Timing Model for Predictive Simulation of Safety-critical Systems

Keywords:

Abstract:

Emilia Cioroaica' ©?, José Miguel Blanco?®® and Bruno Rossi*®°

1Fraunhofer IESE, Kaiserslautern, Fraunhofer-Platz 1, Kaiserslautern, Germany

2Masaryk University, Brno, Czech Republic

Trust, Malicious Behavior, Virtual Evaluation, Runtime Prediction, Predictive Simulation, Automotive.

Emerging evidence shows that safety-critical systems are evolving towards operating in uncertain context
while integrating intelligent software that evolves over time as well. Such behavior is considered to be un-
known at every moment in time because when faced with a similar situation, these systems are expected to
display an improved behavior based on artificial learning. Yet, a correct learning and knowledge-building pro-
cess for the non-deterministic nature of an intelligent evolution is still not guaranteed and consequently safety
of these systems cannot be assured. In this context, the approach of predictive simulation enables runtime
predictive evaluation of a system behavior and provision of quantified evidence of trust that enables a system
to react safety in case malicious deviations, in a timely manner.

For enabling the evaluation of timing behavior in a predictive simulation setting, in this paper we introduce
a general timing model that enables the virtual execution of a system’s timing behavior. The predictive eval-
uation of the timing behavior can be used to evaluate a system’s synchronization capabilities and in case of
delays, trigger a safe fail-over behavior. We iterate our concept over an use case from the automotive domain

by considering two safety critical situations.

1 INTRODUCTION

With the introduction of advanced automated driving
functions, software platforms of future automotive
systems will become capable to support the execution
of a multitude of applications. For enabling this tran-
sition, AUTOSAR (Autosar, 2021), through an ac-
tive engagement in standardization activities for in-
vehicle software concluded that architectures of vehi-
cles need to become more flexible, highly available
and capable to adapt over time to specific application
requirements. As a result, an updated version of the
AUTOSAR automotive platform has emerged, which
is based on POSIX standard (Vector, 2022). This new
version aims at supporting dynamic deployment of
applications and connection of deeply embedded and
non-AUTOSAR systems for preserving real-time ca-
pabilities.

But the trend of extending vehicles’ capabilities
will further on continue into connecting them to al-
most everything: smart homes, roadside infrastruc-
ture and other vehicles as well. Given the safety-

https://orcid.org/0000-0003-2776-4521
@ https://orcid.org/0000-0001-9460-8540
¢ https://orcid.org/0000-0002-8659-1520

Cioroaica, E., Blanco, J. and Rossi, B.
Timing Model for Predictive Simulation of Safety-critical Systems.
DOI: 10.5220/0011317000003266

critical nature of a vehicle, the emerging intercon-
nection of systems needs to be regarded as safety-
critical SoS (System of Systems) as well. Besides
their safety-critical nature, emerging evidence show
that these systems are engineered to sustain business
growth through continuous runtime and design time
co-engineering approaches. Initially delivered with a
quality right above the minimum required threshold
of acceptance, systems’ upgrades are then delivered
during the system operation time (techcrunch.com,
2021). This philosophy, that has recently transi-
tioned from the domain of information systems into
the safety-critical domain where systems operate in
dynamic environments is raising considerable safety
concerns (Stilgoe and Cummings, 2020).

In the course of system development, and safety-
critical systems in particular, the emerging devel-
opment paradigm integrates human-engineered ac-
tivities, resulting in security considerations within a
larger context of digital ecosystems (Bosch, 2015).
The interplay of various actors (such as: users, or-
ganisations, developers part of an organisation) with
a variety of goals ranging from purely cooperative and
collaborative to competitive and even malicious in the
realization of system’s function raises crucial issues.

331

In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 331-339

ISBN: 978-989-758-588-3; ISSN: 2184-2833

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICSOFT 2022 - 17th International Conference on Software Technologies

Malicious behaviour can be embedded within a soft-
ware application deployed on the system in dynamic
ecosystems where software applications, hardware re-
sources, and platform components of cyber-physical
systems are provided by various actors. For exam-
ple, a systematic insertion of intended faults, such as
logic bombs (Avizienis et al., 2004) can be strategi-
cally introduced in a system, remain dormant and get
activated in a synchronized manner at the “right mo-
ment” to support a planned attack.

