
Multiparty-session-types Coordination for Core Erlang

Lavinia Egidi1,∗ a, Paola Giannini2,† b and Lorenzo Ventura1

1DiSIT, Università Piemonte Orientale, Alessandria, Italy
2DiSSTE, Università Piemonte Orientale, Vercelli, Italy

Keywords: Multiparty Session Types, Delegation, Actor Model.

Abstract: In this paper, we present a formalization of multiparty-session-type coordination for a core subset of Erlang
and provide a tool for checking the correctness of a system against the specification of its protocol. In Erlang
actors are primitive entities, which communicate only through explicit asynchronous message passing. Our
tool ensures that if an Erlang system is well typed, then it does not incur in deadlocks or have actors getting
stuck waiting for messages that never arrive; moreover any message that is sent will eventually be read. The
tool is based on multiparty session types, a formalism introduced to specify the structure of interactions and to
ensure safety properties.

1 INTRODUCTION

Complex distributed systems are often described by
processes interacting by exchanging messages accord-
ing to predefined protocols. Such interactions are
called sessions.

The methodology of programming with session
types starts from a communication protocol, a global
type, which specifies the overall behaviour of the sys-
tem of interacting processes that we call participants.
The local behaviour (a local type or session type) for
each endpoint participant is then algorithmically ob-
tained as the projection of the global type (Honda et al.,
2008). Participants start a session by agreeing on a pri-
vate channel and then interact sending and receiving
messages on this channel.

From the beginning, session types were enhanced
with the ability to delegate interactions from one par-
ticipant in a session to another participant in a different
session, see (Honda et al., 2008). Thereby, by using
delegation, a participant involved in a session can at
any point request that some participant in a different
session conduct part of the interaction on its behalf. In
(Honda et al., 2008; Coppo et al., 2015), delegation is
realized by the principal sending its communication

a https://orcid.org/0000-0002-9745-0942
b https://orcid.org/0000-0003-2239-9529
∗This original research has the financial support of the

Università del Piemonte Orientale.
†This work was partially funded by the MUR project

“T-LADIES” (PRIN 2020TL3X8X).

channel to the delegate which then uses it for its own
communications with the other participants. At the
level of global types this is described by sending a
session type (a description of the interaction) from the
principal to the delegate.

In this paper we describe participant behaviour us-
ing the actor model. Actors are entities with a unique
identifier and a message queue called a mailbox and
they react to incoming messages in various ways. We
also use the new approach to describe sessions and del-
egation introduced in (Castellani et al., 2020), which
extends the global types of (Castellani et al., 2019)
where there are no channels representing sessions,
and hence delegation cannot be explicitly modelled by
passing channels over channels. Instead, delegation
is modelled by enabling the principal to temporarily
lend its behaviour to the delegate. This approach is
appropriate for a setting in which participants are ac-
tors sending messages to other actors and reacting to
messages present in their mailbox. This is the compu-
tational model of Erlang, (Erlang, 2022), where actors
are primitive entities, implemented as lightweight pro-
cesses which communicate only through explicit mes-
sage passing. The lack of shared resources eliminates
the risk of deadlocks. Our type checking proposal en-
sures moreover that
• actors will never remain in wait of unsent messages –
in this case we call the system lock-free;
• all messages sent will be read – no orphan messages.
We demonstrate our proposal on a core version of Er-
lang that we call Featherweight Erlang (FErlang for

532
Egidi, L., Giannini, P. and Ventura, L.
Multiparty-session-types Coordination for Core Erlang.
DOI: 10.5220/0011316600003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 532-541
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

short). In FErlang delegation is realized by the Er-
lang feature that an actor may register with the unique
identifier of another and so may act in its behalf.

The main contributions of the paper are:
• we adapted the theoretical framework of (Castellani
et al., 2020), in which process communication is
synchronous and the operations of starting and ending
delegation are atomic, to the asynchronous setting and
the absence of atomicity for operations of starting and
ending delegation;
• we implemented a tool that accepting an implemen-
tation of a multiparty session (written in a significant
subset of the Erlang syntax) and a global type
specifying its intended interaction protocol checks that
the Erlang program executes the specified protocol.

The paper is organized as follows. In Section 2 we
introduce a motivating example. In Section 3 we intro-
duce the syntax of FErlang (Section 3.1), we present
the session types and the type checking rules (Sec-
tion 3.2), we define projections of global types on
session types (Section 3.3) and propose a semantics,
stating the properties of the typing system with respect
to it (Section 3.4). A glimpse at the implementation is
given in Section 4, related work described in Section 5.
Finally in Section 6 we draw some conclusions and
hint to future work 1.

2 CLIENT, SELLER AND BANK
PROTOCOL

Here we revisit a typical example of delegation in-
volving three participants: Client, Seller, and Bank,
taken from (Castellani et al., 2020). In the protocol,
the client and seller engage in a session in which they
agree on the terms of a purchase. If the client decides
to purchase, the seller delegates the processing of the
client’s credit card to the bank.

A global type for this protocol is in Figure 1.
Global types are built from atomic communications,
and forward, and backward delegations. A commu-
nication, C→ S : title⟨String⟩, means that partici-
pant C sends the message title with payload of type
String to participant S. Forward delegation, S⟨⟨B, in-
dicates that participant S, the principal, delegates its
communications to participant B, the delegate. Back-
ward delegation, B⟩⟩S, says that participant B stops
being a delegate and goes back to executing only its
own communications.

