate is indexed again for finding further cache lines
where it can be relocated in cache. After passing first
level candidates via indexing function of each cache
way except in which it is already residing, multiple
cache lines are selected. Then, again one cache line is
selected from these, which we call second level candi-
date. This is repeated multiple times depending on the
design limit. On the last indexing level, one cache line
selected at random will be evicted. This selection pro-
cess is like breadth-first graph walk. Assuming each
search step as level and each cache line as graph node,
the selection process can be represented in a tree form
as shown in Figure 2. Lastly, each cache line selected

at the lower level is relocated to the higher level cache
lines to accommodate the incoming memory address
in the lowest level. In a security perspective, this en-
tire indexing process introduces the cache conflicts
that relocates instead of eviction, which are called
non-evicting members of eviction set. Finding these
non-evicting members are impractical in IE-Cache
because of these cannot be directly observed via tim-
ing channels attack like Prime+Prune+Probe profiling
techniques (Purnal and Verbauwhede, 2019).

2.3 Prime+Prune+Probe and
Branch-breaking

Prime+Prune+Probe is an advanced profiling tech-
nique to learn the eviction sets in existing famous
random memory-to-cache mapping countermeasures
(ScatterCache (Werner et al., 2019) and Ceaser
(Qureshi, 2018)). It has shown that the eviction set in
these countermeasures can be learned in few seconds
(Purnal and Verbauwhede, 2019). This technique is
also like Prime+Probe attack instead to starting with
random memory addresses. First, the attacker devel-
ops a group of randomly selected memory addresses
(say G) and fills the cache with the memory addresses
belonging to group G. After that, attacker measures
the access latency of the group members by access-
ing them again. In case of long access latency, at-
tacker excludes that memory address from the group
G. The attacker repeats these steps till he finds all
memory addresses with the short memory access la-
tency. This reduces the G size, say G’. Lastly, attacker
uses this G’ group to learn the conflict behaviour
with the victim execution. However, he can only
learn the conflict behaviour via timing channel, non-
evicting members of IE-Cache cannot be learned via
Prime+Prune+Probe technique. To learn non-evicting
members of the IE-Cache, authors of IE-Cache pre-
sented the expected technique which is called branch-
breaking technique (Mukhtar et al., 2020). In this
technique, the attacker uses same group G’ to find the
non-evicting members indirectly. In branch-breaking
technique, the attacker excludes one memory address
from the group and observes the evicting behaviour of
already found evicting members. If the attacker finds
the evicting members remain in the cache in multiple
turns, it means the excluded member is the parent (or
non-evicting member) of the evicting member.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

676



3 POINTER-BASED INDIRECT
EVICTION CACHE
(PIE-CACHE)

We observed in IE-Cache that the actual conflict hap-
pens at tag-store of cache. Because of the direct
mapping between tag-store and data-store, data-store
also needs to relocate along with tag on conflict at
tag-store level. We find that the relocation of tag-
store only is sufficient in IE-Cache to achieve security
against conflict-based cache side-channel attacks. On
relocation of tag-store, if data remains at same place
in data-store, this will not depict an observable timing
effect. This is because the both tag and data remains
in cache after relocation of tag only.

In order to alleviate the high energy consumption
issue of IE-Cache without degrading the security, the
insight is to reduce the number of bytes needed to
be relocated by introducing the novel pointer-based
mapping between tag-store and data-store, we call
this proposed cache as Pointer-based Indirect Eviction
Cache (PIE-Cache). This allows to relocate tag with-
out moving data lines as pointer defines the respective
line in data-store. This replaces relocation of 64 bytes
cache line with only few bytes pointer in tag-store.
The number of pointer bytes depends on the data-
store size Reduction of such number of bytes in re-
location impacts the energy consumption. We exper-
imentally evaluated the impact of energy consump-
tion in Section 5 for varied cache sizes over Micro-
benchmark.

PIE-Cache threat model is identical to IE-Cache,
which we now make explicit. The attacker has user-
level privileges only. The attacker can measure mem-
ory access latency using hardware timers and also
via other methods like threads as counters. We also
consider that the memory de-duplication feature is
not enabled, which is a fair assumption as it is of-
ten disabled in real environment for security rea-
sons(Mukhtar et al., 2019). This also eliminates
the shared memory cache-based side-channel attacks
such as Flush+Reload and its variants.