For enabling the ultimate safe operation of safety-
critical systems open to accommodate or activate sys-
tem functions at runtime, in the previous work we’ve
introduced the concept of predictive simulation that
targets the evaluation of the trustworthiness of soft-
ware applications in dynamic environments by ac-
counting of possible malicious behavior. In a pre-
dictive virtual environment, during runtime, Digi-
tal Twins (DTs) of systems and system components
(including software components) are executed much
faster than the wall clock in order to enable the gath-
ering of the trusted behavior signatures of safe execu-
tion against which the execution of the software ap-
plication in the real world execution is then checked
for conformity (Cioroaica et al., 2019). Given the na-
ture of fast behavioral execution, the result of the pre-
diction can then be used for enabling system’s safe
reconfiguration through activation of an operational
fail-over behavior that keeps the system in a safe state.
In this paper we further specify the definition of a
generic temporal model that can be used for the fast
evaluation of a system timing behavior. When fed
with real time data, this model becomes a specialized
digital twin, that we referred to as Temporal Digital
Twin (TDT).

In what follows, Section 2 provides an overview
of the emerging trends in designing safety of vehicles
within complex ecosystems. Section 3 introduces our
approach in the general context of predictive simula-
tion, Section 4 details our use case analysis based on
an open data set that describe a platooning scenario
and motivated by current trends. Section 5 presents
our proof of concept emerged as iteration of the tem-
poral logic model over the use case and Section 6
presents the conclusions, on-going and future work.

2 EMERGING TRENDS

2.1 Enabling Safety through Ecosystem
Design

In the quest of enabling safety, transportation in the
domains of avionics and railway, vehicles have been

332

engineered without the capability to decide indepen-
dently which path to take. In avionics, transportation
works in coordination with an air traffic controller, in
the railway domain, it works under the coordination
of a railway control center. The central coordination
ensures that no other vehicle is present on a specified
path and therefore, collisions can easily be avoided.
In the automotive domain on the other hand, a much
higher number of vehicles are moving independently
by accounting of the driver’s autonomous decisions.
And because the number of fatalities is caused by hu-
man flawed attention, achieving safety is envisioned
through an increase of the level of automated driving
functions. In SAE automation level 5, the driver will
no longer be present (Levels, 2022).

With emerging availability of high-performance
data transmission technologies such as 5G, the possi-
bility of coordinating automated vehicles centrally is
becoming an option for enabling an even higher level
of safety (Schmeitz et al., 2019). For example, when
automated vehicles are largely deployed for operat-
ing in specific ODDs (Operational Design Domain)
like motorways where there is no road infrastructure
that connects VRUs (Vehicle Road Units) for support-
ing transportation, an autonomous behavior that rely
on a minimum of local sensors and autonomous de-
cisions must be in place in order to enable safe driv-
ing synchronization with conventional vehicles and to
avoid obstacles on the road. A central road supervisor
can supervise a part of a motorway’s traffic by coor-
dinating driving decisions such as lane changes. This
design enables early computation of decisions about
correct lanes, followed by proactive setting of auto-
matic speed limits. Consequently congestion can be
avoided, the levels of safety increase and because of a
smooth driving pollution can be reduced.

2.2 The Danger of Unknowns

Ecosystem-enabled provision of safety-critical sys-
tems that integrate and/or activate software smart
agent during runtime is endangered by possible ma-
licious attacks. A major challenge in detecting ma-
licious deviations arises from the non-deterministic
nature of an intelligent software component. An on-
going adaptation of an intelligent behavior can ei-
ther indicate a successful learning or a malicious de-
viation because at the operational level, a software
component is allowed to provide different outputs for
the same set of inputs. For intelligent behavior de-
veloped within digital ecosystems and deployed on
safety-critical systems, it is very likely that sooner or
later, intended faults will be injected into a system
together with an update (Miller and Valasek, 2014).

While there is currently much focus on preventing the
injection of malicious behavior within an ecosystem,
less emphasis lies on detection and mitigation of its
negative effects.