1More examples, full definitions of typing rules and
projection, and more details on the implementation can be
found at http://people.unipmn.it/giannini/TesiVentura.pdf.

C→ S : title⟨String⟩.
S→ C : price⟨Int⟩.
(C→ S : ok .

S→ B :+price⟨Int⟩.
S⟨⟨B
S→ C : pay .
C→ S : card⟨String⟩.
B⟩⟩S
(B→ S : ok .S→ C : date⟨String⟩.End,

B→ S : ko .S→ C : ko .End
),

C→ S : ko .End
)

Figure 1: Global type for Client, Seller, and Bank protocol.

A global type is
• a choice of branches, enclosed in parentheses (),
starting with communications from the same sender
and continuing with a global type or
• a forward/backward delegation followed by a global
type or
• End indicating the end of the protocol and the value
returned.
In our tool we also allow recursive protocols, omitted
here for lack of space.

When the choice has a single branch we omit the
parentheses.
Messages starting with a plus sign, such as +price
are called connecting and are sent to participants who
are optional in the protocol, i.e., may or may not par-
ticipate.

The protocol is as follows.
• Firstly, Client sends a title to Seller, indicated by

action C→ S : title⟨String⟩;
• Seller responds by sending a price to Client, indi-

cated by S→ C : price⟨Int⟩;
• If the price is within Client’s budget, then the

following occurs:
- Client sends a message ok to Seller;
- Seller sends the price to B. The annotation + on the
message +price⟨Int⟩ indicates that the receiver
Bank connects to the session at that point.
- Seller delegates its interaction to Bank, indicated
by S⟨⟨B.
- Bank impersonating Seller sends to Client a
message instructing to proceed with the payment
S→ C : pay
- Client sends its credit card number apparently to
Seller but actually — thanks to delegation — to
Bank;
- Bank delegates back to Seller, indicated by B⟩⟩S.
- If the payment went well, then (a) Bank sends a
message ok to Seller and (b) Seller sends a date
to Client (since the delegation has ended, this is a
communication between the actual seller and the
client) and the interaction ends;

Multiparty-session-types Coordination for Core Erlang

533

- otherwise Seller sends message ko to Client,
terminating the session.

• Otherwise, Client sends message ko to Seller, ter-
minating the session.

Notice that, in the above protocol, the bank is never
contacted in the case the buyer terminates the protocol
by giving up the purchase. In other words, the bank is
an optional participant. For this reason, it receives its
first message via a connecting communication.

The local views of the participants in this protocol
are described by the session types in Figure 2. The ses-
sion type of each participant is obtained automatically
by projection from the global type. The projection al-
ways succeeds under some mild constraints removing
ambiguity and ensuring that delegations begin and end
correctly.

Session type
\/(pi!mi⟨Ti⟩.Si)

i∈I (1)
specifies that a participant can send a message mi to
participant pi. The message is either a simple message
or a connecting message. The message is chosen out
of a set of possible messages, and since the choice is
made by the sender, it is called an internal choice and
represented using the union symbol. The interaction
continues following Si if the message chosen was mi
to pi. Alternatively, the participant can receive either a
simple or a connecting message with

/\(p?mi⟨Ti⟩.Si)
i∈I (2)

If the participant receives message mi from p, it will
then continue the interaction following Si. Which mes-
sage is received is not a choice of the participant but it
is dictated by the sender and it is therefore an external
choice. We use the intersection symbol to emphasise
that the process of the participant must have a branch
for any message that can be sent to it. To avoid input
races the messages must come from the same sender
p. When I is a singleton (just one message can be
sent/received to/from one participant) we drop the in-
ternal/external choice symbols and the parentheses and
write simply p!m⟨T⟩.S and p?m⟨T⟩.S. We call input
type the first and output type the latter. We assume
that choices are non ambiguous. That is, for inter-
nal choices for all h,k ∈ I with h ̸= k either ph ̸= pk
or mh ̸= mk, for external choices for all h,k ∈ I with
h ̸= k mh ̸= mk. We say that an external choice is well
formed when {mi}i∈I contains either all simple or all
connecting messages.

In addition to exchanging messages, session types
may specify delegation actions:

p⟨⟨.S | ⟩⟩p.S | ⟨⟨q.S | q⟩⟩.S (3)
Delegation involves two participants: the principal,
say p in what follows, and the delegate, say q. The
delegate q acts on behalf of the principal p in the piece

of code delimited by two matching delegation actions
p⟨⟨, dubbed accept forward delegation and ⟩⟩p, dubbed
request backward delegation. Dually, the principal p
suspends execution between two matching delegation
actions ⟨⟨q, dubbed request forward delegation, and
q⟩⟩, dubbed accept backward delegation. We require
that there be no action by the principal between ⟨⟨q
and q⟩⟩. The previous property will be enforced by the
fact that session types are projections of global types.

