
Formal Notations and Terminology for Users’ Feedback and Its
Specialization for Interactive Fault Localization

Gergő Balogh and Péter Soha
Department of Software Engineering, University of Szeged, Szeged, Hungary

Keywords: Users’ Feedback, Terminology, Source Code Analysis, Fault Localization.

Abstract: The knowledge of users is utilized in several aspects during software engineering-related tasks and research,
such as UX and usability testing, code review sessions, and interactive debugging tasks, to name a few. Anyone
who wishes to work with such a system has to face two challenges. They have to evaluate the proposed process
and implement or integrate it into their workflow. This paper aims to aid these endeavors by providing a lingua
franca for the stakeholders to define and express the expected users’ feedback and the reaction they give to
them. Our goal is not to evaluate all users’ feedback-related results or to solve their testability and applicability.
Nevertheless, our findings will support the resolution of these issues. We provide a formal terminology, which
allows the stakeholders to specify their feedback instances, the items, and the actions.

1 INTRODUCTION

1.1 Ground Terms

Before we can discuss any issues, challenges, or
achievements, we have to define the very basics of
our terminology. Because in our opinion these terms
are the part of the common knowledge, moreover es-
sential to understand the further parts, we emphasize
them at the beginning op this paper. The central con-
cept in our paper is feedback, which is information
about reactions to a product, a person’s performance
of a task, among others, which is used as a basis for
improvement. The feedback can be collected with a
feedback system, for example, the customers’ expe-
rience with the product they use. In these systems,
there are two kinds of active participants. They are
the user and the stakeholder. For example, a user can
be a developer who gives a co-worker a code review
(i.e., feedback). The stakeholder uses this information
to improve the subject.

Feedback. The transmission of evaluative or cor-
rective information about an action, event, or process
to the original or controlling source.

Feedback System. A physical or theoretical system
that can collect, evaluate, and process a particular type
of feedback.

User. An actor who provides feedback about the
subject of the feedback system.

Stakeholder. Any other participants related to the
feedback system besides the user. A person with an
interest or concern in the outcome or the utilization of
the feedback system.

1.2 Motivation

The knowledge of users is utilized in several as-
pects during software engineering-related tasks and
research. End-users could express their opinions
about a software system, which developers could use
to enhance the UX of that system. A comprehensive
analysis of similar methods is presented in the sur-
veys by Hassenzahl et al. (Hassenzahl and Tractinsky,
2006) and Law et al. (Law et al., 2009). Program-
mers give feedback about the code quality (readabil-
ity, maintainability, etc.) to each other so that they
can speed up maintenance tasks, for example, Thong-
tanunam, P. et al. (Thongtanunam et al., 2015). McIn-
tosh et al. (McIntosh et al., 2016) presented several
techniques to improve the quality of the code. A re-
searcher could integrate developers’ knowledge into
various methodologies, like in the case of interactive
fault localization (iFL, (Horváth et al., 2020; Gong
et al., 2012)). To aid the interactivity, various tools
have been presented, such as VIDA (Hao et al., 2009)

226
Balogh, G. and Soha, P.
Formal Notations and Terminology for Users’ Feedback and Its Specialization for Interactive Fault Localization.
DOI: 10.5220/0011317800003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 226-233
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

by Hao et al. or STAD (Korel and Laski, 1988) by
Korel and Laski.

Currently, each stakeholder uses their notations
and terminologies to describe the feedback given by
the users, the items they are associated with, and the
action taken in response to them. We did not find any
common terminologies for these feedback-based sys-
tems. At the same time, any researcher or developer
who wishes to work with these systems is going to
face two challenges. They will have to evaluate the
proposed process and integrate it into their workflow.
These issues are more apparent when someone has to
transfer findings from one medium to another. For
example, a semi-formal or informal description of the
feedback system is sufficient when presented in a sci-
entific paper. However, it could be vague when stake-
holders want to utilize it as part of real-life workflows
(e.g.: as implemented features in software systems or
executable action during code reviews).

