
Secure Software Architectural Patterns Designed with Secure
Connectors

Michael Shin1, Taeghyun Kang2 and Hassan Gomaa3
1Department of Computer Science, Texas Tech University, Lubbock, TX, U.S.A.

2Department of Computer Science and Math., University of Central Missouri, Warrensburg, MO, U.S.A.
3Department of Computer Science, George Mason University, Fairfax, VA, U.S.A.

Keywords: Software Architectural Patterns, Secure Connector, Secure Software Architecture, Component-based
Software Architecture, Secure Software Design, Message Communication Patterns, Security Patterns,
Model-based Design, UML.

Abstract: This paper addresses secure software architectural patterns designed with secure connectors, where security
concerns are encapsulated in secure connectors, separately from application concerns. Because secure
software architectural patterns address security and application concerns, the design of the patterns needs to
blend those concerns; thus, they can be complicated. Secure connectors can reduce the complexity of the
design of secure software architectural patterns by separating security and application concerns. In this paper,
secure connectors are designed for secure software architectural patterns by considering the security patterns
required by application components and the communication patterns between the components. Secure
connectors make the design of secure software architectural patterns more maintainable and evolvable. We
have implemented a secure distributed baseball game application using the secure MVC software architectural
pattern to validate our research.

1 INTRODUCTION

With security becoming a challenge in concurrent and
distributed software applications, secure software
architectural patterns address security concerns and
application concerns together to facilitate the
development of secure software architectures for
applications. Secure software architectural patterns
have been proposed in multiple studies (Schumacher et
al., 2006; Fernandez-Buglioni, 2013), where security
concerns are realized with security components such as
reference monitors or digital signatures, and
application concerns are modeled with application
components containing application logic. However,
the application logic still needs to coordinate security
components for secure communication between
application components. Mixing security concerns
with application concerns makes secure software
architectural patterns more complex, leading to a
challenge in the maintainability or evolution of
architectures. It is therefore necessary to separate
security concerns from application concerns when
designing secure software architectural patterns.

In this paper, we propose that secure software
architectural patterns be re-designed with secure

connectors to reduce the complexity of the
architectural patterns. Secure connectors (Shin et al.,
2012, 2016a, 2016b, 2017, 2018, 2019, 2021)
encapsulate security concerns separated from
application components, handling message
communication and security between application
components. Secure software architectural patterns in
this paper are presented with application components
dealing with only application-specific logic and
secure connectors providing security for secure
interaction between application components. Secure
connectors can make application components have no
direct interaction with security components.

This paper’s secure software architectural patterns
involve secure blackboard, distributed publish/
subscribe, broker, and model-view-controller (MVC)
software architectural patterns for concurrent and
distributed applications. A concurrent and distributed
baseball game application (Fernandez-Buglioni, 2013)
has been implemented to validate our approach using
the secure MVC software architectural pattern
designed with secure connectors.

In this paper, section 2 describes related work.
Section 3 describes secure connectors. Section 4
describes the design of secure software architectural

484
Shin, M., Kang, T. and Gomaa, H.
Secure Software Architectural Patterns Designed with Secure Connectors.
DOI: 10.5220/0011310500003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 484-491
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

patterns using secure connectors. Section 5 describes
the validation of our approach, and section 6 concludes
the paper.

2 RELATED WORK

2.1 Software Architectures and Secure
Connectors

This section describes related work for software
architectures and secure connectors. The authors in
(Van den Berghe et al., 2017) present existing
modeling notations to represent security properties in
secure software design models and provides
comparative analysis among the notations. In model-
driven security (Basin et al., 2011), systems are
modeled with security requirements, and the security
infrastructures are generated using the models.
Model-driven security provides a way to bridge a gap
between security and design models of systems.

A distributed component-based software
architecture (CBSA) in (Gomaa et al., 2001; Gomaa,
2011) is composed of components and connectors. In
(Ren et al., 2005), a connector-centric approach is
used to model, capture, and enforce security with
software connectors. The methods in (Al-Azzani et
al., 2012) propose SecArch to evaluate software
architectures with security concerns, which is an
incremental evaluation tool for secure architectures.

The work in (Shin et al., 2012) describes secure
asynchronous and synchronous connectors for
modeling the software architectures for distributed
applications and the design of reusable secure
connectors. The research in (Shin et al., 2016a,
2016b, 2017) addresses the design of secure
connectors in terms of maintainability and evolution
for secure software architectures. The study in (Shin
et al., 2018, 2019) describes the secure connectors for
software product lines. The very recent work of
authors in (Shin et al., 2021) extended the secure
connectors for complex message communications in
software architecture, where secure connectors
provide more than one communication pattern. The
research in (Gomaa et al., 2010; Albassam et al.,
2016) has investigated designing dynamically
adaptable and recoverable connectors.

2.2 Secure Software Architectural
Patterns

Software architectural patterns (Buschmann et al.,
1996; Shaw and Garlan, 1996; Taylor et al., 2010) are

recurring architectural styles used in various software
applications. Software architectural structure patterns
(Gomaa, 2011) address the static structure of the
architecture, whereas the architectural communication
patterns (Gomaa, 2011) describe the dynamic
communication between components.

Security patterns in (Schumacher et al., 2006;
Fernandez-Buglioni, 2013) address the broad range of
security issues that should be considered in the stages
of the software development lifecycle. The authors
describe the problem, context, solution, and
implementation of security patterns in a structured
way with a template.

The secure software architectural patterns for
middleware (Schumacher et al., 2006; Fernandez-
Buglioni, 2013) providing services to applications
have been designed with application and security
classes and the relationships among classes in the
static model. The objects of the classes and their
interaction are modeled in the dynamic model.
Security classes model authentication, authorization,
and digital signature security services. Application
objects contain the sequence logic to interact with
security objects directly to achieve security services.

