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Abstract: Deep learning analysis of multisource Martian data (both from orbiter and rover) allows for the separation 
and classification of different geomorphological settings. However, it is difficult to determine the optimal 
neural network model for unambiguous semantic segmentation due to the specificity of Martian data and 
blurring of the boundary of individual settings (which is its immanent property). In this paper, the authors 
describe several variants of multisource deep learning processing system for Martian data and develop a 
methodology for semantic segmentation of geomorphological settings for this planet based on the 
combination of selected solutions output. Network ensemble with use of the weighted averaging method 
improved results comparing to single network. The paper also discusses the decision rule extraction method 
of individual Martian geomorphological landforms using fuzzy inference systems. The results obtained using 
FIS tools allow for the extraction of single geomorphological forms, such as ripples.

1 INTRODUCTION 

Mapping of landforms on Mars using remote sensing 
data has become one of the most important issues in 
space exploration in recent years. The further 
development in Mars exploration requires 
preparation of detailed geomorphological maps. The 
amount of high-resolution data acquired by Martian 
orbiters and rovers increases very quickly, covering 
vast regions of the planetary surface. Mapping of 
these areas in a short period of time can be done only 
using automatic methods. In this work, we present a 
novel approach to map aeolian landscape on Mars 
using deep learning analysis. We focused on 
combining multiple models trained on multisource 
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data (namely orbital imagery, derivatives of elevation 
models and in situ data from rover camera), taking 
advantage of ensemble methods. We also analysed 
use of fuzzy inference systems in the process of 
decision rule extraction and individual landforms’ 
classification. 

2 RELATED WORKS 

2.1 Martian Geomorphological 
Landforms 

Mars is a desert planet covered by many aeolian 
(wind related) landforms, such as dunes or ripples. In 
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this work, we will focus on ripples as they are the 
most common features in the Martian landscape. 
Ripples are sand ridges ranging from centimetres to 
meters and formed by wind perpendicular to their 
crests. Automatic detection of areas covered by large 
(> 20 cm in height) ripples are particularly important 
for Martian investigation, as ripples often become 
traps for wheeled vehicles (e.g., Squyres et al. 2006). 
We will focus on the area of Meridiani Planum 
(Hynek et al., 2002), which is one of the best-known 
regions on Mars due to extensive in situ and orbital 
investigations. This is a flat region covered by impact 
craters and ripples (see e.g. Fenton et al., 2015). In 
this area there are three distinct geomorphological 
settings: (i) ripple fields – ripples on sand covers, (ii) 
ripples on bedrock - areas where extensive erosion led 
to exposing the bedrock in spaces between ripples, 
and (iii) sand-gravel covers – extensive sand-gravel 
sheets. Two other (not aeolian) landforms 
characteristic of this region are impact craters and 
structural lineaments. 

2.2 Automated Segmentation of 
Geomorphological Landforms 

First approaches to automated segmentation of 
Martian geomorphological landforms were proposed 
in the beginning of 21st century (Stepinski et al., 2006; 
Stepinski et al., 2009; Gosh et al., 2010). Well-known 
machine learning algorithms were utilized for this 
task (Stepinski et al., 2006). As Martian data volumes 
and computing power increased, Deep learning (DL) 
algorithms have begun to be used. Semantic 
segmentation based on DL approach was utilized both 
for impact craters (Lee, 2019; Bandeira, 2012; 
Stepinski et al., 2006; Stepinski et al., 2009) and 
landforms (Palafox et al.,2017; Barrett et al.,2022; 
Nagle-Mcnaughton et al., 2020). DL techniques have 
been employed successfully on the most widely used 
imagery and elevation data sources collected from 
Mars: Mars Orbiter Laser Altimeter (MOLA) 
(Stepinski et al., 2006), High Resolution Stereo 
Camera (HRSC) (Lee, 2019), Context Camera (CTX) 
(Palafox et al., 2017) and High Resolution Imaging 
Science Experiment (HiRISE) (Wilhelm et al., 2020).  

There are also works taking advantage of images 
taken by Martian roves for the purposes of 
segmentation and detection of terrain forms 
(Wagstaff et al., 2018). 