2 CONTRIBUTIONS

Our main contributions are the following:

• We provide the first version of a formal terminol-
ogy, which could be utilized to define and describe
the various feedback-related systems and method-
ologies (Section 3 and Section 4).

• Several examples illustrate the usage of the pro-
posed terminology, in which we describe al-
ready published fault localization feedback sys-
tems with the notations from our terminology
(Section 5).

3 FORMALIZATION OF USERS’
FEEDBACK

The usage of user’s feedback as mentioned above has
several common properties and components. All of
them define some subject items on which the users
express their opinion; then this feedback is utilized to
decide which action should be executed as the next
step of the process. The following section will for-
malize these three main constituents of feedback sys-
tems: the items, the feedback, and the effects.

In the case of usability testing, the items are the
features or functions of the system under test. During
code review sessions, developers will judge the qual-
ity of various code chunks. Finally, the iFL algorithm
would collect opinions about source code elements of
various granularity, like methods.

The methodologies and algorithms may group
some of these items and opinions based on their com-
mon properties or required actions. A negative code
review usually causes the creation of a new issue
about the problem. A low UX score could trigger fur-
ther feature improvements. Finally, the annotation of
the faulty code element(s) will terminate the fault lo-
calization process.

3.1 Subject Items

Since the primary subjects in our field are software
systems, we define the current version of the termi-
nology to support the analysis of those. Let us denote
the set of code elements or other components of the
system with S. Developers or users could give feed-
back to express their thoughts and feelings about any
s ∈ S subject.

Researchers and other stakeholders often group
those items during analysis. This practice, besides
reducing the cost of the process, also simplifies it
by making the suspected or required connections im-
plicit. In our terminology, we will use the φ : (s ∈
S) 7→ (l ∈ L) function to assign labels to subjects. L
is the set of all labels, while φ(s) ∈ L is the label of
s. This labeling will be used to simplify the handling
of similar subjects and hence the specifications of the
feedback system. Please note that, if the designed
feedback system requires it, stakeholders can choose
to use the trivial labeling (every subject assigned to its
own label), or compound labels, like sets, to express
grouping based on multiple aspects. For example, in
the case of iFL, a compound label could express the
feature- and structure-related grouping of the meth-
ods.

3.2 The Feedback

There are three available modes to collect users’ feed-
back. They either have to choose from a set of pre-
defined options, express their thoughts freely, or use
both modes simultaneously. During the postprocess-
ing phases of the free mode, stakeholders will assign
various options to the freely expressed thoughts to
make them more manageable; hence in any of the
three modes, a set can be specified that collects the
accepted opinions of the feedback system. In our ter-
minology, an option is an atomic description of the
thoughts and feelings about a subject item or a set
of items. We use the phrase “opinion” in a broader
sense; hence it can encode sentiments, voluntary and
involuntary reactions, or any other information origi-
nating from the users.

Based on the previously described properties of

Formal Notations and Terminology for Users’ Feedback and Its Specialization for Interactive Fault Localization

227

feedback-systems, we define an instance of feedback
as a function f : (l ∈ L′ ⊆ L) 7→ (o ∈ O′ ⊆ O), which
will assign opinions (o) to labels (l) of subject items.
A feedback system should specify the sets of opinions
(O) and feedback instances (F). A feedback instance
may not assign any opinion to some labels or use all
the opinions. We denote this with L′ and O′ subsets.

Similar to subject items, stakeholders tend to
group feedback instances to speed up the subsequent
steps of the process and to express suspected or ex-
pected connections. We use the term feedback-type
(F) to denote these groupings. Informally, a feedback
type is a set of preset feedback instances.

F := { f1, f2 . . .} a feedback-type

fi =
{
(l(i)1 ,o(i)1),(l(i)2 ,o(i)2), . . .

}
feedback instances

fi ∈ F

The concept of feedback types provides a new
layer of abstraction over the feedback instances.
Stakeholders may use the trivial case by simply nam-
ing the feedback instances accepted by the designed
feedback system. In these situations, all feedback-
types will contain a single feedback instance.