In Figure 2 we give the local types of Client, Seller
and Bank. Note that, in the session type of Client, the
client interacts always with the seller. Also observe
that Seller does not perform any actions between dele-
gating its behaviour to the bank and receiving it back.
Since the client decides whether to purchase or not
by sending the messages ok or ko respectively, the
branches for the client are composed using the internal
choice operator, indicating that at compile-time we
do not know what decision the client will make. In
contrast, we know how the seller will react in response
to the decision the client makes — as it receives from
the client either an ok or a ko message — and hence
the branches of the seller are composed using exter-
nal choice (/\). In the session type for the bank, the
first action S?+price⟨Int⟩ indicates that the bank is
ready to receive a message containing a price from
the seller via a connecting communication. Then, on
behalf of the seller, the bank sends a message instruct-
ing the client to pay and it receives a card number from
the client, indicated by C?card⟨String⟩. Then, it re-
turns control to the seller, as indicated by the construct
⟩⟩S. Finally it sends to Seller a message saying whether
the transaction was successful.

3 FERLANG AND ITS TYPE
SYSTEM

3.1 FErlang Syntax

The syntax of FErlang is defined, in a continuation-
passing style, in Figure 3. With X , a and pid we
denote Erlang variables, atoms and process identifiers.
With X , e and V we mean sequences of X , e and V
separated by comma, and with F a sequence of F .
Production M describes a module declaration, where
a after the keyword module indicates the module’s
name that is the actor’s name. The module contains
the definition of function start that takes no input and
creates a process p using the built-in function spawn.
The process p starts running the function specified by
the second argument of spawn, in the module speci-
fied by the first argument, with e as arguments; p is
registered with the actor’s name. In the examples of

ICSOFT 2022 - 17th International Conference on Software Technologies

534

Client Seller Bank
S!title⟨String⟩.
S?price⟨Int⟩.
\/(S!ok .

S?pay .
S!card⟨String⟩.
/\(S?date⟨String⟩.End,

S?ko .End
),

S!ko .End
)

C?title⟨String⟩.
C!price⟨Int⟩.
/\(C?ok .

B!+price⟨Int⟩.
⟨⟨B.B⟩⟩.
/\(B?ok .C!date⟨String⟩.End,

B?ko .C!ko .End
),

C?ko .End
)

S?+price⟨Int⟩.
S⟨⟨.
C!pay .
C?card⟨String⟩.
⟩⟩S.
\/(S!ok .End,

S!ko .End
)

Figure 2: Local types for Client (left), Seller (middle) and Bank (right).

M ::= module a start()→ module
register(a,spawn(a,a,e)). F

F ::= -spec a(T)→ S. a(X)→ P fun def
P ::= a!m,P send

| receive {ai,ai,X i} → Pi∈I
i receive

| case {e} of {V i} → Pi∈I
i case proc

| X = e,P let def
| e. expr

m ::= {u,a,e} message
e ::= ℓ | X | self() | eope | a(e)

| case {e} of {V i} → ei∈I
i case expr

ℓ ::= a | pid | n | s | true | false literals
u ::= a | X sender
V ::= ℓ | X pattern

Figure 3: Syntax of FErlang.

Figures 4 and 5 the initial function for the processes is
init().

Production F describes a function definition with
name a, parameters X of type T, and body P of type S.
FErlang functions have a single clause, i.e., take a list
of variables X , which is a pattern matching any input
of the right length.

In Erlang, everything is an expression. In FErlang,
to make the presentation clear, we distinguish between
processes and expressions. Expressions denote literals,
whereas processes denote sequences of interactions.
When it comes to function calls, this distinction cannot
be made in a context-free way. The body of a function
is a process P describing the interactions of a partici-
pant with the others and at the end returning a value
resulting from the evaluation of an expression (last
production of P).

A process can consist in sending a message m to a
(a send process) and then continuing with process P.
A message m is a tuple composed as follows:
• a first element, u, that identifies the sender; it may be
an atom (the name of the sender) or a variable meaning
that a delegate of a principal sends the message,
• a second element, a, the label of the message, which
identifies the kind of request,
• an optional payload, consisting of zero or more val-
ues of expressions e.

A receive process is a sequence of clauses specifying
a tuple mi, with patterns, associated with a process Pi.
The tuple starts with two atoms followed by zero or
more distinct variables. If the tuple of the ith clause
matches a message in the process queue, then the actor
continues with process Pi.
For a case process, a sequence of expressions e are
evaluated, the sequence of literals obtained, ℓ, are
matched against the sequences of patterns V i (i ∈ I),
from the first to the last. If the literals ℓ match one V j
the actor continues with process Pj. In FErlang, pat-
terns can be only either a literal or a variable and in a
sequence of patterns all the variables must be distinct.
Matching a pattern literal ℓ against a literal (value)
ℓ′ succeeds only if ℓ= ℓ′, whereas a pattern variable
X matches any literal (value) ℓ and binds X to ℓ. To
avoid run-time errors, the matching should succeed for
at least one sequence of patterns, that is the patterns
are exhaustive for the sequence of expressions e. This
could be achieved by having a final branch with a se-
quence of distinct variables (a default choice).
The let construct binds the value of expression e to
variable X and continues with P.
Finally, a process can be an expression, that could ei-
ther denote the value returned or, in case of a function
call, a process.