Structurally, PIE-Cache is similar to IE-Cache. It
also contains skews with one cache way and each
cache way is indexed by cryptographic based index-
ing function. The indexing process uses the multi-
indexing and relocation of cache lines in the same
way as IE-Cache discussed in Section 2. PIE-Cache
implements random replacement policy to select the
cache line for relocation on each indexing level. The
main difference of PIE-Cache compared to IE-Cache
is the mapping mechanism between tag-store and
data-store. Each entry of PIE-Cache tag-store is intro-
duced with pointer that identifies the mapping to the

entry in data-store. Pointer in each tag-store points to
a unique entry in the data-store.

On cache hit, PIE-Cache behaves in the same way
as IE-Cache On cache miss, indexing mechanism of
PIE-Cache is same as IE-Cache but relocation behav-
ior is different. Assuming that the indexing mech-
anism has finalized the cache line (or candidate) at
each level. Then, candidate at each lower level of in-
dexing will be relocated to location of higher level
candidate along with the pointers. The last level can-
didate, which is selected for eviction, will be evicted
but its pointer will be assigned to the tag entry where
incoming memory address is being placed.

We explain the operation of eviction process in de-
tail using the example in Figure 1. The example uses
a small 3 ways cache with 8 cache lines per way. Let-
ters A-Z indicate the memory addresses stored in the
tag entry and numbers P1−P24 denote the pointers
to data line. Figure 2 shows the eviction process to
place a memory block (Y ) in cache with a two level-
of-indexing (Mukhtar et al., 2020). In the first level,
indexing function using Y selects a tag-store’s entry
(or tag line) from each way (let us say, Y selects Q, A
and K). Then, one tag line is selected for relocation at
random, let us say Q is selected. In second level-of-
indexing, Q is given to indexing function to find line
in tag-store where it can be relocated, let us say these
lines are P and Z. Again, one cache line is selected at
random, say Z. As this is the last level-of-indexing, Z
is evicted. Afterwards, series of relocation are made
to accommodate the incoming memory address. Q
will relocate to Z’s position and similarly Y to Q loca-
tion. The pointer of each tag entry is also relocated to
each new line. The pointer associated with the evicted
cache line is assigned to the tag entry belonging to Y .
Final state of cache after eviction process would con-
tain Y with pointer P4 at the location of Q and Q with
P1 at location of Z.

3.1 Security Perspective

With the addition of pointers the security perspec-
tive remains unchanged in PIE-Cache compared to
IE-Cache. 1) It increases the size of eviction set,
which increases the effort of the attacker for profil-
ing the eviction set. 2) It adds conflicting members in
the eviction set that relocate within the cache instead
of eviction, we call these members as non-evicting
members of an eviction set. As these do not evict,
non-evicting members cannot be observed via mem-
ory access latency.

Novel Design for IE-Cache to Mitigate Conflict-based Cache-side Channel Attacks with Reduced Energy Consumption

677



Figure 1: PIE-Cache Architecture.

Figure 2: Relocated Candidate Tree.

3.1.1 Large Eviction Set Size

Eviction set is the group of memory addresses that are
used to generate the cache conflict with the targeted
victim’s memory address. For instance, in conven-
tional set-associative cache, each memory address is
mapped to one cache set due to which the attacker re-
quires to fill all cache lines belonging to a targeted
cache set for cache conflict on the targeted victim
memory access. Assuming 8 cache lines in cache
set, attacker needs 8 memory addresses belonging to
cache set to fill it. However, in PIE-Cache, each mem-
ory address can be said as member of multiple sets
compared to set-associative cache. This is because of
the implementation of skew in PIE-cache. The way
and skew can be used interchangeably in our case be-
cause each skew has one way in PIE-Cache. There is a
probability that the victim memory address only con-
flicts with the attacker memory address in only one
way. To guarantee the conflict in that case, if the at-
tacker tries to fill the specific cache way by accessing
a specific memory address, random placement makes
it uncertain for the attacker about placement of mem-
ory address in specific cache way. This forces the at-
tacker to access multiple memory addresses related to
specific cache way to guarantee the filling of certain
cache way. The number of memory addresses can be
seen as popular bin-and-ball problem that how many

balls are required to fill the specific bin with a certain
confidence. Using this analysis, cache with 2 level-of-
indexing and 4 ways, the eviction set size is 768. If
number of ways is increased to 8 ways, then the evic-
tion set size becomes 8432. Similarly, if we increase
level-of-indexing to 3 for 4 and 8 ways, the eviction
sets become 29552 and 253535, respectively.