The above definition of set-based feedback types
allows for the expression of the relation between var-
ious types utilizing set theory tools and notations. For
example, consider the common feedback instances
and types of scientific paper reviews. There are four
different feedback possible: “strong accept”, “weak
accept”, “weak reject”, and “strong reject”. We could
define four distinct feedback-types (the trivial case),
but we could also specify two types according to
whether the feedback instance accepts or rejects the
paper. Furthermore, it is also possible to express the
reviewer’s confidence by introducing two more feed-
back types for strong and weak feedback instances.

The feedback types could be used to express quan-
tization. In the case of iFL, researchers could define
feedback instances to denote the level of confidence
about whether the inspected code-elements are faulty
or not (“faulty with confidence level 0”, “faulty with
confidence level 1”, . . .). Feedback types for low and
high confidence could be specified.

3.3 The Effects of the Feedback

The feedback system will perform some actions in re-
sponse to the given users’ feedback. In software en-
gineering, feedback instances or types can be used to
change the software system or any properties of in-
dustrial or research processes. We call these the effect
of the feedback.

The complexity of these actions could be prac-
tically infinite. We can address these issues in two
ways: the perfectionistic- and the pragmatic view. In
the first case, our terminology has to encompass all
the details of any possible actions anyone could exe-
cute in response to any feedback instances. In com-
parison, the pragmatic view will not overcrowd the
terminology with details that are mostly unused in
the feedback system related to software engineering.
By design choice, our terminology uses the pragmatic
view.

Based on our current understanding and experi-
ences, a sufficiently complex definition of effects is
the following. The effect e(f) of a feedback instance
f is a sequence of actions (a1,a2, . . .), which per-
form the desired task if applied in the predefined order
based on the labels and the assigned opinion.

e(f) := (a1(l j,o j),a2(lk,ok), . . .) the effect

f =
{
(l1,o1),(l2,o2), . . .

}
feedback instance

ai ∈ A an action

In the formula above, A denotes the set of all pos-
sible actions executed by the designed feedback sys-
tem.

The sequence of actions has several special prop-
erties. An action has to be specified for each label-
opinion pair of the feedback, but the specification
may prescribe the “no operation” which does nothing.
This restriction is necessary to preserve the unambi-
guity of the feedback system. An action with the same
parameters could occur more than once, and the same
label-opinion pair could be passed to several actions
in the sequence. This property allows the expression
of post- and preprocessing steps and to use actions
with the persistent global state.

Our terminology allows actions to have arbitrary
complexity. An action could store and retrieve auxil-
iary information (this could depend on the feedback
instance or type), it may be ignoring its input param-
eters, etc.

The effect e(F) of a feedback-type F is the se-
quence of effects and actions. These effects make it
possible to give a “similar reaction” to feedback in-
stances with the same type. To encourage stakehold-
ers to design a clean feedback system, our terminol-
ogy only permits that effects that have their instances
are in the feedback type.

e(F) = (α1,α2, . . .) the effect
αi ∈ A∪{e(f) : f ∈ F } action or instances’ effect

The effect of a feedback type could contain any
actions or effects of its instances in an arbitrary or-
der. Stakeholders could choose to include actions that

ICSOFT 2022 - 17th International Conference on Software Technologies

228

ignore their attributes or supply them with any ac-
cepted label-opinion pair. The substitution of parame-
ters with constant values for actions is only permitted
in the cases of feedback types’ effects.

3.3.1 Phase Structure of the Effects

The inner structure of the effects highly depends on
the challenges that the feedback system wishes to be
addressed. Despite this, we propose several guide-
lines for it. These guidelines are meant to encourage
the creation of a more straightforward and easier-to-
understand system. We propose that the effects of the
feedback instances and types consist of three phases:
a preprocessing, a core, and a postprocessing phase,
in that particular order. Furthermore, we suggest that
the pre- and postprocessing phases of feedback types
contain only actions, while their core is a mixture
of instances’ effects and actions. If necessary, these
phases could be partitioned into further sub-phases.