2.3 Runtime Safe Reaction to Security
Intrusions

Assuring safety of these systems during their run-
time operation is achieved through engineering of
self-adaptive systems capable to respond to changes
in their internal dynamics. Within these systems, a
self-contained structure enables behavior reconfigura-
tion during system operation (Krupitzer et al., 2015;
Weyns et al., 2012; Srivastava and Mondal, 2015) by
employing a range of dynamic risk management tech-
niques that work with runtime evidence of trusted be-
havior (Khan et al., 2016; Leite et al., 2018). In this
context, the execution of software smart agents that
integrate intelligent behavior is characterized by un-
certainty as a deviation from the norm is not always
an indicative of bad behavior, it can be an intelligent
adaptation as well (Bry and Roy, 2011). The dis-
tinction between the two is a crucial factor gaining
increased attention within the safety-critical domain.
In particular the danger of operating unknown behav-
ior in uncertain context is gaining increasing attention
(Hamon et al., 2020).

2.4 The Need for Prediction

When system behavior is expected to change during
runtime, evaluation of its trustworthiness needs to be
performed during runtime as well. In our opinion,
this can be achieved by employing runtime predic-
tion mechanisms. Current practices for prediction in
the industrial domain is focused on failure prediction
for enabling predictive maintenance (Lei et al., 2018;
Carvalho et al., 2019). We see a great potential in pre-
dictive methods integrated into runtime approaches
that requires a transition from traditional predictive
techniques that rely on expert engineering assessment
and taking advantage of the fast computing resources.
In this context, employing a traditional intelligent be-
havior (AI) for predicting another behavior would
lack transparency making it difficult to argument from
a safety standpoint. This happens because continu-
ously learning techniques can provide no guarantee
of trust, whereas runtime safety requires provision of
evidence. In our opinion, assuring safety of critical
systems necessitates runtime prediction mechanisms
that can provide the required evidence in a determin-
istic manner by leveraging the traditional simulation
mechanism in a runtime setting.

Timing Model for Predictive Simulation of Safety-critical Systems

The predictive simulation method as introduced
in (Cioroaica et al., 2019) and described within a
complex auditing process in (Calabro et al., 2022),
accounts of the possibility of receiving a possibly
untrusted software smart agent directly at runtime.
Within a vehicle, such a software smart agent, can,
for example, keep the maximum and minimum dis-
tance within platoons. Aiming at evolving the level
of function automation within a vehicle, the software
smart agent requires a runtime evaluation of its trusted
behavior. Particularly challenging for the runtime vir-
tual evaluation are two aspects: (a) the open nature of
the platform capable to accommodate other interact-
ing software agents as well, aspect which complicates
the level of technical trust assessment of a software
agent under evaluation and (b) the real time nature of
the systems. A safety critical system needs to react in
real time in order to avoid hazardous situations caused
by a miss-behaving software smart agent and/or inter-
connected other software smart agents.

3 METHODOLOGY

In this section we describe the general methodology
of predictive simulation that accounts for execution of
different behavioral models, emphasising the timing
aspects.

3.1 General Methodology

The approach that enables runtime detection of ma-
licious deviations based on predictive simulation re-
quires a design phase for engineering systems arte-
facts that support the later runtime prediction and con-
formity monitoring. In this phase, different models of
the system behavior are created, including functional
models that enable runtime evaluation of functional
interaction, temporal models that enable timing pre-
dictions used in evaluating a software smart agent’s
synchronization capabilities and models that enable
the runtime evaluation of the communication proto-
col. In the current paper we focus on the evaluation
of timing aspects.

As depicted in Figure 1, for enabling the runtime
prediction of timing behavior, in the pure predictive
simulation phase, the temporal logic model is used to
validate the accuracy of the digital twins that provide
the timing abstractions. The development of the two
artifacts: the temporal model and the software smart
agent, can lead to a set of situations, namely:

1. No faults in either of the artifacts: Ideal situation

2. Same fault in both artefacts: Fair prediction

333

ICSOFT 2022 - 17th International Conference on Software Technologies

Pure Predictive Simulation

e o Verify Accuracy

Design Time I

Runtime Deploy Smart SW Agent

&TM

Runtime Prediction

Execute TM

Create TDT

Linked Predictive Simulation

Figure 1: General Method.

3. Different faults between artifacts: situation that
leads to dishonest trust

For addressing these possible deviations, during
pure predictive simulation, the behavior of a software
smart agent, subject to trust evaluation and the corre-
sponding temporal logic model are evaluated for con-
sistency before being deployed.