So far, a study by (Rothrock et al., 2016) is the 
only one using orbital and rover data in one 
workflow. However, these two data sources were 
used in separation and for different purposes (orbital 
data was used for search of optimal landing site for 

future rovers and rover data for wheel slip 
predictions). In this work, we propose an approach 
that utilizes multiple data sources for semantic 
segmentation of geomorphological settings basing on 
deep learning multi-source data fusion methods 
proposed by (Cao et al., 2018). 

2.3 Decision Fusion 

There are numerous works proving that fusing 
decision outputs from various neural network models 
may improve accuracy and generalizability 
comparing to use of a single model. Ensemble of 
neural networks was used with success both for 
recurrent (Zhou et al., 2018) and convolutional neural 
networks (Manna et al., 2021; Han and Jeong, 2020). 
Simple methods such as averaging, weighted 
averaging or majority voting are being used in many 
works. Some researchers are developing also more 
sophisticated approaches (Manna et al., 2021). 

3 EXPERIMENTAL DESIGN 

3.1 Data Sources and Pre-processing 

In our investigation we used orbital and in situ data, 
simultaneously. We used the high-resolution orbital 
images of the Martian surface obtained by HiRISE 
onboard the NASA Mars Reconnaissance Orbiter 
mission. The orbital data were supplemented by in 
situ data obtained by the Opportunity rover, one of 
two rovers of the NASA Mars Exploration Rover 
(MER) mission. Opportunity explored the western 
part of Meridiani Planum between Eagle and 
Endeavour craters in years 2004-2018.  

The HiRISE and Opportunity Rover data were 
downloaded from the Planetary Data System (PDS). 
To study aeolian landforms from the planetary 
surface we focused on the Navigation Camera 
(NAVCAM) data. The NAVCAM system consisted 
of two stereoscopic cameras (Maki et al., 2003).  

3.1.1 HiRISE Data 

We used eight images to produce four stereo pairs and 
to create the Digital Terrain Model (DTM) that 
covered the entire Opportunity rover traverse: 
ESP_018846_1775-ESP_018701_1775,  

ESP_051245_1780-ESP_020758_1780,  
ESP_016644_1780-ESP_037109_1780,  
PSP_001414_1780-PSP_005423_1780. 
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The HiRISE data were processed using NASA Ames 
Stereo Pipeline (ASP) (version v2.6.2) and Integrated 
Software for Imagers and Spectrometers (ISIS) 
(version 3.6.0). From the HiRISE stereopairs four 
DTMs were produced. Selected HiRISE images were 
orthorectified using the DTMs to remove the impact 
of terrain height on the geometry of the images. 
Finally, the orthoimages and the DTMs were 
mosaicked into continuous raster file, so-called 
mosaic, which covered an area of approximately 87 
square km and had a spatial resolution of 27 cm.  
Using elevation-DTM data from HIRISE images, the 
authors also developed derived relief models: 
topographic roughness index (TRI), topographic 
positioning index (TPI). Various curvature models, 
e.g., transverse, longitudinal, were also determined 
from the DTM analysis. 

3.1.2 NAVCAM Data 

We stitched NAVCAM images into spatially 
referenced panoramas basing on NAVCAM images 
metadata. Radiometric differences between 
panorama segments were reduced using histogram 
matching technique. The final panoramas were 
cylinder-projected. Areas, where images were 
overlapping were merged by selecting every second 
pixel of each image. The starting orientation for each 
panorama is north to ensure consistency for the 
analysis of all panoramas used in the research 
process. The resolution of a single output panorama 
is 2048×6992. 

Finally, semantic features from each panorama 
were extracted with the use of Places-CNN network 
pre-trained on Places365 dataset (Zhou et al., 2017). 
Each panorama was converted to 2048-dimensional 
feature vector which was reduced to 50 dimensions 
by using principal component analysis (PCA) 
method. To spatially align in-situ data with orbital 
data we interpolated feature vectors onto spatial 
domain using Nadaraya-Watson interpolation 
algorithm.  