Expressions are defined by the production for e.
We have literals (atoms, process identifiers, numbers,
strings and booleans), variables, self(), which de-
notes the pid of the process in which it is executed,
binary operations, function calls and case expressions.
Case expressions differ from the case construct for
processes in that the branches must be expressions.
Note that function calls may appear both in a pro-
cess (as a tail call) or in an expression. In the second
case our type system will ensure that the body of the
function has an expression type. The Erlang prim-
itive functions register(a,e), unregister(a) and
spawn(a,a,e) can be used in FErlang in a restricted
way: register(a,e) and unregister(a) are used in
the delegate participant when implementing start and
end of delegation, and spawn(a,a,e) is used in the

Multiparty-session-types Coordination for Core Erlang

535

start() function of modules.

-module(seller).
start()->register(seller ,

spawn(seller ,init ,[])).
-spec init()->’#client?title <String >..’
init() ->
receive
{client ,title ,Title} ->
Price = 50,
client!{seller ,price ,Price},
receive
{client ,ok}->
bank!{seller ,price ,Price},
bank!{seller ,start_delegation ,

seller ,self()},
receive
{bank ,end_delegation} ->
receive
{bank , ok}->
client!{seller ,date ,"

22/10/2022"},’End’;
{bank , ko}->
client!{seller ,ko},’End’

end
end;

{client ,ko}->’End’
end

end.

Figure 4: Seller.

-module(bank).
start()->

register(bank ,spawn(bank ,init ,[])).
-spec init()->’#seller?price <Int >....’
init() ->
receive
{seller ,price ,Price}->
receive
{seller ,start_delegation ,Name ,From}

->
unregister(Name),unregister(bank),
register(Name , self()),
client!{Name , pay, Price},
receive
{client , card , CardNumber}->
unregister(Name),
register(Name ,From),
register(bank , self()),
seller!{bank , end_delegation},
case length(CardNumber)==16 of
true->
seller!{bank , ok},’End’;

false->
seller!{bank , ko},’End’

end
end

end
end.

Figure 5: Bank.

Examples of FErlang code can be seen in Figures 4
and 5.

In the following, to make types and terms more
readable, we use p, q, and r for participant names
(which will also be module names), m for messages,
and f for function names. All these are FErlang atoms.

3.2 Session Types and Typing Rules

Session Types. There are two kinds of types: session
types S that specify the protocol of interaction of the
participants, and expression types T that specify the
kind of information exchanged between participants
and returned at the end of a session. We call process
type a session type which is not an expression type.

We already introduced the process type constructs
and their meanings in Section 2, (1), (2) and (3). Here
we give expression types T:

T ::= Int | String | Bool | Atom | Pid
| Pid⟨p⟩ | AtS End

For expression types, in addition to the standard Erlang
types (first line) we have the types Pid⟨a⟩ and AtS
used to type the code of a participant during delegation.
In particular, a variable with type Pid⟨a⟩ is associated
with the pid of the principal, and one with type AtS is
associated with the principal’s name. End is the type
of any expression.

Type Checking Rules. In Figure 6 we show some
selected representative typing rules of our type system.

We first summarize the notation we use. Let
Γ = X :T be a mapping between variables and expres-
sion types and ∆ = f:F where F=T→ S is a mapping
between function names (atoms) and their type. We
call Γ the variable environment, or simply environ-
ment, and ∆ the function environment. With Γ(X) = T
we mean that X :T ∈ Γ and we say Γ(X) undefined if
X :T ̸∈ Γ for all T. Similarly for ∆.

We define the following type checking judgments:
• ∆;Γ ⊢p P : S saying that process P associated with
participant p behaves as prescribed by session type S.
• ∆;Γ ⊢- e : T saying that expression e has type T.
• Γ ⊢- V1 . . .Vn : T1 . . .Tn ▷Γ′ saying that patterns
V1 . . .Vn agree with types T1 . . .Tn. In case a Vi is a
literal, then Ti must be its type, whereas a pattern
variable matches any type. The environment Γ′ is
an extension of Γ obtained by adding associations
between the Vi which are variables and the matched
type Ti.
• S≤ S′ saying that S is a subtype of S′ or S is more
specific than S′, meaning that a process (or expression)
with type S can be used whenever one with type S′ is
required.

ICSOFT 2022 - 17th International Conference on Software Technologies

536

So finally, the rules from Figure 6, are:

• [SEND]. Participant p has type q!m⟨T⟩.S if it sends a
message to q and its continuation P has type S. The
message sent must specify the sender, the message’s
label, and the payload. The sender can be either
p itself or a variable that has type AtS, indicating
that p has been delegated by the participant that will
be bound to X to send the message to q (see Rule
[ACPT-FW-DEL]). The message’s label must be m, and
the type of the expressions must be T.

• [RECEIVE] Participant p has type /\(q?mi⟨Ti⟩.Si)
i∈I

if receiving from q message mi, i ∈ I, it branches to
Pi that has type Si. The patterns for the messages
received must be tuples whose first two components
are the sender’s name q and a label mi; the rest
is a sequence of distinct variables X i that will be
bound to the values in the payload of the message.
The pattern X i matches any tuple of values of the
right length. To type check the process Pi in the
i-th branch, the association between the variables X i
and types Ti are added to the environment Γ by the
judgment ∆;Γ ⊢- X i : Ti ▷Γi of Figure 6.