Then, during runtime within within a simulation
environment, before the execution of the software
smart agent, the corresponding temporal model is fed
with real time data and it is executed as a much faster
speed. During this phase, the specialized Temporal
Digital Twin (TDT) is executed in relation to other
TDT of interacting components of teh software smart
agent, that can be either other sofwtare component,
hardware resources or system platforms.

3.2 Model for the Timing Behavior

In this subsection we introduce the general model for
the timing behavior that enables the evaluation of syn-
chronization’s aspects of a software smart agent in
accordance to the principles of predictive simulation
stated above. The model we provide is specifically
targeted towards capturing untrusted deviations from
the minimum and maximum delay of execution. For
the experienced reader, it is obvious that the model is
based on a fragment of Linear Temporal Logic (LTL)
(Pnueli, 1977), but with a refined validation clause re-
garding the temporal connective included similar to
the one of (Blanco et al., 2021).

334

LTL models traditionally provide means for for-
mally checking events’ occurrence over time captured
in traditional connectives of until and since, our mod-
els differ from general LTL models in the sense that
the temporal connective is limited in its future scope
and the validity of statements is to be contained in said
scope. Besides this restriction for the temporal con-
nective, our model provides customized predictive-
simulation restrictions that check for future events as
well. Overall, the model we are providing is highly
expressive for timing considerations of behavior eval-
uated within the predictive simulation paradigm.

With all of the above we begin by defining simple
and complex statements. For any simple statements
D, q,..., any complex statements A, B, ..., the unary
connectives — (Negation), ¢ (In the future), and the
binary connectives A (Conjunction), V (Disjunction),
— (Entailment), the following recursive forming rules
apply:

* (a) For any simple statement p, p is a well-formed
statement. Furthermore, if A = p, then A is well-
formed statement.

* (b) If A is a well-formed statement and * is a unary
connective, then *A is a well-formed statement.

e (¢c) If A and B are well-formed statements and *
a binary connective, then A x B is a well-formed
statement.

¢ (d) There are no more well-formed statements
than those defined by the clauses (a), (b) and (c).

By simple and complex statements we are refer-
ring to any kind of data generated by events. Let it
be noted that, while the we are defining a nice array
of connectives, we have excluded any quantifiers con-
nectives (e. g., Vx, for all x) and focus on the propo-
sitional fragment rather than the first or higher order
ones. This helps to keep the forthcoming model to a
minimum, therefore making its implementation easy
as only simple operations would be required. It also
allows to reduce the computational complexity and
make its implementation in resource-constrained de-
vices much easier.

Now we introduce the model. A model M is the
structure M = (K, T, |=), where K is the set of vehi-
clesa,b,c,...;i.e., K ={a, b, c,..}; each element of
K, each vehicle, is a set in itself that includes a mini-
mum and maximum time delay, m and h respectively,
among other optional characteristics o1, 03, 03,...; i.
e., a={m, h, 01,02, 03,...}. T is a set of temporal
points t,t,t3,...;1.e., T = {l‘l, 1,3, } Finally,):
is a relation from K to the set of statements such that
the following clauses apply:

()al=AABifandonlyif (ifffa =A anda =B
(2)al=AVBiffal=Aora =B

« Bal=-AiffaltA
4)aEA—Biffa=—-Aora =B
(S)a,t =EQAiffh=r+d,,m=t+dr&3s,s €

T,witht <s,m<s<h,and a,s =A, and Vu, u €
T,ift<u<s,thena,u=A

Since the model is based on a fragment of LTL,
most of the results of LTL, such as soundness and
completeness (Burgess, 1984; Xu, 1988), decidabil-
ity (Bozzelli et al., 2006), or satisfiability complexity
(Bauland et al., 2007) can be extended to the model
by the means of a simple corollary.

4 USE CASE

In this section we describe the iteration of our model
over an use case form the automotive domain. More
concretely, with the definitions of minimum and max-
imum delays for future deviations, we have iterated
our temporal model over an open data set. As it will
be described next, our model captures the delay con-
cerns for safety critical situations such as gap closing
and gap opening.

To this end, we start with the short description
of the use case and our evaluation of possible mali-
cious failures in Subsection 4.1, continue with a back-
ground of safety-related aspects that drive the evolu-
tion of the use case in Section 5.