3.2 Semantic Segmentation Network 

We use a single architecture of a convolutional neural 
network (CNN) to train a few independent models in 
order to create semantic segmentation of terrain. 
Different data sources were used as the input for these 
models. 

A CNN encoder-decoder network consisting of 
two encoders and one decoder was used to train 
models employed in this research. Both encoders of 
the network were based on VGG-16 architecture 

(Simonyan and Zisserman, 2015) with last (fifth) 
layer of original VGG-16 replaced by two 
convolutional layers. First encoder was used to 
extract semantic features from orbital data (imagery 
data and derivatives of elevation model concatenated 
into multi-layer raster are fed into this part of model). 
Second one was utilized to extract in-situ features. 
Every last layer of each block of the second encoder 
was concatenated with corresponding layer of the first 
encoder. The decoder block was also based on VGG-
16 (without the last block, with an up-sampling layer 
instead of max-pooling and with reduced number of 
parameters). Semantic segmentation of orbital image 
is generated as an output from decoder block. The 
architecture was implemented using a TensorFlow 
framework (Martin, 2015). 

3.3 Averaging 

Two averaging methods were utilized in this research: 
i) simple averaging of selected models decision 
certainty, ii) weighted averaging.  

In the first case, class decision certainty values of 
each model for each data point (pixel) xi were 
summed and divided by number of models (n): 𝑥̄ = ∑ 𝑥ୀଵ𝑛  (1)

Weighted averaging x̄w was performed by 
assigning weight wi to each of n models based on their 
performance on test dataset (assed by overall 
accuracy). The final decision certainty was computed 
as the weighted average for each data point xi: 𝑥௪̄ = ∑ 𝑤 ∗ 𝑥ୀଵ∑ 𝑤ୀଵ  (2)

Finally, class with the highest fused decision 
certainty value was selected as valid for a given data 
point.  

3.4 Fuzzy Logic  

Using deep machine learning methods allows to 
obtain reliable classification results, however, the 
limitation of this approach is the so-called black box 
associated with the use of neural networks. In order 
to obtain explicitly defined (yet intentionally fuzzy) 
decision rules for classification, the authors of this 
paper have applied fuzzy inference systems (FIS). 
This approach allows the extraction of decision rules, 
but requires prior training of the neural network and 
obtaining reliable parameters of membership of 
pixels to geomorphological setting classes. 
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4 EXPERIMENTS AND 
ANALYSIS 

4.1 Individual Models Training 

The network architecture described above was used 
to train a few semantic segmentation models using 
different input data combinations (Table 1).  

Table 1: Summary of data sources used for each 
experiment. 

Experiment no. Data used 
1  orbital only 

2 orbital + TPI/TRI 

3 orbital + curvatures 

4  Orbital and in situ fused 

5 Orbital and in situ fused + 
TPI/TRI 

6 Orbital and in situ fused + 
curvatures 

Each network was trained on the same amount of 
data, namely: 523 256x256 tiles of each data type for 
training and 108 tiles for testing. As the training 
dataset was not large, offline data augmentation 
techniques were utilized in order to enlarge dataset. 
Moreover, both VGG-16 encoders were pretrained on 
the ImageNet dataset.  

In our analysis, we used a system of four classes 
of Meridiani Planum geomorphological setting:  
1) ripple fields, 
2) ripples on bedrock, 
3) sand-gravel covers, 
4) others, neglected in results analysis 

4.2 Averaging 

Two approaches of results averaging were tested: i) 
simple averaging with use of chosen models, and ii) 
weighted averaging.  

Taking into account individual models results a 
couple of variations of models were selected for 
simple averaging. Table 2 summarizes experiments 
conducted to check the effectiveness of simple 
averaging technique. 

Second approach to averaging is to use weights 
assigned to each model. We used ranked-based 
approach to weighting where constant weight values 
were assigned to models basing on their individual 
accuracy scores (see point 5.1). Table 3 shows 
weights assigned to each model. 

 

Table 2: Summary of experiments carried out with use of 
simple averaging technique. 

