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Abstract: Structural Health Monitoring (SHM) of civil structures using IoT sensors is a major emerging challenge. SHM 
aims to detect and identify any deviation from a reference condition, typically a damage-free baseline, to keep 
track of the relevant structural integrity. Machine Learning (ML) techniques have recently been employed to 
empower vibration-based SHM systems. Supervised ML can provide more information than unsupervised 
ML, but it requires human intervention to appropriately label data describing the nature of the damage. 
However, labelled data related to damage conditions of civil structures are often unavailable. To overcome 
this limitation, a key solution is a Digital Twin relying on physics-based numerical models to simulate the 
structural response in terms of the vibration recordings provided by IoT devices during the events of interest, 
such as wind or seismic excitations. This paper presents such comprehensive approach to address the damage 
localization task by exploiting a Convolutional Neural Network (CNN). Early experimental results related to 
a pilot application involving a sample structure, show the potential of the proposed approach and the 
reusability of the trained system in presence of varying loading scenarios. 

1 INTRODUCTION AND 
BACKGROUND 

All structures, whether buildings, bridges, oil and gas 
pipelines, are subject to several external actions and 
sources of degradation that might compromise their 
structural performance. This can happen due to a 
faulty construction process, lack of quality control, or 
unexpected loadings, environmental actions and 
natural hazards such as earthquakes. In order to 
observe the resulting changes in the structure, and to 
quickly react before a major damage occurs, it is 
crucial to implement an autonomus damage 
identification system. Systematic diagnostic and 
prognostic activities allow for timely maintenance 
and repair actions, with a direct impact on reducing 
operating costs. In the last years, increasingly 
sophisticated Structural Health Monitoring (SHM) 
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systems have been developed. These systems 
constantly measure structural responses to load 
solicitations and perform different tasks, such as 
damage detection, localization, quantification and  
estimation of the impact of environmental effects on 
the building (Ye, Jin, & Yun, 2019). A SHM 
architecture consists of different layers. In the lowest 
layer, a sensor network is installed on the structure 
and collects vibrational and environmental data. The 
upper layers deal with communication and data 
storage. In the analysis layer, the algorithms solving 
SHM tasks are implemented. Finally, in the highest 
layer the results of these computations are displayed 
via reports or web platforms. 

Recently, many Machine Learning (ML) 
vibration-based strategies have been proposed to 
solve different SHM problems. SHM systems based 
on ML algorithms are increasingly popular because 
of their ability to capture damage-sensitive patterns 
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that traditional algorithms often fail to detect (Wang, 
2022). In particular, using Supervised Learning (SL), 
the ML system models a relationship based on input-
output pairs, whereas Unsupervised Learning (UL) 
finds patterns in the input data that are provided 
without a corresponding output label. In structural 
engineering, a dominant method of UL is the 
Frequency Domain Decomposition (FDD), used for 
Modal Analysis (MA). Specifically, MA studies the 
dynamic properties of the systems in the frequency 
domain. MA uses the overall mass and stiffness of a 
structure to find the periods at which it naturally 
resonates (Rainieri, Fabbrocino, & Cosenza, 2007). 
The outputs of MA are frequency response, modal 
shapes and damping. FDD consists of two main steps: 
(i) frequency detection and (ii) tracking. Frequency 
detection is performed periodically by clustering 
algorithms, in order to find frequencies that have 
occurred since the previous execution. In the tracking 
phase, the frequencies found are combined to create 
trends describing the overall properties of the 
structure and how they change over time (Fabio, 
Ferrari, & Rizzi, 2016). 

UL methods detect anomalies or drifts in the 
inputs, without providing a clear and explicit 
explanation. In order to get explicit information such 
as damage location, quantification and type, data 
enriched with labels and SL methods are adopted 
(Wang, 2022). However, dealing with civil structures, 
labeled data related to different environmental 
conditions or seismic events are often unavailable. To 
overcome this limitation, a key solution is a Digital 
Twin (DT) reproducing both structural physics-based 
numerical models and input vibrations provided by 
IoT devices during the events of interest, such as wind 
or seismic forces (Aydemir, Zengin, & Durak, 2020). 