4.1 Motivation

Multiple solutions have been provided for enabling
highly and fully automated vehicles. Emerging prac-
tical solutions have been developed within the EU
AUTOPILOT project (Autopilot, 2022), where, with
the support of IoT (Internet Of Things) infrastructure,
vehicles can automate their driving. Aiming at bene-
fiting from development of IoT (Internet of Things)
that boosts the connection between various objects
over any type of service of network, solutions for au-
tomated driving have emerged in the past years.

Benefiting from an IoT infrastructure, connected
vehicles become moving “things” within complex
ecosystems. In this way, the vision of automated driv-
ing is taking advantage of the IoT potential. Based on
our evaluation of the use case, within such a complex
digital ecosystem that aggregates a multitude of inter-
connected devices and services, various failing points
caused by transmission of false information can be
imagined.

Timing Model for Predictive Simulation of Safety-critical Systems

Typically, a platoon consists of a lead vehicle
that transmits the maneuvering commands and one
or more following vehicles enabled with automatic
steering. The safe automated following maneuvers
depend on V2V communication. The lead vehicle
sends acceleration messages to the following vehi-
cle. Concretely, it is using ITS-G5 and ultra-wide
band (UWB) for exchanging time sensitive informa-
tion(Schmeitz et al., 2019). Because the Platoon ser-
vice keeps providing speed and lane advice to the pla-
toon members, if V2V communication is delayed for
too long, the platoon service can default into provid-
ing individual speed messages. Assuming measure-
ment errors from interconnected devices, the follow-
ing vehicle which is in the automated driving mode
can accelerate for keeping with the advice speed re-
ceived from the platoon service. This would lead to a
crash.

In the example where the platoon service takes the
information of multiple components in the IoT for
generating speed and lane advice, false information
about the timing in traffic lights can, for example, lead
to speed increase targeted towards avoiding waiting
time at a red light followed by sudden stops when the
light turns red earlier than expected. Other failures
can be cause by wrong information provided by the
TM (Traffic Manager) of the TLC (Traffic Light Con-
troller) that cause platoons to drive on wrong lanes.
However, a simplified evaluation of the functional be-
havior, even though it can discover the intention of
transmitting wrong values, it does not completely evi-
dentiate the intention of malicious behavior. A correct
value sent with a certain delay can endanger the safety
of systems. Therefore, for capturing hidden malicious
behavior, the timing aspects is very important. and we
therefore focus our proof on concept on safeguarding
a platoon in case of timing delays.

4.2 Technical Landscape

After a first analysis of the data sets available at and
the use case description from (Schmeitz et al., 2019)
we have divided the first version of the system archi-
tecture that evidentiate possible targets of security at-
tacks. According to Figure 2 a Vehicle is composed
of multiple subsystems including Sensors, Commu-
nication Media, Receivers and Actuators. The com-
munication media considered in this use case is of
two types: CAN Bus that transports information be-
tween all ECUs of the vehicles and a DSRC Chan-
nel (Dedicated Short Range Communication Chan-
nel) representing the wireless communication chan-
nel used for sending messages between vehicles. The
Sensors considered are 2 types of GPS that provides

335

ICSOFT 2022 - 17th International Conference on Software Technologies

position, velocity, and timing information and Radar.
external DSRC module (DSRC-VU) connected by a
CAN bus using a communication protocol based on
SAE J1939 (SAE, 2022). The Middleware which is
the IoT Platform is a Communication Unit which is
a type of Station. Other stations from where infor-
mation is being logged represents the HW Unit and
the Communication Stack. In this context, a Software
Application that communicates with another software
application uses the Station for outputting Communi-
cation Messages that are collected by a Logging Com-
ponent.

Any of this components can constitute a possible
target of attack that manifests both at the component
and at the system level. Our first iteration of the con-
cept accounts for behavioral deviations that are visible
at the system level in two safety-critical situations.

In this regard, if a delay is perceived during the
gap closing, then another vehicle, which is not part
of the platoon get positioned between the leader and
the following vehicle leading to a crash between the
new vehicle and the platoon follower. If , on the other
hand, the messages describing the gap opening proce-
dure cause by a vehicle cut are delayed, then, the fol-
lower vehicle will continue the usual maneuvers for
closing the gap, situation which will lead to another
crash. A vehicle outside the platoon can cut in the
platoon in situations when, for example, it needs to
retract from overtaking the platoon because of other
vehicles approaching from the opposite side on the
left lane.

