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Abstract: Federated Learning is established as one of the most efficient collaborative learning approaches aiming at
training different client models using private datasets. By private, we mean that clients’ datasets are never
disclosed as they serve to train clients’ models locally. Then, a central server is in charge of aggregating the
different models’ weights. The central server is generally a honest-but-curious entity that may be interested
in collecting information about clients datasets by using model inversion or membership inference. In this
paper, we discuss different cryptographic options for providing a secure Federated Learning framework. We
investigate the use of Differential Privacy, Homomorphic Encryption and Multi-Party Computation (MPC)
for confidential data aggregation while considering different threat models. In our homomorphic encryption
approach, we compare results obtained with an optimized version of the Paillier cryptosystem to those obtained
with BFV and CKKS. As for MPC technique, different general protocols are tested under various security
assumptions. Overall we have found HE to have better performance, for a lower bandwidth usage.

1 INTRODUCTION

Federated Learning (FL), a recent ML distributed
paradigm allowing to train a common model with-
out sharing sensitive local data, seems an appealing
option to build high-quality and robust models with
large amounts of training sets from various sources.
In FL a set of participating clients collaboratively
learn a global model by uploading their local mod-
els updates to a central server, which coordinates the
training. This central server updates the global model
by averaging the local model parameters, and sends
it back to the data owners. Even if federated learn-
ing has the advantage of not sharing local data, recent
research showed that the local data of distributed de-
vices can be leaked through the local model param-
eters. Sharing intermediate models with the coordi-
nator server, or among the participants, can lead to
various privacy attacks, e.g., extracting participants’
inputs or membership inference (e.g. (Hitaj et al.,
2017), (Melis et al., 2019)).

To address these problems, several works employ
different cryptographic techniques such as Differen-
tial Privacy (DP), Homomorphic Encryption (HE)
or Multi-Party Computation (MPC) to propose more
privacy-preserving and secure federated learning ap-

proaches. However, none of these solutions is yet
completely satisfactory (in terms of performances of
AI models and/or security constraints) and moreover
they are often tested for different applications and on
different datasets.

In this paper, we propose a first work on secure
federated learning in which for the same use-case and
datasets, different cryptographic solutions are con-
ceived, implemented and compared. More precisely,
our contributions are as follows:

• We propose different architecture configurations
for a Secure Federated Learning taking into ac-
count threats coming from the aggregation server
(by means of Homomorphic Encryption or Multi-
Party Computation) and/or the other clients (by
means of Differential Privacy) and we analyse the
impact of these countermeasures.

• We present a comparison of three HE schemes
(Paillier, BFV, CKKS) when applied to federated
learning averaging.

• We evaluate the performance of FL aggregation
implemented using general MPC protocols for
four different security configurations. We show
the cost of increasing the protection from a semi-
honest adversary to a dishonest one.
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• We implement global differential privacy on a
Federated Learning framework and evaluate the
privacy of the resulting model.

• We provide a comparative analysis between MPC
and Homomorphic Encryption solutions for our
Federated Learning model in terms of accuracy of
the AI model, the additional training overhead but
also from a security point of view.

2 OVERVIEW OF FEDERATED
LEARNING

The main idea of FL is highly similar to Distributed
Learning (DL) where the data is spread among work-
ers, while a central server is in charge of computing
the updates. A global model is computed by averag-
ing the local model trained on-device using the dataset
owned locally by each worker (data-owner). The FL
training is described below:

1. Central server sends the latest model parameters
to the nodes

2. Data is collected at each node

3. Each local model is trained based on the latest pa-
rameters

4. Updated model parameters are communicated
back to the global model

5. Combine updates from each model and retrain the
global model to get a new model

6. Restart from step 1

Three settings of FL exist: horizontal FL, vertical FL
and Transfer FL. In this paper we focus on horizontal
FL, or sample-based federated learning, which corre-
sponds to the scenarios in which datasets share the
same features. We assume honest participants and
security against different adversarial settings for the
server. For more details about FL, interested read-
ers can refer to these recent surveys (Li et al., 2021;
Kairouz and et al., 2021).