A DT consists of three components: a physical 
structure in the real world, a digital model of the 
structure in a computerized environment, and the 
integration of data and information that tie the virtual 
and real products together (David, Chris, Aydin, 
Jason, & Ben, 2020). For a successful DT 
implementation, all related assets need to be properly 
defined in order to collect the necessary data. Indeed, 
since data modeling and simulation have a non-
negligible cost, efficient tools and methods are 
needed. The process in which these tools are defined 
and the DT is implemented is called digital 
transformation. An important method of the digital 
representation of the structure based on computerized 
tools, is called Finite Element (FE). FE numerically 
solves differential equations of structural 
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engineering. Since the computational cost associated 
to the solution of such numerical models can easily 
become prohibitive, in view of a systematic 
evaluation for dataset generation purposes a Model 
Order Reduction (MOR) strategy is adopted to 
computationally speed up the construction of the 
necessary data (Rosafalco, Torzoni, Manzoni, & 
Mariani, 2021). Subsequently, Supervised Deep 
Learning (DL) models can be created with the 
generated data, to solve specific SHM tasks. 

This paper shows the overall methodology and a 
pilot application in the field, based on a 
Convolutional Neural Network (CNN) performing 
the damage localization task on a sample structure. 
Early experimental results show the potential of the 
proposed approach, as well as the reusability of the 
trained system on varying environmental actions. 

The paper is structured as follows. Section 2 
covers material and methods, whereas experimental 
results and discussions are covered by Section 3. 
Finally, Section 4 draws conclusions and future work. 

2 MATERIALS AND METHODS 

The SHM methodology applied in this work consists 
of two main parts: (i) the design and implementation 
of the DT used as dataset generator to create a dataset 
that reflects realistic environmental effects; (ii) the 
damage localization problem via a supervised DL 
architecture. Finally, an analysis of the performance 
of the DL model is presented, considering different 
loading conditions (Yuqian, Chao, Kevin, Huiyue, & 
Xun, 2020). 

2.1 Digital Twin Development 

To faithfully represent a real scenario through a DT, 
three aspects are considered: (i) physics-based model 
of the structure to be monitored, (ii) the digital 
reproduction of low-intensity seismic loads, and (iii) 
the introduction of noise components affecting the 
IoT sensor networks. The representation of the 
physical aspects involves the modeling of the 
building and the simulation of a sensor system for the 
vibrational IoT data acquisition. Let us consider, in 
Figure 1, a pilot example of building to monitor. A 
commercial example of IoT system is represented in 
Figure 2: a Deck – Dynamic Displacement Sensor1. It 
is a mono-axial wireless device, which acquires 
displacements with an accuracy of 0.01 mm, suitable 
for dynamic monitoring. 
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Figure 1: A pilot example of building to monitor. 

 

Figure 2: An example of IoT device: Deck – Dynamic 
Displacement Sensor © Move Srl, Italy. 

To clearly represent the methodology, a 
simplified DT will be illustrated in the following for 
the sake of significance. Figure 3 shows a simplified 
representation of the DT of the building. Here, the 
building is modeled as a two-dimensional (2D) frame, 
assuming a plane stress formulation; the geometry has 
been discretized in 3450 constant strain triangle finite 
elements. In order to reduce the computational burden 
of the data generation process, the structural model, 
which is based on the FE method, is replaced by a 
Reduced-Order Model (ROM) (Torzoni, Rosafalco, 
& Manzoni, 2020). Overall, Ns=6 synchronized 
vibrational sensor devices, with sampling rate 25Hz, 
have been considered to collect displacements 
measurements. Each displacement measure δk(t) has 
been prefixed in terms of direction 
(vertical/horizontal) and orientation (up/right). The 
bottom edges are assumed perfectly clamped to the 
ground. The output damage scenarios ∆i have been 
limited to 9 classes, located on related dark grey areas 
in Figure 3, and defined in Table 1. Here, the essential 
assumption is the presence of only one damage 
location after a seismic event. As a consequence, only 
a discrete number N∆ of damage scenarios are defined 
based on mechanical response, loading conditions, 
and aging processes. In the DT, damage is modeled 
as a localized reduction of stiffness on the selected 
regions. 