4.3 Analysis of the Data Set

In this subsection we present the reasoning of the data
set that has guided the initial iteration of the temporal
model over the platooning use case. The data set is
available at (Zenodo, 2022) and represents data about
vehicle platoon formation with live traffic data.

We evaluated on vehicle based on the Position-
ing System Component from 7:20:00 AM to 11:33:20
PM. At 11:33:37 PM we have an event ID1 for
PLATOONING which in our case is an event type sent
by the Log_application_Id number 12 as platoon
log action triggered by the Vehicle. Then the Log ap-
plication ID 5 is reporting the position of the steering
wheel "472,690180982929" in the Drivervehicleln-
teraction table (Zenodo, 2022). After this, more in-
formation is sensed within the environment and the
coordinates of the vehicle are logged.

Further on, we have observed that the data for the
Target is the same as the EnvironmentSensorRelative.
This can be explained by the fact that the target sent
by the cloud is the same as the data that the follower

336

vehicle is receiving through the in-systems sensors.
By advancing in time, while the Targer Information
keeps the same, the EnvironmentSensorRelative data
is slightly changing. This is due to the motion on the
roads: sometimes the vehicles gets closer or distanced
from the target point of meeting. During all this time,
the log application ID 1 islogging the speed.

From the whole data set, we have selected the
data that is relevant to the scenario described in
(Zenodo, 2022), namely the data between the time
stamps: 1538576583120 (Wednesday, 3 October
2018 14:23:03.120) and 1538576583600 (3 October
2018 14:23:03.600).

S PROOF OF CONCEPT

The iteration of the temporal logic model introduced
in Subsection 3.2 has been guided by the analysis of
the platoon behavior and deepened through a detailed
analysis of the data set presented in 4.3

In a regular platoon formation there might be
unexpected requests for gap-opening. This request
would take the shape of data statements A, B, C... and
would be associated to a vehicle a, b, c... that needs
to validate (and perform) said statement. This kind of
actions have a time signature linked to them ¢, r, s....
Whenever a gap-opening is requested the validity of
the situation would depend on the time that the ve-
hicle takes to perform it. There is a maximum time
limit 4 for the gap-opening to happen that is defined
as the original time signature plus the maximum de-
lay. Given this, the data statement for the gap-opening
would be validated if the data statement holds on any
time signature that is set before the maximum limit
established.

With all of the above, given a data statement for a
gap-opening A and the completion of the gap opening
data statement B for the vehicle a at a time signature ¢
will be valid, a,t |= QA V B, iff for each time signature
u, such that ¢+ < u < h then a,u = QA and indepen-
dently of the value of B. Similarly, it will not be valid
if there is any time signature v such that a,v = QA,
meaning that the gap-opening failed at the time sig-
nature v and also B would not be valid. On the other
hand, it would be valid if the Gap-opening_request is
done, and therefore not valid with respect to the fu-
ture, but the vehicle has validated B, the fact that the
gap-opening has been completed.

Given the following substitutions:

* A = Gap-opening_request
* B = Gap-opening_completed

¢ a = Follower_1

| uses

Communication

Timing Model for Predictive Simulation of Safety-critical Systems

loT Platform

CAN Bus 1 Media DSRC Channel
0.*
GPS uses
i R
Radar
DSRC-VU Communication Unit
Vehicle
HW Unit Communication Stack
sensor .
0.*)
Receiver
Intelligent
Control Station
i ia communicates with
Actuator | Break unesy
CACC
pm:'des - ocutputs e Communication
Thrattle T L Messages
I:rc-;'dess‘gs uiés Colleiic
| |
[!) 1 |
Logging Component
| Data
Figure 2: System Architecture.
* d=00:00:15 o Follower.1,01 : 26 : 03 = Gap —
e d' = 00:00:02 opening_completed
e t=01:25:54 or
e h=01:26:11 e Follower.1,01 : 26 : 03 [Gap —
opening_completed
« m=01:25:56 - "’
— 0126 It would be valid given that for any time lesser
* 1 =01:26:03 . . .
than the time signature 01:26:11, the gap-opening re-
* v=01:25:58

We can present the example of a gap opening as the
validation of:

* Follower_1,01 : 25 : 54 E O(Gap —
opening_request) NV Gap — opening_completed

This means that there would be no malicious be-
haviour as long as Gap — opening_request is val-
idated towards the maximum time delay, or the
gap opening has been completed, thanks to Gap —
opening_completed being part of a Disjunction. In
this case, for a supposed time signature u, the valid
one, we would know that