3.1.2 Learning Non-evicting Members

The next difficult task for the attacker is to identify
non-evicting members. The attacker does not get ac-
cess to direct information through timing channel be-
cause the non-evicting cache line does not evict due to
victim access. However, through indirect timing anal-
ysis the attacker can analyze the connection between
evicting and relocating cache lines. For instance, Fig-
ure 2 shows that if K is not present in cache then it is
impossible to evict D from cache. Here D and K are
evicting and non evicting cache lines respectively. If
attacker is able to find D in profiling step then he can
come to conclude that K is also in G’ group. In order
to find K, all the memory addresses of G’ are accessed
by the attacker. Then the attacker waits for the victim
to access, with the purpose that if randomly selected
address is K then cache line D will not evict. To de-
termine if eviction occurred or not, the attacker again
accesses D during its time measurement. The attacker
can monitor that, if K is not a selected candidate to be
evicted then D will be evicted multiple times. If the
attacker determines that selected member has lowered
the eviction chances of D in numerous trials, then he
predicts that the selected member is K.

According to (Mukhtar et al., 2020), 227 years are
required by attacker to find single eviction set for IE-
Cache of 3 levels, 212 cache lines and 4 ways. In our
case we have discussed 8 ways IE-cache, for which
attacker will require far more time. To notice the evic-

SECRYPT 2022 - 19th International Conference on Security and Cryptography

678



tion behavior on next selected candidate, the attacker
needs to flush and fill members of G’ again. It is diffi-
cult to place non-colliding members in cache because
two members can collide in any other replacement if
not in first. Random replacement policy changes the
placement of members for every access, even in the
case of same memory access. Therefore, multiple ac-
cesses of all group members is required to measure
access latency. If any access comes up with prolonged
latency then he has to iterate the action of flush and
filling again with the purpose to avoid self-eviction of
group members.

3.2 Experimental Evaluation

This section first presents the security results of PIE-
Cache by showing the work effort required to learn
the non-evicting members. Lastly, performance re-
sults are presented.

4 SECURITY EVALUATION

We have built the python model of PIE-Cache to ex-
perimentally verify the attacker efforts to profile the
eviction set, as mentioned in (Mukhtar et al., 2020).
Following assumptions have been taken during the
experiment. Firstly, cache uses random replacement
policy and fills the invalid cache line first. Second,
keys of indexing function are created using random
function and remained same in whole experiment.
Third, pointers are also assigned randomly to each en-
try in tag using randint method of random library of
python. Lastly, only victim and attacker processes are
executing, which favors the attacker in terms of less
noise.

We have used Prime+Prune+Probe technique to
learn the last level members of eviction set. To find
the non-evicting members of the eviction set, break-
branch technique has been executed on the group used
in Prime+Prune+Probe technique. We have averaged
the number of memory accesses required by the at-
tacker to find 1000 evicting and non-evicting mem-
bers. Then, this average number of memory accesses
is multiplied with the number of evicting and non-
evicting members required in the eviction set dis-
cussed in Section 3.1.1. To calculate the time, we
have used the following time for each event: cache hit
9.5 ns, cache miss 50 ns, cache flushing 3.6 ms, vic-
tim process execution time 0.5ms. Table 1 shows the
results of the experiment in terms of number of mem-
ory accesses and time needed to learn an eviction set
in PIE-Cache having 4 ways. In Table 1 CL is number
of cache lines, L is number of relocation levels, G is

group size selected, G’ is group in which members do
not collide, nrmv is turns required to determine non-
colliding members, npl is number of turns required to
load non colliding members in cache, avgv is average
number of victim accesses and avga is average num-
ber of attacker accesses for victim access.

Results in Table 1 show the results with selec-
tion of varied sizes of groups G. For small sizes, it
shows that the number of memory accesses and time
are increased. This is because the small group size de-
creases the probability of collision and attacker needs
to repeat multiple times to occur the cache conflict
with the victim. Inversely, in case of large G, the
number of memory accesses and time is reduced but
still impractical. The reason of impractical time is
because of the self collisions among the members of
large G that still remain even after the attacker com-
pletely pruned the G. This is because the attacker has
only pruned in the one way of G placement in the
cache but there is so many possible combinations of
placement. To place the pruned in a way such that no
self conflicts happen takes longer time. These results
approximately match with the results of the IE-cache
of same configuration, mentioned in research work
of IE-Cache (Mukhtar et al., 2020). Therefore, PIE-
Cache provides same protection against Prime+Probe
attack as of IE-Cache.