e(f) = (seqA︸︷︷︸
preprocess

,

sub-phase 1︷︸︸︷
seqA ,

sub-phase 2︷︸︸︷
seqA ,

...︷︸︸︷
. . .︸ ︷︷ ︸

core

, seqA︸︷︷︸
postprocess

)

e(F) = (seqA︸︷︷︸
preprocess

,

sub-phase 1︷ ︸︸ ︷
seqA∪E,

sub-phase 2︷ ︸︸ ︷
seqA∪E,

...︷︸︸︷
. . .︸ ︷︷ ︸

core

, seqA︸︷︷︸
postprocess

)

E = {e(f) : f ∈ F } set of instances’ effects

To simplify the following formulas, we introduce
the seq operator, which generates an arbitrary se-
quence from some or all items of the specified set.
Furthermore, if seq is used inside parentheses, like
(seqA,seqB), it means that we concatenate the (two)
generated sequences.

3.3.2 Kinds of Effects

The grouping of effects and actions depends on the
goals of the feedback system, but our terminology
mandates assigning at least one of the following kinds
to them. An action or effect could be assigned to more
than one kind.

Subject-related. Effects and actions of this kind
will modify the subject items, their properties, or their
context. For example, a negative code review could
eliminate various code elements, which shrinks the
set of subject items for the next iteration.

Process-related. These effects and actions control
the flow of the processes. For example, annotating
the faulty method could cause the fault localization
process to terminate.

Meta. Effects and actions that act on their feedback
system have to be assigned the ’meta’ kind. They
could introduce new feedback instances or change the
definition, hence the behavior of effects and actions.
For example, the “I do not know.” and the “None of
the above.” feedback instances could cause the set of
opinions to expand for further iterations.

4 GENERALIZED NOTATION OF
FEEDBACK-SYSTEMS

In this section, we elaborate on a proposed notation
for the previously introduced terminology. Although,
the mathematical formalism used in previous sections
is adequate to define a feedback system, a specialized
generative syntax could convey the same meaning in a
more condensed and presumably easier to understand
form. To explain the various aspects of this notation,
we utilize the terminology of the syntax LATEX pack-
age (Wooding,) and the ISO/IEC 14977:1996 stan-
dard (ISO,). To understand this section without ex-
pert knowledge about the standard mentioned above,
only to most common notations were used.

Atomic (from the viewpoint of this terminology)
constituents, like labels, actions, and opinions, are
highly dependent on the field of interest. We suggest
using the standards or the well-known notations to de-
fine these primitives.

Feedback instances are written as a set of assign-
ments, which marks the label and the opinion it is
mapped to (Grammer 4.1).

⟨feedback instance⟩ ::= ‘{’ ⟨assignments⟩ ‘}’
⟨assignments⟩ ::= ⟨assignment⟩ [‘,’ ⟨assignments⟩]
⟨assignment⟩ ::= ⟨label⟩ ‘→’ ⟨opinion⟩

Grammer 4.1: Notation for feedback instances.

Please note that instances do not have a name in
order to prevent confusion about the role of feedback
instances and types. If the feedback system requires
the naming of the instances, they have to wrap them
into feedback types (Grammer 4.2). A feedback type
is denoted as a set of instances with a name marked in
its prefix.

⟨feedback-type⟩ ::= ‘@’ ⟨name of type⟩‘{’ ⟨instances⟩ ‘}’
⟨instances⟩ ::= ⟨feedback instance⟩ [‘,’ ⟨instances⟩]

Grammer 4.2: Notation for naming and grouping feedback
instances.

Empty feedback-types and instances are discour-
aged to prevent confusion. If marking “no feedback

Formal Notations and Terminology for Users’ Feedback and Its Specialization for Interactive Fault Localization

229

given” is required, stakeholders should use “NONE”.
It represents a special feedback type, with several sub-
types (subsets) or instances representing the various
scenarios when the user cannot give feedback. The
effect of “NONE” contains only actions, which do
nothing, denoted with “NOP” (short for “no opera-
tion”). This suggestion does not prevent the system
from ignoring any other feedback types or instances,
i.e., does nothing in response. The proposed nota-
tion contains a predefined effect, with the name “IG-
NORE”. By default, the “IGNORE” effect is assigned
to the feedback-type “NONE”.