Experiments no. used for 
averaging (see Table 1) 

1,2,5,6 

5,6 

2,5 

2,3,4,5 

4,5 

4,5,6 

1,2,3,4,5,6 

Table 3: Weight value assigned to each experiment basing 
on its individual results. 

Experiment no. (see 
Table 1)

Weight value 

1 0.05 

2 0.20 

3 0.10 

4 0.15 

5 0.50 

6 0.00 

As one can observe, experiment no. 6 was 
excluded from multi-model decision process due to 
its significantly worse individual performance. 

4.3 Fuzzy Logic based Approach 

The use of FIS systems allows for the extraction of 
fuzzy decision rules and the development of an 
efficient inference system based on multiple 
variables. In this work, Takagi-Sugeno-Kang fuzzy 
inference FIS models (Sugeno, 1985) were used. This 
approach uses singleton output membership functions 
that are either constant or a linear function of the input 
values. Three FIS models were developed to classify 
Martian aeolian settings. A fuzzy tree - Aggregated 
Structure was also constructed. In this approach, input 
values are incorporated as groups at the lowest level, 
where each input group is fed into a FIS (Siddique, 
2013). The outputs of the lower level fuzzy systems 
are aggregated using the higher level fuzzy systems. 
In this work, for the simplicity of the model, only two 
explanatory variables: image value (IMG) and TRI, 
and several simple linguistic variables: low, medium, 
high, possible etc. were used. 
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Figure 1: Aggregated Fuzzy Tree. 

4.4 Evaluation Metrics 

To assess results of the conducted experiments both 
global and per-class evaluation metrics were used, 
namely: overall pixel accuracy, per-class precision, 
recall and F1 score. Also, averaged values of per-
class precision, per-class recall, and per-class F1 
score were used to assess overall performance of 
selected approaches. 

Overall pixel accuracy: 

acc=
trሺCMሻ

N  (3)

Where 𝑡𝑟  is the trace of the matrix, 𝐶𝑀  is the 
confusion matrix, and 𝑁 is the number of pixels in all 
classes. 

Per-class precision, Pc: 

pc=
CMcc∑ CMcj
n
j=1

 (4)

 
 

Per-class recall, rc: 

rc=
CMcc∑ CMjc
n
j=1

 (5)

Where c represents the index of a given class in the 
confusion matrix, n is the number of all classes, and 
CMij is the 𝑖th row and the jth column element in the 
confusion matrix.  

The per-class F1 score takes precision and recall 
metrics into account:  

F1= 2*pc*rc

pc+rc
  (6)

5 RESULTS 

Predictions on test dataset of individual and 
ensembled models were compared with use of 
evaluation metrics described in chapter 4.4. 

5.1 Individual Models 

Models trained using different data sources 
combinations (Table 1) varied between 91.88% and 
95.94% in terms of overall accuracy on test dataset. 
Best results regarding majority of metrics were 
achieved in the experiment which used both in situ 
and orbital data along with TPI and TRI rasters 
(experiment no. 5). 

Figure 2 shows results achieved by the best model 
with comparison to the per-metric best and the per-
metric worst result. It can be observed that not in 
every case best individual model gives the best result 
for each of the tested classes. 

 
Figure 2: Precision, recall and F1-score comparison of best 
individual model and best and worst results from all models 
for each class. 
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5.2 Ensemble Techniques 

The results of simple averaging experiments using 
different models (Table 2) are visualized below 
(Figure 3). Mean value of precision, recall and F1 
score was computed basing on results for individual 
classes. Best overall simple averaging results were 
achieved using combination of two models: 4 and 5. 
However, the results were better only in terms of 
precision metric when compared to best individual 
model (no. 5). Also, overall accuracy of simple 
averaging methods is lower than achieved by model 
no. 5. (see Figure 5). 

 
Figure 3: Mean precision, recall and F1-score comparison 
of best individual model (5) and multiple models combined 
with use of simple averaging technique.  

Weighted averaging technique was tested using 
weights introduced in Table 3 and compared to 
selected results from simple averaging and best 
individual model. Figure 4 shows comparison of 
achieved precision, recall and F1-score. Figure 5 
compares overall accuracy of each model. 