* Follower_1,01:26:03 = Gap — opening _request
And either if

quest is valid, independently of the validity of the
completion of the gap opening because, let us remem-
ber, a disjunction would be valid as long as one of its
terms is. On the other hand, the non-valid request at
time signature v would look like this:
Follower_1,01 : 25 : 58 |« Gap — opening_request
Follower_1,01:25:58 [~ Gap — opening_completed
It would not be valid because there’s, at least,
one time signature below the maximum, in this case
01:25:58, that does not validate the gap-opening re-
quest and it has not finished yet.

337

ICSOFT 2022 - 17th International Conference on Software Technologies

6 SUMMARY AND FUTURE
WORK

In this paper we have presented the concept of pre-
dictive simulation used for enabling both: the run-
time assessment of a system or system component
trustworthiness and the needed self-reconfiguration in
case of malicious/ untrusted deviations. For enabling
the prediction of timing behavior that enables evalu-
ation of synchronization capabilities, we have intro-
duced a generic temporal model for the timing behav-
ior that can be used for evaluating timing deviation.
To this end, we have proposed a set of restrictive rules
on expected behavior by analyzing a set of open data
from an automotive use case. Our initial proof of con-
cept has been performed by iterating the model over
the behavior of the platoon in two safety-critical situ-
ation.

Ongoing work is directed towards reverse engi-
neering the behavior of single systems that can be
subject of the predictive simulation evaluation with
respect to timing considerations. Future work will go
into creation of models for enabling predictive evalu-
ation of the function interaction between system com-
ponents.

ACKNOWLEDGEMENTS

This work has been partially funded by Euro-
pean Funds for Regional Development (EFRE)
in context of “Investment in Growth and Em-
ployment” (IWB) P1-SZ2-3 F&E: Technologieori-
entierte Kompetenzenfelder -MWVLW “Neue Er-
probungskonzepte fuer sichere Software in hochau-
tomatisierten Nutzfahrzeugen” , by the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 952702 (BIECO)
and by ERDF/ESF “’CyberSecurity, CyberCrime and
Critical Information Infrastructures Center of Excel-
lence” (No. CZ.02.1.01/0.0/0.0/16_.019/0000822).

REFERENCES

Autopilot (2022). Autopilot EU Project. https://autopilot-
project.eu/. [Online; accessed 03-April-2022].

Autosar (2021). AUTOSAR. https://www.autosar.org/.
[Online; accessed 11-August-2021].

Avizienis, A., Laprie, J.-C., and Randell, B. (2004). De-
pendability and its threats: a taxonomy. In Building
the Information Society, pages 91-120. Springer.

Bauland, M., Schneider, T., Schnoor, H., Schnoor, 1., and
Vollmer, H. (2007). The Complexity of Generalized

338

Satisfiability for Linear Temporal Logic. In Seidl, H.,
editor, Foundations of Software Science and Compu-
tational Structures, Lecture Notes in Computer Sci-
ence, pages 48-62, Berlin, Heidelberg. Springer.

Blanco, J. M., Rossi, B., and Pitner, T. (2021). A Time-
Sensitive Model for Data Tampering Detection for the
Advanced Metering Infrastructure. In Annals of Com-
puter Science and Information Systems, volume 25,
pages 511-519. ISSN: 2300-5963.

Bosch, J. (2015). Speed, data, and ecosystems: the future of
software engineering. IEEE Software, 33(1):82-88.

Bozzelli, L., Kietinsky, M., Rehdk, V., and Strejéek, J.
(2006). On Decidability of LTL Model Checking for
Process Rewrite Systems. In Arun-Kumar, S. and
Garg, N, editors, FSTTCS 2006: Foundations of Soft-
ware Technology and Theoretical Computer Science,
Lecture Notes in Computer Science, pages 248-259,
Berlin, Heidelberg. Springer.

Bry, A. and Roy, N. (2011). Rapidly-exploring random be-
lief trees for motion planning under uncertainty. In
2011 IEEE international conference on robotics and
automation, pages 723-730. IEEE.