The feedback instance in which an effect is as-
signed has to be marked explicitly (Grammer 4.3).
However, our proposed notation allows us to de-
fine the effects before they are assigned to feedback.
Hence they could be referenced by name and assigned
to multiple feedback. To avoid unused effects, it is
strictly forbidden to define them without assigning at
least one feedback.

⟨effect of feedback instance⟩ ::= ⟨feedback instance⟩ ‘→’ (
⟨effect definition⟩ | ⟨effect reference⟩)

⟨effect of feedback-type⟩ ::= ⟨feedback-type definition⟩
‘→’ (⟨effect definition⟩ | ⟨effect reference⟩)

⟨effect definition⟩ ::= [‘@’ ⟨effect name⟩] ⟨effect⟩
⟨effect reference⟩ ::= ‘@’ ⟨effect name⟩
⟨feedback-type definition⟩ ::= (⟨feedback-type⟩ |

⟨feedback-type reference⟩)
⟨feedback-type reference⟩ ::= ‘@’ ⟨name of type⟩

Grammer 4.3: Assigning effects to feedback instances and
types.

Our notation encourages the preprocessing-core-
postprocessing partition of effects (Grammer 4.4).
Any of these phases could be empty, marked by noth-
ing (empty string) between their separators. Our no-
tation also allows us to reuse already defined phases.

⟨effect⟩ ::= ‘(’ ⟨preprocess⟩ ‘||’ ⟨core⟩ ‘||’ ⟨postprocess⟩
‘)’

⟨preprocess⟩ ::= ⟨phases⟩
⟨postprocess⟩ ::= ⟨phases⟩
⟨core⟩ ::= ⟨phases⟩
⟨phases⟩ ::= (⟨phase⟩ | ‘@’ ⟨name of phase⟩) [‘,’

⟨phases⟩]
⟨phase⟩ ::= ([‘@’ ⟨name of phase⟩] ⟨steps⟩ | ‘’)
⟨steps⟩ ::= ⟨step⟩ [‘,’ ⟨steps⟩]

Grammer 4.4: Denoting effect’s phase structure.

The only difference between the notation of feed-
back types’ or instances’ effects is that the core phases
of types’ effects could also contain instances’ effects

(Grammer 4.5).

⟨step⟩ ::= ⟨action name⟩ [‘(’ ⟨label⟩ ‘,’ ⟨opinion⟩ ‘)’]
⟨step of types’ core⟩ ::= ⟨action name⟩ [‘(’ ⟨label⟩ ‘,’

⟨opinion⟩ ‘)’] | ⟨effect reference⟩

Grammer 4.5: Reusing effects of instances in type’s effect.

If the arguments of an action are irrelevant, they
could be omitted. In any other case, stakeholders
should mark the arguments for actions but not for
the instances’ effects; hence they have no arguments.
When an effect’s inner workings depend on the feed-
back instance it is assigned to, it has to be defined as
two distinct effects.

5 EXAMPLES

In this section, we elaborate on two examples of the
usage of the proposed terminology. Both offer a so-
lution for the same problem but (as our terminology
emphasizes it) approach it from different views. Their
common goal is to utilize the experience of the devel-
opers during the fault localization process. We use the
names of the first authors of each paper that present
the feedback systems: Horváth for (Horváth et al.,
2020) and Gong for (Gong et al., 2012).

5.1 Selection of the Subjects

Horváth et al. (Horváth et al., 2020) inspected their
proposed method with two granularity levels. Hence
the experiments require the definition of two subject
sets: one for the source code lines and one for the
methods. On the other hand, Gong, et al. (Gong et al.,
2012) executed their experiment solely on the source
code lines. The formalization using our terminology
is shown in Example 5.1.

S(lines)
Horváth = {lines} S(methods)

Horváth = {methods}

SHorváth = S(lines)
Horváth ∪S(methods)

Horváth

SGong = {lines}

Example 5.1: The subject sets of the example feedback sys-
tems.