3 ARCHITECTURAL OPTIONS
FOR A MORE SECURE
FEDERATED LEARNING

3.1 HE-based Variant

One of the security assumptions we made with this
variant of architecture is an honest-but-curious aggre-
gation server, i.e. a server following honestly the pro-

Figure 1: Cross-silo federated learning architecture with
Homomorphic Encryption.

tocol and trying to infer as much information as pos-
sible from the data it has access to. Homomorphic
Encryption can prevent this from happening, by pro-
viding a secure countermeasure to protect the mod-
els parameters during FL training. Before the training
actually begins, the central server shares with the M
clients the global architecture of the neural network
that will be trained. For now, we assume a default
setting, with a simple key distribution, in which each
of the K clients selected randomly to participate in a
round has the same pair of secret and public homo-
morphic keys (sk, pk). sk is the private key while pk
is the public key.

The preliminary step of key setup is independent
of this work. For example, we can assume that the key
generation is made locally by one random client. The
latter can be randomly selected by the server or be the
result of a leadership election protocol. All the clients
will then share the same pair of (sk, pk). The central
server holds only the pk required for the homomor-
phic evaluation of the global model. At each round of
the training which is an iterative process, the server
randomly selects K out of the M clients. Figure 1
depicts a round of FL training with federated averag-
ing with homomorphic encryption. During this round,
each client runs several epochs of minibatch stochas-
tic gradient descent minimizing a local loss function.
Once the clients perform this local training, they en-
crypt their local models and send them to the central
server. The latter will perform a weighted averaging
of the updated local models to obtain an encrypted
updated global model. The current iteration ends by
sending the global model to each of the K clients that
decrypt it with the sk.
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Therefore, the only function to be computed en-
crypted is the federated averaging of the encrypted
weights provided by the K clients participating to the
FL round t. That is, the central server has to com-
pute per round t the function: wt+1←−∑

K
k=1

nk
n ·w

k
t+1,

where nk is the size of the training set of client k, and
n = ∑

K
k=1 nk is the total size of the training datasets

used in round t.

3.2 MPC-based Variant

As discussed in the previous section, the homomor-
phic encryption is a good choice for securing the av-
eraging by the aggregation server in the semi-honest
setting. However, MPC can provide a solution in a sit-
uation where such a server is not available due to lack
of trust between the participants. It can replace the
semi-honest aggregator server by two or more semi-
honest or untrusted aggregator servers that would per-
form the aggregation in a distributed way. MPC-
based distributed aggregators could solve two prob-
lems that a single semi-honest aggregator server can-
not address. First is that the secure aggregator server
cannot be also a participant of the computation: as a
participant has the decryption key that the aggregator
server cannot possess. For the same reason, an aggre-
gation server is not supposed to collude with one or
more participants. In MPC, the aggregators can be in-
dependent or not from the participants to the learning.
Therefore, a participant to the learning can also have
the role of an aggregator. Second, homomorphic-
encryption prevents the server from decrypting the
data but does not come with mechanisms addressing
the dishonest threat model, in which the aggregation
server could deviate from the agreed protocol. For
instance, an aggregation server corrupted by an ac-
tive adversary could omit some of the inputs provided
by the participants (and therefore modify the aggrega-
tion results, and in consequence the final model). Ho-
momorphic encryption could be enriched with addi-
tional verification mechanisms that would detect dis-
honest behavior of the aggregator. However, imple-
menting those mechanisms is not straightforward. In
contrast, MPC protocols addressing the active adver-
sary embed already mechanisms that enable to detect
deviations of the participants from the agreed proto-
col. The advantages of MPC come at the cost of in-
creased communications and expensive computations
(especially in the active threat model). Therefore, al-
though MPC is an interesting alternative to HE, it can
be judged impractical for use-cases where the com-
munications costs are an important factor.