• [CASE] Participant p has type \/(pi!mi⟨Ti⟩.Si)
i∈I if

it is a case construct with |I| branches and for all
i ∈ I the process Pi sends message mi to pi with
payload of type Ti and then process Pi has type
Si. Each branch is guarded by a pattern V i whose
type must be compatible with type T, the type of
the expressions e. To type check the process Pi,
the association between the variables in pattern V i
and the corresponding types in T are added to the
environment. Even though FErlang syntax allows
any process Pi in a branch, since the case construct
must have an internal choice type, then each branch
must have a send type. The type rule for the case
construct for expressions, which is not shown, will
require that each branch have the same expression
type, as usual in functional languages.

• [REQ-FW-DEL]: Participant p asks participant q to “take
its role” in the protocol. To do so, p must send a
start delegation message to q. Then participant
p must be such that the rest of its process P has type
S.

• [ACPT-FW-DEL]: Participant q accepts to “take the role”
of the principal p in the protocol. To do so, q must
receive a start delegation message from p and
then:
- disassociate both itself and the principal from their
registered names, using the unregister function
(this must be done before the following step because
in Erlang the association between names and Pids is
a bijection);
- register itself as having name p, using register
and self() to get its own Pid and

- the rest of its process Q must have type S.
In the environment in which the process Q is type-
checked, the variable X , which will be bound to the
registered name of the principal, has type AtS, so
that in Rule [SEND] of Figure 6 we can check that
the sender specified in a message sent by q, when
q is acting as p’s delegate, is indeed the principal p.
Moreover, we associate Y to the type Pid⟨p⟩ so that
in Rule [REQ-BW-DEL] the registration can be correctly
undone.

• [REQ-BW-DEL]: Participant q “returns the control” of
the protocol to p. To do so, q has to:
- unregister the principal, denoted by X (which was
associated with q’s own Pid)
- register itself with its original name q and the
principal’s Pid denoted by Y with its original name
X (reverting to the state before the beginning of the
delegation),
- send an end delegation message to the principal
and
- the rest of its process Q must have type S.

• [ACPT-BW-DEL] Upon receiving a request of ending del-
egation, the principal resumes its role.

Subtyping. For expression types we assume the subtyp-
ing: Pid⟨a⟩ ≤ Pid for all a and AtS ≤ Atom. So we
can use an expression of type Pid⟨a⟩ whenever one of
type Pid is required and similarly for AtS and Atom.
Finally End is a supertype of all expression types (in
Erlang this is denoted by any()). For process types
we report the subtyping rule [EXT-≤] for external choice,
which is the most relevant:

Si ≤ S′i ∀ i ∈ I

\/(p?mi⟨Ti⟩.Si)
i∈I∪J ≤ \/(p?mi⟨Ti⟩.S′i)i∈I

The more specific type may have more branches than
the less specific and the common branches must start
with sending the same message to the same partici-
pant with the same payload types. The type of the
continuation of the corresponding branches must be
in the same subtype relation. So the process having
the more specific type receives all the messages as
the less specific (could receive additional ones) and
for those messages accepts more payload expressions.
For internal choices the number of branches must be
the same. We do not allow reducing the branches of
internal choices, since this does not augment the set
of typable sessions. Subtyping is used to match the
inferred with the expected type of participants.

3.3 Projection

The main tool for enforcing the property that the FEr-
lang multiparty session behave as expected by a proto-
col, and in particular be lock-free and have no orphan

Multiparty-session-types Coordination for Core Erlang

537

∆;Γ ⊢- e : T Γ ⊢p P : S u =

{
X ∃X Γ(X) = AtS

p otherwise

∆;Γ ⊢p q!{u,m,e},P : q!m⟨T⟩.S
[SEND]

∆;Γ ⊢- X i : Ti ▷Γi Γi ⊢p Pi : Si ∀i ∈ I

∆;Γ ⊢p receive {q,mi,X i} → Pi∈I
i : /\(q?mi⟨Ti⟩.Si)

i∈I
[RECEIVE]

∆;Γ ⊢- e : T Γ ⊢- V i : T▷Γi ∆;Γi ⊢p Pi : pi!mi⟨Ti⟩.Si

∆;Γ ⊢p case e of {V i} → Pi∈i
i : \/(pi!mi⟨Ti⟩.Si)

i∈I
[CASE]

∆;Γ ⊢p P : S

∆;Γ ⊢p q!{p,start delegation,p,self()},P : ⟨⟨q.S
[REQ-FW-DEL]

∆;Γ,X : AtS,Y : Pid⟨q⟩ ⊢q Q : S

∆;Γ ⊢q receive {p,start delegation,X ,Y} →
unregister(q),unregister(X),register(X ,self()),Q : p⟨⟨.S

[ACPT-FW-DEL]

∆;Γ ⊢q P : S

∆;Γ,X :AtS,Y :Pid⟨p⟩ ⊢q unregister(X),register(q,self()),
register(X ,Y),X!{q,end delegation},Q : ⟩⟩p.S

[REQ-BW-DEL]

∆;Γ ⊢p P : S

∆;Γ ⊢p receive {q,end delegation} → P : q⟩⟩.S
[ACPT-BW-DEL]

Figure 6: Selected typing rules.

messages, is the definition of projection of a global
type on a participant.