An important aspect concerns the synchronization 
between IoT devices, which is a critical requirement 

for system operation. Implementing a 
synchronization mechanism in a real-world scenario 
is not a zero-cost process. Several protocols can be 
adopted to guarantee this requirement, depending on 
the system type (Yiğitler, Behnam, & Riku, 2020). 

 

Figure 3: A simplified Digital Twin representation. 

Table 1: Output damage scenarios. 

Damage class Location description 
∆0 Undamaged 
∆1 Ground floor – left 
∆2 Ground floor – mid 
∆3 Ground floor – right 
∆4 1st floor - left 
∆5 1st floor - mid 
∆6 1st floor - right 
∆7 Roof - left 
∆8 Roof - mid 

Another important aspect concerns the input 
loading condition to which the structure is subject to. 
In this work, low intensity seismic loads are 
considered; Ground Motion Prediction Equations 
(GMPE) adapted from (Paolucci, et al., 2018) 
(Sabetta & Pugliese, 1996) have been adopted to 
faithfully reproduce this aspect. The main advantage 
of GMPE is the ability to generate spectrum-
compatible accelerograms as a function of: local 
magnitude Q, epicentral distance R, and site geology. 
The following ranges have been considered: Q ∈(4.8, 
5.3); R ∈ (80, 100) km; rocky conditions. The 
parameters Q and R have been modelled by uniform 
probability density functions.  

A vibration record is then generated by evaluating 
the model of the structure under the seismic event k. 
It consists of displacement measurements δk(t) of 
fixed length L=1750, δk(t)  ∈ ℝL and refers to a time 
period ∆t=70s. An event is detected and recorded by 
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all Ns sensors, yielding a seismic event observation 
δk

i(t) ∈ ℝL⨯ Ns, i=0,…,Ns.. 
Given an observation δk

i(t) related to a seismic 
event k, a damage class Δk ∈ 	ℕ  is assigned to it, 
therefore, a record of our dataset D is defined as a pair 
[δk

i,, ∆k], i=0,…,Ns. In Table 1 the Nd=9 damage 
scenarios included the undamaged baseline state, 
labeled as d=∆0.  

A damage level lk ∈ ℝ  is also associated with 
each event, to represent the intensity of the stiffness 
reduction involving the subdomain that is related to 
∆k; lk is sampled by a uniform probability density 
function in the range ∈	(0.05, 0.25).  

The iterative process of simulating the structural 
response for varying parameters values is repeated for 
No=9999 times D ∈ ℝL⨯ Ns⨯ No. 

2.2 The Seismic Events Dataset  

The influence of a generic signal δ(.) on a system can 
be measured by computing its power ఋܲ(.) as shown 
in Equation (1). Different components have been 
considered to model the various aspects influencing 
the sensed data, such as traffic, temperature, pressure, 
rain, wind, and so on. (Joaquín, Ana, Jesús, & 
Fernando, 2015). All these components contribute to 
produce the environmental phenomena that affect the 
behaviour of the structure. 

To measure the quantity of all components in the 
signal, a metric has been defined, i.e., the 
Environmental Condition (EC). EC is defined as the 
ratio of the power of a seismic signal ஔܲୱ  and the 
power of environmental noise ஔܲୣ. In order to avoid 
large values to skew the plot, a logarithmic scale has 
been applied, computing the EC metric in decibels as 
shown in Equation (2). An EC higher than 1 (higher 
than 0 dB) denotes more seismic signal than 
environmental noise, whereas a ratio equal to infinity 
indicates that the environmental noise is equal to zero.  