In the example of architecture from Figure 2, the
aggregation servers are different from the clients and

a secret-sharing MPC algorithm is used to protect the
data (computation is realized on the shares of inputs
and its secure unless all shares of a given data are
gathered).

Figure 2: Cross-silo federated learning architecture with
MPC.

3.3 Adding DP Guarantees to FL
Training

In order to address threats coming from other honest-
but-curious clients, the above frameworks can be
completed with Differential Privacy (DP) guarantees
(see (Dwork, 2006)). In the case of a malicious server,
one may use local DP with noises generated by each
client. Otherwise, if one can trust the aggregation
server for the noise generation, global DP can be ap-
plied. Let us also note that for the secure variant of
FL using local DP and HE, specific quantization tech-
niques are necessary for the noise sampling to ensure
high DP guarantees (refer to (Amiri et al., 2021) for
more details).

4 EXPERIMENTAL RESULTS

4.1 FL Implementation with DP

We have implemented a federated learning with
global differential privacy based on Tensorflow-
federated. To demonstrate the results, we use the Tur-
bofan dataset (Saxena et al., 2008). This learning pro-
cess is similar to (McMahan et al., 2018). To simulate
the federated learning between three participants, we
split the data into three using the column “unit”, this
way each participant gets the full data. Two partici-
pants have 33 engines and one has 34 engines.
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Figure 3: Maximum validation accuracy during 20 rounds
in function of z.

Figure 4: Categorical Accuracy during the training with
different settings. Global differential privacy is computed
with z=0.01, and the epsilon (dashed curve) is estimated for
delta=0.01.

The standard deviation of the noise that we add
is equal to z/3, where z is a hyperparameter that we
make varying and 3 comes from the fact that we have
3 participants. In Figure 3, we vary z and consider 20
rounds of training. We collect for each z the maxi-
mum validation accuracy after 20 rounds. We denote
that the process does not converge after 20 rounds for
the 6 strongest z. Moreover, for the strongest z values,
we obtain the maximum validation accuracy for less
than 8 rounds. The results shown in Figure 3 are quite
intuitive: the more noise we add the less accurate the
model is. The evolution of the accuracy during the
training process gives a more precise understanding
of what happens. In Figure 4, we display the cate-
gorical accuracy obtained at each round on the train-
ing dataset and on the test dataset. It displays on the
same plot, the curves for the three different learning
settings:

• Federated Learning with global differential pri-
vacy

• Federated Learning without differential privacy

• Local training on the global dataset

In Figure 4 the differential privacy was computed with
z=0.0.1, a small amount of noise. Its affects the con-
vergence rate, the accuracy increases slowly but the
performances are good. We also compute the dif-

Figure 5: Validation accuracy and privacy metrics after 20
rounds of training in function of parameter z.

ferential privacy for z=0.1, a larger amount of noise,
but still quite small. The learning is affected. There
is some randomness in the evaluation accuracy. The
model is learnt on the training dataset but its perfor-
mances on the test dataset are not predictable. In our
first results of this sandbox dataset, it seems that z=0.1
is the larger amount noise that allow us to learn a
model, while ensuring some privacy.

We evaluate the privacy guarantees obtained after
20 rounds in order to find a trade-off between model
performances and data privacy. In Figure 5 we show
the validation accuracy, and the vertical line at z=0.1
highlights the limit between a learning for which we
achieve a convergence and a learning that does not
ends with convergence. Here, we see that the con-
vergence is achieved only with a good accuracy and
that the resulting privacy metrics are high, and thus
the privacy guarantees are low.

4.2 (F)HE for FL

All the experiments presented in this section are done
with parameters that support a security level of λ =
128. We have trained three models of different sizes:
197, 1000 and 10000 weights. Note that 197 is the
number of weights of the neural network that was
trained, in the previous section, using FL with DP and
the Turbofan dataset.