We define the projection of a global type G on a
participant p, denoted G ↾ p . For lack of space we
give an informal description of projection by showing
how the session types of Figure 2 are derived from the
global type G of Section 2.

For an atomic communication followed by a global
type G the projection on the message sender produces
an output type on the message receiver, whereas the
projection on the receiver produces an input type on the
receiver; in both cases, followed by the projection of
G on the same participant. Projection on a participant
different from the sender or the receiver produces the
projection of G on the participant. We can see (in
Figures 1 and 2) that

C→ S : title⟨String⟩.G
projected on participant C yields S!title⟨String⟩
and on S produces C?title⟨String⟩ both followed
by the projection of G. However, when projecting
on Bank no action is generated. The projection of a
choice of communications on the sender, say p, gen-
erates an internal choice where each branch contains
the result of the projection of the initial communica-
tion followed by the projection of the corresponding
branch. So the first action in each branch of p is a send.
For the other participants the projection starts with a
receive, and the receives in all branches produce a well
formed external choice, as defined in Section 2. Going
back to our example we see that the choice

(C→ S : ok , C→ S : ko .End)
produces an internal choice of the Client and an exter-
nal choice on the Seller. On the Bank it produces the
initial receive S?+price⟨Int⟩ which is a connecting
communication.

The projection of a start delegation on the princi-
pal produces a request forward delegation followed
by delegation projection on the principal, while the
projection on the delegate produces an accept forward
delegation followed by delegation projection on the
delegate. If the participant is neither the principal nor
the delegate, the projection of G ignores the delegation
and continues with the standard projection previously
described. The delegation projection on the principal
is only defined if the communications that follow do
not involve the delegate and we find an end delegation
matching the starting one, which produces an accept
backward delegation. The delegation projection on the
delegate projects the action of the principal (as if they
were of the delegate). Also for the delegate the projec-
tion is not defined if there is no end delegation. The
projection of the end delegation is a request backward
delegation. Consider
S⟨⟨B S→ C : pay .C→ S : card⟨String⟩.B⟩⟩S . . .

The projection on Seller is, as it would be for any
principal, ⟨⟨B.B⟩⟩ . . . For the delegate the projection
is S⟨⟨.C!pay .C?card⟨String⟩.⟩⟩S . . . Notice that the
actions of the principal are carried out by the delegate.

A multiparty FErlang session M is defined by a
set of modules, p1.erl, ..., pn.erl, describing the pro-

ICSOFT 2022 - 17th International Conference on Software Technologies

538

cesses of its participants and a module main.erl start-
ing all the processes by calling the functions start()
of p1.erl, ..., pn.erl.

Given a multiparty FErlang session M , the
global type G is a type for M if for all i,
1 ≤ i ≤ n, if the module pi.erl starts with
module pi start()→ register(spawn(pi,fi,e) . . . ,
all its functions are well typed and, if S is the type for
fi(e), then S≤ G↾pi . That is if, for every participant,
the application of the corresponding initial function to
its arguments behaves as prescribed by the projection
of the global type G on the participant.

3.4 Semantics and Properties

The semantics of a multiparty FErlang session is given
by the set of traces of the execution of the main.erl
module where we consider only send and receive op-
erations. Traces are obtained by the Erlang function
seq_trace specifying send and receive as the to-
kens to be traced. We consider a trace semantics since
Erlang actors are sequential processes.
The trace of an execution of a multiparty session, tr,
is a (possibly empty) sequence of actions β where

β ::= p?q{m, ℓ1, ..., ℓn} | p!q{m, ℓ1, ..., ℓn}
The player of β, play(β), is the participant do-
ing the action, that is play(p?r{m,v1, ...,vn}) =
play(p!q{m,v1, ...,vn}) = p. Given tr = β1 · · ·βn
• tr[i] = βi for i such that 1 ≤ i ≤ n
• tr[i.. j] = βi · · ·β j for i and j such that 1 ≤ i, j ≤ n

Definition 3.1. Let tr be a trace of length n, tr[i]
matches tr[j] if, for 1 ≤ i < j ≤ n,
• tr[i] = p!q{m,v1, ...,vn}, tr[j] = q?p{m,v1, ...,vn}
• and the number of actions p!q{ } in tr[1..(i−1)] is
equal to the number of actions q?p{ } in tr[1..(j−1)].

We define the soundness of a trace for a global
type as the property of executing the communications
prescribed by the global type and doing it in the pre-
scribed order.

Definition 3.2. The trace tr of length n is sound for G
if the following hold:
• if G= (p→ qi :mi⟨Ti⟩.Gi)

i∈I , then for some i ∈ I
- there are j, k, 1 ≤ j,k ≤ n such that tr[j] =
p!qi{mi, ℓ1, ..., ℓn} and tr[k] matches tr[j] and no
p!qi{ } is in tr[1..(j−1)] and
- trace tr[1..(j−1)] · tr[(j+1)..(k−1)] · tr[(k+1)..n]
is sound for Gi,

• if G= p⟨⟨q.G′, then
- there are j, k, 1 ≤ j,k ≤ n such that
tr[j] = p!q{start delegation,p,pid} and
tr[k] = q?p{start delegation} and
- the number of actions p!q{ } in tr[1..(j − 1)]
is equal to the number of actions q?p{ } in

tr[1..(k−1)] and
- trace tr[1..(j−1)] · tr[(j+1)..(k−1)] · tr[(k+1)..n]
is sound for G′,