In this paper, the environmental noise introduced 
during the training phase is Gaussian, producing 
EC=10dB. 

ఋܲ(.) = ห	δ(.)หଶୀଵ݊ (1)

ܥܧ = 10 ݈݃ ఋܲ௦ఋܲ (2)

Both seismic signal and environmental noise 
powers must be measured at the same or equivalent 

points in a system, and within the same system 
bandwidth. Figure 4 shows an example of seismic, 
environmental signals, together with the integrated 
signal. 

(a) 
 

(b) 

(c) 

Figure 4: (a) example of seismic signal detected by sensor 
1 during the simulation of seismic events; (b) example of 
environmental noise modelling traffic, temperature, 
pressure, rain, wind, and so on; (c) the integrated signal.  

Data preprocessing has been carried out to 
manage the scaling of the data. In particular, a z-score 
scaling has been applied for all signals collected from 
the same sensor.  

More formally, Equations (3), (4) and (5) define 
the preprocessing.  

ߜ = ߜ − ߪߤ (3)

ߤ =  ேವୀଵܰߜ (4)

ߪ = ඨ หߜ − หேವୀଵߤ ܰ (5)

To split the data into training (90%) and test 
(10%) sets, the hold-out method is adopted; the 
relevant class numerosity for training and test sets is 
summarized in Table 2. 
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Figure 5: Data Pipeline. 

 

Figure 6: Convolutional NN architecture. 

Table 2: Seismic events dataset composition. 

Label Training set Test set 

∆0 994 117 

∆1 1003 108 

∆2 1008 103 

∆3 998 113 

∆4 992 119 

∆5 1001 110 

∆6 998 113 

∆7 1005 106 

∆8 1001 110 

2.3 The CNN Architecture 

To summarize the data pipeline, Figure 5 shows the 
main steps. A Convolutional Neural Network (CNN) 
is proposed to perform such classification task. CNN 
is a class of NNs that has become dominant in various 
domains such as computer vision, signal processing, 
speech recognition (Li, Zhang, Zhang, & Wei, 2017) 
(Galatolo F. A., 2018) (Galatolo F. A., 2019).  

CNN is designed to automatically and adaptively 
learn feature hierarchies through backpropagation, 
using multiple building blocks such as convolution 
layers, pooling layers, and fully connected layers. 

This section focuses on the CNN architecture, 
illustrated in  Figure 6. Specifically, the convolutional 
architecture consists of 4 blocks. The first three deal 
with feature extraction, whereas the last one performs 
the classification task. Each of the first three blocks 
consists of a 1D convolutional layer, a 1D max 
pooling layer, and a dropout layer; in addition, a 
flatten layer is added at the end of the feature 
extractor. The classifier block is composed of two 
dense layers separated by a dropout one. 

Figure 6 shows the hyper parameter values for the 
design of each layer. The training is run for 200 
epochs, using the Adam optimization algorithm; the 
validation set is generated from the training set by 
taking 20% of the records.  

To avoid overfitting phenomena, an early 
stopping condition callback is set. It ends the CNN 
training before it has reached the number of allowed 
epochs, when the loss computed on the validation set 
does not decrease for a number of epochs equal to 
patience=10.  

The damage location task is modelled as a 
multiclass classification problem, where the output 
label to be predicted identifies a potential region on 
the building. The categorical crossentropy is the loss 
function to be minimized during training, used in 
multiclass classification tasks. Equation (6) shows 
how the loss function can be computed given an 
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observation, where ∆′j is the i-th scalar target value in 
the actual vector ∆′  obtained by transforming the 
numerical variable ∆ into a categorical one;  ∆′j is the 
corresponding value in the predicted output. 