4.2.1 Implementation with Paillier

Our implementation using the Paillier cryptosystem
relies on a simple packing technique as well as a
faster Regev-style encryption function (encrypts by
homomorphically adding a random subset of public
encryptions of 0 to a pseudo-encryption of the mes-
sage). Because we parameterize for exact arithmetic
(as opposed to approximate arithmetic for some ho-
momorphic schemes or depending on the parameters)
we only need to concern ourselves with the time per-
formance on the server here and the bandwidth use.
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Table 1: Computation time (tc) in s, encryption time (te) in
s per client, and bandwidth overhead (Bw) in KB per client
for different sets of precision (p) in bits, number of weights
per client (Nw), number of training dataset size per client nk
and number of clients (K).

p Nw nk K te tc Bw

8
197 100 3 0.04 0.05 2.5
1000 1000 5 0.13 0.06 14
10000 10000 10 1.2 0.26 153

16
197 100 3 0.05 0.06 3.7
1000 1000 5 0.16 0.06 19
10000 10000 10 1.6 0.32 200

32
197 100 3 0.08 0.06 6.2
1000 1000 5 0.24 0.07 28
10000 10000 10 2.7 0.45 295

On the client side, the encryption time for a given
client depends on the number of ciphertexts needed to
be encrypted. That in turn is determined by the pre-
cision p (in bits) needed for the weights, the number
of weights per client Nw, and the number of training
points used by every client nk. We assume for our
tests, for simplicity sake, that all nk have the same
values and that all clients have the same number of
weights Nw. Table 1 presents our implementation’s
time and bandwidth performance for several sets of
parameters from small to big. Obviously the parame-
ter sets are not exhaustively chosen and are designed
to give a good idea of the scaling of our implemen-
tation. Because deciphering time is fixed (at roughly
0.05 seconds) for every set of parameters it is not in-
cluded in the Table. The bandwidth size corresponds
to what a client needs to send to the server. It gets
back roughly the same amount of data, therefore for a
total bandwidth, that needs to be doubled.

4.2.2 Implementation with BFV/CKKS

We did our tests for FL aggregation with BFV or
CKKS schemes with Microsoft SEAL 3.7.2 library.
For batching with BFV and CKKS, we set the encryp-
tion parameters with respect to the considered pre-
cision and the number of batched slots. For BFV,
the plaintext modulus size is at least equal to the
global precision p+ dlog2(nk)e+ dlog2(K)e. Mean-
while for CKKS, the scaling factor size dlog2(δ)e
is at least equal to p + dlog2(nk)e + dlog2(K)e +
dlog2(K × noise)e where noise corresponds to the
noise induced by a homomorphic addition. We do so
to ensure that the final precision with CKKS is equal
to dlog2(δ)e−dlog2(K×noise)e= p+ dlog2(nk)e+
dlog2(K)e. This precision is needed for ensuring a
correct aggregation result.

Note that the FL aggregation takes at most 15 mil-
liseconds (Tables 2 and 3). It is very efficient with
BFV or CKKS, as it only consists in computing ad-

ditions (no multiplication needed). However, the ci-
phertext size reaches at most 1.8 MB with BFV.

Table 2: Results with BFV–Computation time (tc) in ms, en-
cryption time (te) in ms per client, and bandwidth overhead
(Bw) in MB per client for different sets of precision (p) in
bits, number of weights per client (Nw), number of training
dataset size per client nk and number of clients (K).

p Nw nk K te tc Bw

8
197 100 3 1.091 0.043 0.031
1000 1000 5 1.397 0.056 0.031

10000 10000 10 15.97 3.216 1.8

16
197 100 3 1.349 0.024 0.031
1000 1000 5 1.052 0.04 0.031

10000 10000 10 14.264 3.422 1.8

32
197 100 3 0.973 0.024 0.031
1000 1000 5 3.001 0.091 0.087

10000 10000 10 14.561 4.47 1.8

Table 3: Results with CKKS–Computation time (tc) in ms,
encryption time (te) in ms per client, and bandwidth over-
head (Bw) in MB per client for different sets of precision (p)
in bits, number of weights per client (Nw), number of train-
ing dataset size per client nk and number of clients (K).