• if G= q⟩⟩p.G′, then
- there are j, k, 1 ≤ j,k ≤ n such that
tr[j] = p!q{end delegation,p,pid} and tr[k] =
q?p{end delegation} and
- the number of actions p!q{ } in tr[1..(j − 1)] is
equal to the number of actions q?p{ } in tr[1..(k−
1)] and
- trace tr[1..(j−1)] · tr[(j+1)..(k−1)] · tr[(k+1)..n]
is sound for G′,

• if G is an expression type and tr is empty.
A multiparty FErlang session M executes the pro-

tocol whose type is G if all its traces are sound for
G. We can decide whether M executes the protocol
whose type is G by type checking M .
Theorem 3.3. Let M =p1.erl, ..., pn.erl,main.erl be
a multiparty FErlang session and G be a type. If G is a
type for M , then all finite traces of M are sound for
G.

4 IMPLEMENTATION

The software consists of a JastAdd (Hedin, 2011) ap-
plication that produces a type checker implemented in
Java. JastAdd is a generator of syntax directed transla-
tors based on attribute grammars. Figure 7 shows the
workflow of the tool on the example of Section 2.

Figure 7: UML components schema of type checker.

Starting from the Erlang code, including a file
named .global that contains the string representation
of the global type, it checks that the global type is a
type for the protocol.

The parse phase on the code generates the Abstract
Syntax Trees (ASTs) from the .form files. JastAdd
uses JFlex and Beaver as lexer and parser generators.
The AST is specified, in a concise way in a .ast file,

Multiparty-session-types Coordination for Core Erlang

539

by giving the hierarchical relation between classes and
their fields. From this specification JastAdd generates
the corresponding Java classes. Finally the code for
the computation of the attributes type, project and
isSubtype, is specified in .jrag and .jadd files in a
Java-like language (see Figure 8). From these speci-
fications JastAdd generates methods, computing the
values of the attributes, which are the core of the type
checking, that are injected in the AST classes.

The most interesting attribute is the type attribute,
associated with nodes that extend the Process class
and return the inferred type for the Erlang expression.
Its definition is not always straightforward since typing
is not necessarily syntax driven; in particular, delega-
tion makes the definition tricky. On the one hand, for
a construct like case a union type is always inferred
since the case is inherently an internal choice among
its various branches.

On the other hand, a receive construct (for in-
stance) must be dealt with looking inside the message
that is received. The type attribute for the Receive
behaves in a particular way when the message is a
start_delegation. The fundamental reason is that a
start delegation must be realized by a sequence of op-
erations, disassociating first and rebinding later names
and Pids. Therefore, before the receive is correctly
typed, it must be checked that all operations are carried
out and in the right sequence. This can be seen clearly
in the snippet of the definition of the type attribute for
the class Receive in Figure 8. We only report there
part of the code for a start_delegation. After stan-
dard checks on the sender and on the syntax of the
message (omitted in the figure), we check that the
appropriate sequence of unregister and register opera-
tions follow the message receipt. In particular, notice
that unregistrations must come before the registration
of the delegate as the principal: lines 3−4 name the
processes that follow the receive, and lines 9− 10,
together with lines 6−7, specify that the first two must
be unregistrations. Notice that the order in which prin-
cipal and delegate are unregistered is irrelevant (lines
9−10). After the unregistrations, the registration of
the receiver of the message as principal is required
(lines 8 and 11). Only after these checks (line 12) is
the type AcceptForwardDelegation returned.

5 RELATED WORK

In (Mostrous and Vasconcelos, 2011), a session typ-
ing system for a featherweight Erlang is introduced,
ensuring that the behavior of the process involved in
a protocol is safe with respect to a protocol expressed
by session types. The control that messages follow

1 if(getLabel().eq("start_delegation"
)){

2 [. . .]
3 Process p = getActions(); Process

p1 = getNextProcess(p);
4 Process p2 = getNextProcess(p1);
5 [. . .]
6 Unregister unreg1 = new

Unregister(new List(new Atom(
getModuleName())));

7 Unregister unreg2 = new
Unregister(new List(d));

8 Register reg1 = new Register(new
List(d,new Call(new Atom("
self"),new List())));

9 boolean b1 = (p.eq(unreg1) || p.
eq(unreg2));

10 boolean b2 = (p1.eq(unreg1) || p1
.eq(unreg2));

11 boolean b3 = p2.eq(reg1);
12 if(b1 && b2 && b3 && !p.eq(p1)){
13 delegating().setName(d);
14 return new

AcceptForwardDelegation(d
,getNextProcess(p2).type
());

15 }
16 }

Figure 8: Snippet of the definition of the type() attribute of
Receive.

a prescribed pattern is realized by passing references
(similar to channels) that uniquely identify sessions.
Delegation is not allowed; in fact, authors of (Mostrous
and Vasconcelos, 2011) also say that the very nature
of Erlang makes delegation a delicate matter since
communications are buffered, i.e., each process is co-
located with its mailbox, and messages are addressed
to process mailboxes. Moreover, no tool is provided
for checking featherweight Erlang programs. We show
that this problem can be overcome modelling delega-
tion with unbinding of the principal’s name and rebind-
ing it to the delegate’s, in a setting in which sessions
are not represented by channels.