5.2 Grouping the Subjects

The first significant difference between the two ap-
proaches is the number of possible labels used to
group their subject items. Horváth, et al. empha-
size the contextual relationships between the code ele-
ments. They use a subject-dependent labeling φr

Horváth,

ICSOFT 2022 - 17th International Conference on Software Technologies

230

i.e. the labels will be according to the code element
currently under inspection (r).

Gong, et al. allow the user to express their opin-
ion on any subject items independently. Hence their
feedback-system assigns a unique label to each code
element, i.e. its labeling (φGong) is the identical func-
tion and the set of subject items and their labels are
equal. The formal definition of these are shown in
Example 5.2

LHorváth = {this,context,other}
r ∈ SHorváth, the element under inspection

φ
r
Horváth(s) =

this, if s = r
context, if s ∈ S(lines)

Horváth
∧

s and r in the same method
context, if s ∈ S(methods)

Horváth
∧

s and r in the same class
other, else

LGong = SGong

φGong(s) = s

Example 5.2: The labeling of the example feedback sys-
tems.

5.3 Available Opinions

It can be stated that both systems use the same set of
options: a subject is either faulty or clean, but the user
may not provide any opinion about a subject (Exam-
ple 5.3).

OHorváth = OGong = {clean, faulty,nothing}

Example 5.3: The opinions of the example feedback sys-
tems.

5.4 Feedback Instances and Types

The number of accepted feedback instances differs
greatly in the two systems. Gong, et al. allow the
usage of every possible marking (with any opinion)
of all labels (i.e. lines of code), see Example 5.5. On
the other hand, Horváth, et al’s system only accepts
four different feedback instances (Example 5.4).

5.5 Actions and Effects

Both systems define a small set of actions. These are
the application of R1 and R2 rules for Gong, et al. and
“terminate”1, “change the labeling”, and “set to zero”
for Horváth, et al. They both use the action which
does nothing.

1The feedback gathering process could end in two ways:
either the user interrupts the process or the system termi-
nates it as an effect of some feedback.

@fault is found{{
this → faulty,
context → clean,
other → clean}}

@element and context are not faulty{{
this → clean,
context → clean,
other → faulty}}

@element is not but context is faulty{{
this → clean,
context → faulty,
other → clean}}

@don’t know{{
this → nothing,
context → nothing,
other → nothing}}

Example 5.4: Feedback types of Horváth et al’s system.

. . .

{l1 → clean, l2 → faulty, . . . , l42 → nothing, . . .}
. . .

{l1 → clean, l2 → clean, . . . , l16 → clean, . . .}
. . .

li ∈ LGong, labels (i.e., the source code lines)

Example 5.5: Feedback instances of Gong et al’s system.

The first one of Horváth, et al’s system is a
process-related action, which will terminate the fault
localization algorithm, i.e., the process of the feed-
back system itself. The second one will update the la-
beling of the subject items by changing the inspected
to the next item; hence it is a meta action. The last
one will set the SBFL score of some subject items.
Gong, et al. only use subject-related actions. See sec-
tion 3.3.2 for details about the kinds of actions and
effects.

AHorváth = {terminate,change φ
r
Horváth,set to 0,NOP}

AGong = {apply rule R1,apply rule R2,NOP}

Example 5.6: Actions for the example systems.

The feedback-system of Horváth et al. use these
actions to construct the four distinct effects assigned
to the feedback-types (Example 5.7).

Gong et al. define a “unique” effect for each in-
stance (Example 5.8), which will apply their R1 and
R2 rules to subjects assigned clean and faulty, respec-
tively (and “NOP” in all other cases).

Formal Notations and Terminology for Users’ Feedback and Its Specialization for Interactive Fault Localization

231

@fault is found → (

∥terminate,NOP(context,clean),NOP(other,clean)∥)
@element and context are not faulty → (

∥set to 0(this,clean),set to 0(context,clean),
NOP(other, faulty)∥

change φ
r
Horváth)

@element is not but context is faulty → (

∥NOP(this,clean),set to 0(context, faulty),
set to 0(other,clean)∥

change φ
r
Horváth)

@don’t know → (

∥NOP(this,nothing),NOP(context,nothing),
NOP(other,nothing)∥

change φ
r
Horváth)

Example 5.7: Effects of Horváth et al’s system.