	ݏݏܮ = −∆′ ݈݃	 ∆	′ேௗ
ୀ (6)

In order to measure the performances of the 
model, three metrics are adopted, accuracy, precision, 
and recall, represented in Equation (7), (8) and (9) 
respectively. 

	ݕܿܽݎݑܿܿܣ = ܶܲ	 + 	ܶܰܶܲ	 + ܶܰ	 + 	ܲܨ	 + ܰܨ	 (7)

	݊݅ݏ݅ܿ݁ݎܲ = ܶܲܶܲ	 + ܲܨ	 (8)

ܴ݈݈݁ܿܽ	 = ܶܲܶܲ	 + ܰܨ	 (9)

where TP = True Positive, FP = False Positive, TN 
= True Negative, and FN = False Negative.  

3 EXPERIMENTAL RESULTS 
AND DISCUSSION 

The overall methodology has been developed on 
Google Colab (Bisong, 2019), a free platform based 
on the open-source Jupyter project. Both the data 
source and the code have been publicly released 
(Parola, 2022), to foster collaboration and application 
on various infrastructures. 

The device used is an NVIDIA Tesla K80 GPU. 
The training process ends after 97 epochs due to early 
stopping condition, restoring model weights from the 
end of the best epoch.  

The loss and accuracy on the validation set during 
training are shown in Figure 7 and Figure 8, 
respectively. From both figures, we can observe that 
there are no overfitting phenomena, the curves 
computed on training and validation sets have the 
same trend. Moreover, we can observe a slightly 
irregular trend, due to the presence of dropout layers. 

The convolutional model achieves a global 
accuracy of 83%. Figure 9 shows the accuracies 
through a confusion matrix, while Table 3 shows the 
precision and recall values per class. 

 

Figure 7: Loss learning curve. 

 

Figure 8: Accuracy learning curve. 

 

Figure 9: Confusion matrix on test set. 

Since the environmental noise level may vary, and 
this is not known a priori, an assessment of the model 
performance with different noise level of the test set 
is carried out, to understand its robustness with 
respect to different environmental conditions. Model 
testing is repeated 13 times, varying the noise level 
and producing the corresponding EC values of the test 
set between 1 dB and 25 dB, as shown in Figure 10. 
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Table 3: Damage localization test results by class. 

Class Precision Recall 
∆0 .56 .59 
∆1 .54 .61 
∆2 .95 .88 
∆3 .61 .71 
∆4 .94 .92 
∆5 .99 .97 
∆6 .91 .78 
∆7 1.0 .98 
∆8 1.0 1.0 

In Figure 10, we can observe that the 
convolutional model is still able to detect damage-
sensitive patterns, despite the increasing amount of 
noise in the data. Specifically, by using training data 
with EC= 10 dB, good performance is achieved on 
test set with EC larger than 10 dB. For test set with 
EC lower than 10 DB a decrease in the accuracy value 
can be observed. In this application context, the 
prediction capability of the damage location is 
acceptable as long as the EC value is larger than 5 dB. 

 

Figure 10: Model accuracy on test set varying the EC 
values. 

4 CONCLUSIONS 

In this work, an integrated method made by a 
Convolutional Neural Network and a Digital Twin 
has been proposed in the context of Structural 
Damage Localization. To illustrate the approach, the 
Digital Twin of a sample infrastructure is modelled 
through a Reduced-Order Model method, together 
with the digital model of commercial IoT devices. 
The CNN architecture has been also detailed. The 
overall pipeline has been developed and publicly 
released. Different environmental conditions have 
been experimented on testing, to show the 
effectiveness of the approach. 

This paper represents a preliminary work to show 
the potential of the proposed approach. As a future 
work, other problem to solve, such as building 
affected by simultaneous multiple damages, should 
be considered. Further, acceleration sensing should 
be taken into account together with displacement, to 
support a multimodal monitoring. 
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