Burgess, J. P. (1984). Basic Tense Logic. In Gabbay, D. and
Guenthner, F., editors, Handbook of Philosophical
Logic: Volume II: Extensions of Classical Logic, Syn-
these Library, pages 89-133. Springer Netherlands,
Dordrecht.

Calabro, A., Cioroaica, E., Daoudagh, S., and Marchetti,
E. (2022). Bieco runtime auditing framework. In
Gude Prego, J. J., de la Puerta, J. G., Garcia Bringas,
P., Quintian, H., and Corchado, E., editors, /4th In-
ternational Conference on Computational Intelligence
in Security for Information Systems and 12th Interna-
tional Conference on European Transnational Educa-
tional (CISIS 2021 and ICEUTE 2021), pages 181—
191, Cham. Springer International Publishing.

Carvalho, T. P, Soares, F. A., Vita, R., Francisco, R. d. P,,
Basto, J. P, and Alcala, S. G. (2019). A systematic
literature review of machine learning methods applied
to predictive maintenance. Computers & Industrial
Engineering, 137:106024.

Cioroaica, E., Kuhn, T., and Buhnova, B. (2019). (do not)
trust in ecosystems. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER), pages 9—
12. IEEE.

Hamon, R., Junklewitz, H., and Sanchez, I. (2020). Robust-
ness and explainability of artificial intelligence. Pub-
lications Office of the European Union.

Khan, F., Hashemi, S. J., Paltrinieri, N., Amyotte, P., Coz-
zani, V., and Reniers, G. (2016). Dynamic risk man-
agement: a contemporary approach to process safety
management. Current opinion in chemical engineer-
ing, 14:9-17.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G.,
and Becker, C. (2015). A survey on engineering ap-
proaches for self-adaptive systems. Pervasive and Mo-
bile Computing, 17:184-206.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., and Lin, J. (2018).
Machinery health prognostics: A systematic review

from data acquisition to rul prediction. Mechanical
systems and signal processing, 104:799-834.

Leite, F. L., Schneider, D., and Adler, R. (2018). Dynamic
risk management for cooperative autonomous medical
cyber-physical systems. In International Conference
on Computer Safety, Reliability, and Security, pages
126-138. Springer.

Levels, S. (2022). SAE Levels of Driving Automation .
https://www.sae.org/blog/sae-j3016-update. [Online;
accessed 12-April-2022].

Miller, C. and Valasek, C. (2014). A survey of remote auto-
motive attack surfaces. black hat USA, 2014:94.

Pnueli, A. (1977). The temporal logic of programs. In /8th
Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1977), pages 46-57. ISSN: 0272-5428.

SAE (2022). SAE J1939. https://www.sae.org/standard
sdev/groundvehicle/j1939a.htm. [Online; accessed
14-April-2022].

Schmeitz, A., Schwartz, R., Ravesteijn, D., Verhaeg, G.,
Altgassen, D., and Wedemeijer, H. (2019). Eu autopi-
lot project: Platooning use case in brainport.

Srivastava, N. K. and Mondal, S. (2015). Predictive
maintenance using modified fmeca method. Inter-
national journal of productivity and quality manage-
ment, 16(3):267-280.

Stilgoe, J. and Cummings, M. (2020). Can driverless ve-
hicles prove themselves safe? Issues in Science and
Technology, 37(1):12-14.

techcrunch.com (2021). Tesla has activated its cam-
era. https://techcrunch.com/2021/05/27/tesla-has-
activated-its-in-car-camera-to-monitor-drivers-using-
autopilot/.

Vector (2022). Posex-based AUTOSAR. https://cdn.vector
.com/cms/content/know-how/_technical-articles/AU
TOSAR/AUTOSAR_POSIX_Hanser_201902_Press
Article_EN.pdf. [Online; accessed 03-March-2022].

Weyns, D., Iftikhar, M. U., Malek, S., and Andersson,
J. (2012). Claims and supporting evidence for self-
adaptive systems: A literature study. In 2012 7th In-
ternational Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pages
89-98. IEEE.

Xu, M. (1988). On Some U, S-Tense Logics. Journal
of Philosophical Logic, 17(2):181-202. Publisher:
Springer.

Zenodo (2022). Autopilot Open Data Set. https://zeno
do.org/record/3606616#.Y X1dMJ4zb-g. [Online;
accessed 14-April-2022].

Timing Model for Predictive Simulation of Safety-critical Systems

339