 
Figure 4: Mean precision, recall and F1-score comparison 
of best individual model (5), selected multiple models 
combined with use of simple averaging technique and 
models combined with use of weighted averaging 
technique. 

Weighted approach proved to give better or equal 
results when compared to any individual model in 
terms of precision, recall and F1-score. Overall 
accuracy is also better than any other approach tested 
in this research and achieved level of 96.10%. 

 
Figure 5: Overall accuracy of best individual model (5), 
selected multiple models combined with use of simple 
averaging technique and model combined with use of 
weighted averaging technique. 

The weighted averaging technique produces results that 
visually fit well with manual recognition of the 
geomorphological settings. It enables distinction of the 
ripples on bedrock class in areas with small share of 
bedrock surface. Subsequently, it tends to overlook small, 
isolated bedrock outcrops, which prevents creation of 
small, misleading artifacts (Figure 6). The weighted 
averaging results tend to have lower, however still 
conclusive, decision certainty value in ambiguous areas 
than some other approaches. It opens a prospect for better 
multi-aspect terrain recognition using fuzzy logic. 

5.3 Fuzzy Logic Classification 

In the present study, an aggregate decision tree was 
developed to detect individual Martian 
geomorphological landforms. Each of the three 
source Sugeno trees allows for classification of a 
distinct type of landform (e.g. ripples) and extraction 
of decision rules. For example, first FIS (Figure 1) 
component of the FIS tree allows classification of 
ripples based on two decision variables - IMG and the 
morphometric parameter TRI. The nonlinear FIS 
decision surface is shown in Figure 7. The operation 
of this FIS tree is based on only three fuzzy decision 
rules: 

- if IMG is medium and TRI is medium then ripple 
is certain 

- if IMG is low and TRI is low then ripple is 
possible 

- if IMG is high or TRI is high then ripple is 
impossible 
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Figure 6: Exemplary part of classified terrain; orthoimage 
(A), manual labelling (B), individual model no.5 (C), 
simple averaging: model 4 and 5 (D), simple averaging: all 
models (E), weighted averaging (F), decision certainty 
value plot for a chosen profile (G), classification result 
along the profile for different approaches (H). 

The results obtained are (in terms of accuracy) 
much worse than the classification based on neural 
networks (71.23% classification correctness), but this 
is partly due to the way the results are granulated 
(Figure 8). The FIS system classifies as "ripple" not 
so much the areas of ripple occurrence, but individual 
ripples. The areas in between ripples have been 
assigned to a different feature class: non-ripples. 
Thus, the obtained results allow both to "reveal" the 
decision rules and open new research directions in the 
field of neuro-fuzzy classification. 

6 CONCLUSIONS 

This research has shown that use of deep learning 
methods combined with multisource data have big  
 

 
Figure 7: Nonlinear fuzzy decision surface. 

 
Figure 8: FIS classification of ripples using decision 
variables: image value and TRI. 

potential for the highly accurate, automated 
geomorphological Martian settings segmentation. 
These results may be improved further with use of 
ensemble methods such as weighted averaging. 

Fusion of multiple model decisions with varying 
accuracy may bring improvement in comparison to 
use of one model. Weighted averaging proved to give 
better results than simple averaging with regard to 
model decision fusion for semantic segmentation of 
geomorphological settings. Automated optimization 
of weight values may further increase system 
accuracy and such approach will be investigated in 
future. 

The use of deep learning machine learning 
methods allows for the correct classification of 
aeolian forms on Mars and, consequently, for the 
development of an implicit knowledge base acting on 
the "black box" principle. The use of fuzzy logic 
allows the extraction of decision rules which explain 
why a given pixel has been classified into the specific 
geomorphological setting class. The decision fuzzy 
rules provide an understanding of the multifactorial 
reasons for classifying pixels into a given category 
and the development of an explicit knowledge base. 
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Subsequently, the FIS system enables individual 
forms (e.g. ripples) recognition. These issues will be 
further investigated by the authors of this paper. 
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