In (Neykova and Yoshida, 2017) the authors pre-
sented a framework for generating runtime monitors
from a multiparty session type. Participants are im-
plemented in Python based on a protocol for exchang-
ing messages, Advanced Message Queuing Protocol
(AMPQ), simulating an actor model. In (Fowler, 2016)
an Erlang-based adaptation is proposed for the same
runtime monitoring. Both works use Scribble to spec-
ify global types, a protocol based on the theory of mul-
tiparty session types, built as a Java-based toolchain,
which incorporates tools for parsing, validating well-
formedness, and local type projection. In these works
there is no type checker which statically ensures that

ICSOFT 2022 - 17th International Conference on Software Technologies

540

a specific protocol follows a global type. In (Harvey
et al., 2021) and more in general in the Stardust project
(Stardust, 2022), EnsembleS is introduced. This is an
actor language leveraging multiparty session types to
provide compile-time verification of safe dynamic run-
time adaptation. The focus of their work is protocol
adaptation in the face of actor failures.

We extended to FErlang the results of (Castellani
et al., 2020), where the communication between pro-
cesses is synchronous and the operation of starting and
ending delegation is assumed to be atomic. The asyn-
chronicity of FErlang, in contrast, allows more paral-
lelism, but since requesting/accepting forward/back-
ward delegation are non-atomic, periods exist in which
the principal and/or the delegate are not registered, so
messages sent to them could be lost. Our type check-
ing system precisely ensures that this cannot happen
if the actors follow the protocol prescribed by the ses-
sion types obtained as projection from a global type: it
ensures that the system is lock-free and has no orphan
messages.

6 CONCLUSIONS

In this work, we present an Erlang implementation for
multiparty protocols using a reduced, yet significant
set of Erlang constructs (FErlang), including the
communication primitives, send and receive, and
constructs for delegation. For the description of
delegation at the global type level we use the global
types introduced in (Castellani et al., 2020) which
include explicit primitives for starting and ending
delegation. We formalized and implemented a
projection from global types on session types that
derives the expected behaviour of single participants
from the global protocol. We defined a type system for
FErlang and implemented a parser and type checker
for it. The implementation was done using the meta
compiler JastAdd, resulting in a system which can be
easily extended to include new syntactic constructs
(for FErlang, global and session types) and syntax
directed translations.

For future work, in addition to using the tool on
other protocols, we have several directions. On one
side the current tool could be improved by tracking
errors found during type checking; this could be done
by defining in JastAdd further aspects to collect typ-
ing errors and showing them to the user. Moreover
we could implement a GUI to help the user with the
interaction. On the other hand, still leveraging on the
JastAdd implementation we could also use the session
type projection of a global type to generate a skeleton

for the Erlang modules implementing the processes of
the participants, as done in (Cutner and Yoshida, 2021)
for Rust. The user could then customize that code
relying on the fact that communications are correct.

ACKNOWLEDGEMENTS

We thank the anonymous referees for helpful com-
ments.

REFERENCES

Castellani, I., Dezani-Ciancaglini, M., and Giannini, P.
(2019). Reversible sessions with flexible choices. Acta
Informatica, 56(7-8):553–583.

Castellani, I., Dezani-Ciancaglini, M., Giannini, P., and
Horne, R. (2020). Global types with internal dele-
gation. Theoretical Computer Science, 807:128–153.

Coppo, M., Dezani-Ciancaglini, M., Padovani, L., and
Yoshida, N. (2015). A gentle introduction to multi-
party asynchronous session types. In Formal Methods
for Multicore Programming, volume 9104 of LNCS,
pages 146–178. Springer.

Cutner, Z. and Yoshida, N. (2021). Safe session-based asyn-
chronous coordination in rust. In COORDINATION,
volume 12717 of LNCS, pages 80–89. Springer.

Erlang (2022). Erlang doc. https://www.erlang.org. Ac-
cessed: 18-4-2022.

Fowler, S. (2016). An Erlang implementation of multiparty
session actors. In ICE, volume 223 of EPTCS, pages
36–50.

Harvey, P., Fowler, S., Dardha, O., and Gay, S. J. (2021).
Multiparty session types for safe runtime adaptation in
an actor language. In ECOOP, volume 194 of LIPIcs,
pages 10:1–10:30. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Hedin, G. (2011). An Introductory Tutorial on JastAdd
Attribute Grammars, pages 166–200. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Honda, K., Yoshida, N., and Carbone, M. (2008). Multiparty
asynchronous session types. In POPL, pages 273–284.
ACM Press.

Mostrous, D. and Vasconcelos, V. T. (2011). Session typ-
ing for a featherweight erlang. In COORDINATION,
volume 6721 of LNCS, pages 95–109. Springer.

Neykova, R. and Yoshida, N. (2017). Multiparty session
actors. Logical Methods in Computer Science, 13(1).

Stardust (2022). Stardust: Session Types for Reliable Dis-
tributed Systems. https://epsrc-stardust.github.io/. Ac-
cessed: 18-4-2022.

Multiparty-session-types Coordination for Core Erlang

541