p Nw nk K te tc Bw

8
197 100 3 2.015 0.051 0.081
1000 1000 5 2.089 0.093 0.081
10000 10000 10 21.412 1.733 0.973

16
197 100 3 2.021 0.051 0.081
1000 1000 5 2.03 0.086 0.081
10000 10000 10 22.443 1.735 0.973

32
197 100 3 2.025 0.05 0.081
1000 1000 5 4.532 0.192 0.23
10000 10000 10 23.76 1.696 0.973

4.3 MPC for FL

We implemented the MPC-based secure FL aggrega-
tion procedure using the recently released MP-SPDZ
framework (Keller, 2020) that allows fast translation
of a python-like code into MPC operations and that
implements more than 30 variants of MPC protocols.
We measured the aggregation performance in terms of
time and communication costs. The number of partic-
ipants was set to 5 and models of 1000 weights were
considered. A configuration of 2 or 3 computing par-
ties was chosen, which is a common choice for MPC
computations. Two setting were tested: honest major-
ity and dishonest majority.

Three different MPC protocols were selected for
the test: a Shamir’s secret sharing-based protocol
for semi-honest honest majority, the MASCOT pro-
tocol for dishonest setting, and a version of MAS-
COT stripped of active security mechanisms for semi-
honest dishonest majority.

Performance results are presented in Table 4.
They were obtained on a device with a 4-th genera-
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Table 4: Performance results using general MPC protocols: straightforward aggregation of 5 FL contributions containing
1000 updates each, aggregated by two or three computing parties (CP) acting as aggregator servers. Communication cost is
measured for both one CP (2nd row) and all CPs (3rd row) in MB, as well as for both dishonest (DM) and honest majority
(HM) configuration. There is a visible performance gap between semi-honest and dishonest model, as well as between honest
and dishonest majority.

Semi-honest, DM, 2CP Semi-honest, HM, 3CP Dishonest, DM, 2CP Dishonest, DM, 3CP
Time [sec] 69,9 11,8 476,48 518,8
Send, 1CP 7666,7 83,6 41817,3 83634,6
Total send 15333,4 250,2 83613,9 250643

tion i5 processor running at 1.30 GHz using 16 GiB
of RAM on Linux. They confirmed that a straightfor-
ward implementation of distributed aggregation us-
ing general MPC protocols leads to a rather large
overhead in terms of communication and computation
costs. However, the advantage of this approach is that
it enables to switch smoothly between different proto-
cols and thus to easily adjust the security level and the
number of parties. It shows that securing the compu-
tation against an active attacker is possible, although
it comes at a high cost (that can be potentially accept-
able for some of the use cases where securing is a
much higher priority than the speed of the learning).
Moreover, such implementation is robust to dynamic
client or aggregation server dropouts.

5 ANALYSIS

The preliminary results presented in the above sec-
tions showed interesting perspectives when securing
Federated Learning with DP, FHE and MPC. As ex-
pected, there is a delicate trade-off to find between the
guarantees offered by the global DP and the accuracy
of the training model.

As for the results obtained with (F)HE and MPC,
let us analyse and compare the concrete case of 5
clients and a model size of 1000 weights. The
tests show that, under the hypothesis of a honest-
but-curious server, the homomorphic encryption un-
der various flavors (either optimized version of addi-
tive Pailier cryptosystem or classical batching of lev-
elled BFV and CKKS) has better performance results
in terms of execution times and bandwidths require-
ments than the general MPC protocols. This general
conclusion of homomorphic encryption performing
better for the aggregation in the context of federated
learning remains valid for other testing parameters.
Of course, the results with MPC could be ameliorated
through specific protocols and it is still useful in sit-
uations in which homomorphic encryption cannot be
used (see Section 3.2 for details).
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