. . .

{l1 → clean, l2 → faulty, . . . , l42 → nothing, . . .}→ (

∥R1(l1,clean),R2(l2, faulty), . . . ,NOP(l42,nothing),∥)
. . .

li ∈ LGong, labels (i.e., the source code lines)

Example 5.8: Effects of Gong et al’s system.

6 CONCLUSION AND FUTURE
WORKS

In this paper, we presented the first revision of a ter-
minology for feedback systems with a notation that
can describe the constituents of the systems. The ca-
pabilities of the terminology were illustrated with two
detailed examples. Each of these sample systems in-
corporates the developers’ knowledge into the fault
localization processes.

The key benefit of our terminology that it will
help to evaluate various feedback systems by aiding
their comparison with each other or with their ref-
erence implementations. We could save a consider-
able amount of time during the comparison of the two
systems if they were utilizing a common terminol-
ogy. The effort to connect the various terms with their
counterparts in the other system could be eliminated.

Our terminology revealed several other properties
and connections, which we plan to enumerate and cat-
egorize in a following research. At first, we will col-
lect more feedback systems that are already published
to address SE-related issues. The identified properties
of these systems will be used to improve the versatil-
ity of the terminology and the expressive power of the
notation. Users’ surveys will validate this enhanced

terminology and notation to improve their usability
further. Our longterm goal is to define a true “lin-
gua franca” for the stakeholders to define and express
the users’ feedback they expect and the reactions they
give.

ACKNOWLEDGMENTS

The research was supported by the Ministry of Inno-
vation and Technology NRDI Office within the frame-
work of the Artificial Intelligence National Labora-
tory Program (RRF-2.3.1-21-2022-00004).

Project no. TKP2021-NVA-09 has been imple-
mented with the support provided by the Ministry of
Innovation and Technology of Hungary from the Na-
tional Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme.

REFERENCES

Gong, L., Lo, D., Jiang, L., and Zhang, H. (2012). Inter-
active fault localization leveraging simple user feed-
back. In IEEE International Conference on Software
Maintenance, ICSM.

Hao, D., Zhang, L., Zhang, L., Sun, J., and Mei, H. (2009).
Vida: Visual interactive debugging. In 2009 IEEE
31st International Conference on Software Engineer-
ing, pages 583–586.

Hassenzahl, M. and Tractinsky, N. (2006). User experience
- a research agenda. Behaviour and Information Tech-
nology, 25(2):91–97. cited By 1458.

Horváth, F., Beszédes, Á., Vancsics, B., Balogh, G., Vidács,
L., and Gyimóthy, T. (2020). Experiments with inter-
active fault localization using simulated and real users.
In Proceedings of the 36th IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME’20), pages 290–300.

ISO. Iso/iec 14977:1996 - information technology — syn-
tactic metalanguage — extended bnf. https://www.iso.
org/standard/26153.html. (Accessed on 11/01/2021).

Korel, B. and Laski, J. (1988). Stad - a system for testing
and debugging: User perspective. pages 13–20. cited
By 20.

Law, E.-C., Roto, V., Hassenzahl, M., Vermeeren, A., and
Kort, J. (2009). Understanding, scoping and defining
user experience: A survey approach. pages 719–728.
cited By 599.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. (2016).
An empirical study of the impact of modern code re-
view practices on software quality. Empirical Soft-
ware Engineering, 21(5):2146–2189. cited By 112.

Thongtanunam, P., Tantithamthavorn, C., Kula, R.,
Yoshida, N., Iida, H., and Matsumoto, K.-I. (2015).
Who should review my code? a file location-based

ICSOFT 2022 - 17th International Conference on Software Technologies

232

code-reviewer recommendation approach for modern
code review. pages 141–150. cited By 110.

Wooding, M. The syntax package. https://mirror.szerverem.
hu/ctan/macros/latex/contrib/mdwtools/syntax.pdf.
(Accessed on 11/01/2021).

Formal Notations and Terminology for Users’ Feedback and Its Specialization for Interactive Fault Localization

233