5 PERFORMANCE EVALUATION

For performance evaluation, PIE-Cache model was
developed on gem5 simulator. We have modeled a
2 level cache where L1 has split data cache (64 KB)
and instruction cache (16 KB). L2 cache is a shared
cache of size 1 MB. Each entry of tag-store and data-
store is of 44 and 64 bytes respectively. Tag-store en-
try consists of 4 bytes pointer. Energy consumption is
evaluated of PIE-Cache and IE-Cache having 4 ways.
This energy consumption is normalized over energy
consumption of set-associative cache with same con-
figurations as PIE-Cache and IE-Cache. 40 workloads
of Micro-benchmark are used to evaluate the energy
consumption. Figure 3 presents the result for nor-
malized energy consumption of PIE-Cache over IE-
Cache having 4 ways.

In Figure 3, as PIE-Cache energy consumption is
normalized over IE-Cache energy consumption, bar
less than 100% indicates the less energy consumption
compared to IE-Cache. Results in this figure show
that the energy consumption for 4 ways PIE-Cache is
reduced by 20.8% on average compared to IE-cache.
This reduction is because of the elimination of energy
to read and write data entries during the cache miss in

Novel Design for IE-Cache to Mitigate Conflict-based Cache-side Channel Attacks with Reduced Energy Consumption

679



Table 1: Time Calculation for Building Eviction Set.

CL L G G’ (k) nrmv npl
Evicting Non-Evicting

avgv avga Time(hr) avgv avga Time(hr)

212 3

16 13534 161 59 1.17E7 5.83E13 302 5.84E17 1.24E17 6.82E12
15 13659 147 88 1.52E7 6.76E13 1254 9.95E18 3.06E21 1.41E13
14 13311 151 43 3.25E7 2.03E13 1379 2.16E18 2.74E18 2.56E12
13 13308 27 31 5.93E7 8.36E13 1709 2.03E18 4.02E20 2.37E12

Figure 3: Normalized Energy in 4 ways Last Level Cache.

PIE-Cache compared to IE-Cache. We also observed
that the cache miss behavior of both caches are similar
in experiments, which indicates that the effect on exe-
cution time will be the same in both caches. In exper-
iments, maximum and minimum energy consumption
are observed at MIP and ML2 respectively. Overall,
the variation in energy consumption among the work-
loads are slightly different because of same last level
cache miss behaviour is observed among the work-
loads. We have also evaluated the energy consump-
tion for cache sizes with greater number of ways.

6 CONCLUSION

This paper proposes a cache which reduces the high
energy utilization of IE Cache by introducing pointer-
based mapping between tag-store and data-store. It
skips the re-locations occurring in data-store entries.
It reduces energy utilization of about 20% compared
to IE-Cache for Micro-benchmark. Moreover, PIE-
Cache replacement process is identical to IE-Cache
that increases the eviction set size and introduces the
non-evicting members in the eviction set. Because of
this, the learning factor of the attacker in IE-Cache
remains same as of IE-Cache.

REFERENCES
Gruss, D., Maurice, C., Wagner, K., and Mangard, S.

(2016). Flush+Flush: A fast and stealthy cache at-
tack. In Proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 279–299.

Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015).
Last-level cache side-channel attacks are practical. In
2015 IEEE Symposium on Security and Privacy, pages
605–622.

Mukhtar, M. A., Bhatti, M. K., and Gogniat, G. (2019).
Architectures for Security: A comparative analysis
of hardware security features in Intel SGX and ARM
TrustZone. In 2019 2nd International Conference on
Communication, Computing and Digital systems (C-
CODE), pages 299–304.

Mukhtar, M. A., Bhatti, M. K., and Gogniat, G. (2020).
IE-cache: Counteracting eviction-based cache side-
channel attacks through indirect eviction. pages 32–
45.

Purnal, A. and Verbauwhede, I. (2019). Advanced profil-
ing for probabilistic Prime+Probe attacks and covert
channels in ScatterCache. ArXiv, abs/1908.03383.

Qureshi, M. K. (2018). Mitigating conflict-based
cache attacks via encrypted-address and remapping.
IEEE/ACM International Symposium on Microarchi-
tecture, pages 775–787.

Werner, M., Unterluggauer, T., Giner, L., and Schwarz, M.
(2019). ScatterCache: Thwarting cache attacks via
cache set randomization. In 28th USENIX Security
Symposium, pages 675–692.

Yarom, Y. and Falkner, K. (2014). FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel at-
tack. In 23rd USENIX Security Symposium, pages
719–732.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

680