3 SECURE CONNECTORS

A secure connector is a distributed connector
consisting of a secure sender connector and a secure
receiver connector that communicate with each other.
A secure sender or receiver connector consists of a
security coordinator, zero or more security pattern
components (SPCs), and one or more communication
pattern components (CPCs).

3.1 Security Coordinator Components

A security coordinator, which is either a security
sender coordinator or a security receiver coordinator,
is designed to integrate the communication patterns
and security patterns selected for a secure connector.
The security sender and receiver coordinators need to
be designed for each secure connector whenever one
or more CPCs and zero or more SPCs are selected for
the connector. A template (Shin et al., 2018, 2019) for
the high-level security coordinator can be designed
for each communication pattern. The template is
customized for each secure connector based on the
security pattern(s) selected.

Secure Software Architectural Patterns Designed with Secure Connectors

485

3.2 Security Pattern Components

A security pattern addresses a specific security
technique that realizes a security service, which is
software functionality for realizing a security goal,
such as confidentiality, integrity, or availability. A
security pattern is designed using one or two security
pattern components (SPCs), as depicted in Fig. 1. For
instance, the confidentiality security service can be
realized using the symmetric encryption security
pattern (Fig. 1a) composed of the symmetric
encryption encryptor and decryptor SPCs with their
interfaces (Fig.1d). Another example is shown for the
authenticator and authorization security patterns,
which are realized respectively with the authenticator
SPC (Fig. 1b) and the authorization SPC (Fig. 1c)
with their interfaces (Fig. 1d). Each port of a
component is defined in terms of provided and/or
required interfaces (Gomaa, 2011; Rumbaugh et al.,
2004). Each security pattern component (Fig. 1) has a
provided port through which the component provides
security services to other components.

Figure 1: Security Pattern Components and their interfaces.

3.3 Communication Pattern
Components

Each communication pattern is designed with a
sender communication pattern component (CPC) and
a receiver communication pattern component (CPC),
encapsulated in a secure sender connector and a
secure receiver connector, respectively. In
asynchronous message communication, an
asynchronous message is sent from a sender
component to a receiver component and is stored in a
queue if the receiver is busy. The sender component
can continue to send the next message to the receiver
component until the queue is full. Fig. 2a depicts the

Asynchronous Message Communication (AMC)
Sender CPC and Asynchronous Message
Communication (AMC) Receiver CPC for the secure
asynchronous message communication connector.
The AMC Sender CPC (Fig. 2a) has the provided
PAsyncMCSenderService port through which the
Security Sender Coordinator component sends to the
AMC Sender CPC a message being sent to the
receiver application component. In contrast, it
requests a service from the AMC Receiver CPC via
the required RAMCNetwork port. Similarly, the
AMC Receiver CPC (Fig. 2a) has a required
RAsyncMCReceiverService port to communicate
with a receiver component, and the provided
PAMCNetwork port to receive a message from the
AMC Sender CPC. Fig. 2b depicts the interfaces
provided by each port of the AMC Sender and
Receiver CPCs.

In a similar way, the Synchronous Message
Communication with Reply (SMCWR) Sender CPC
and Synchronous Message Communication with
Reply (SMCWR) Receiver CPC for the secure
Synchronous Message Communication with Reply
connector are modeled in (Shin et al., 2019).

Figure 2: Asynchronous Message Communication Sender
and Receiver Communication Pattern Components and
their Interfaces.

4 DESIGN OF SECURE
SOFTWARE ARCHITECTURAL
PATTERNS

4.1 Secure Blackboard Software
Architectural Pattern

The secure blackboard software architectural pattern
(Fernandez-Buglioni, 2013) provides security
measures for the data stored in the blackboard

«security pattern»
Symmetric
Encryption
Encryptor

ISEEncryptor

PSEEncryptor

ISEDecryptor

PSEDecryptor

«security pattern»
Authenticator

IAuthenticator

PAuthenticator

«security pattern»
Authorization

IAuthorization

PAuthorization

a) Symmetric Encryption Security Pattern

b) Authenticator Security Pattern c) Authorization Security Pattern

«security pattern»
Symmetric
Encryption
Decryptor

«interface»
ISEEncryptor

encrypt (in message, in key, in
Algorithm, out encryptedMessage)

«interface»
ISEDecryptor

decrypt (in encryptedMessage, in key,
in Algorithm, out message)

«interface»
IAuthenticator

authenticate (in credentials, out result)

«interface»
IAuthorization

authorize (in Identity, in object, out
permission)

d) Interfaces of security patterns

ICSOFT 2022 - 17th International Conference on Software Technologies

486

component to prevent it from being compromised.
Any knowledge source can update the data in the
blackboard if the control component does not check
the rights of knowledge sources to change the data.
The control component is a gateway to access the
blackboard component, authenticating knowledge
sources to access the blackboard to update the data.
The components in the secure blackboard software
architectural pattern communicate with each other via
secure channels to avoid data breaches in
communication. The blackboard component is
necessary to record all knowledge sources’ actions to
the data for auditing.

The secure blackboard software architectural
pattern (Fernandez-Buglioni, 2013) can be designed
with secure connectors that contain authentication,
authorization, and encryption security patterns
required by the pattern, separately from application
components to reduce the complexity of the pattern.
Fig. 3 depicts the structural view of the interaction
between Knowledge Source and Control components
in the secure blackboard software architectural
pattern, designed with a secure AMC connector to
apply an operation to the blackboard asynchronously
(Fernandez-Buglioni, 2013). A Knowledge Source
component sends the Control component a message
containing its credentials, role, data, and an operation
to be taken on the blackboard. With the message
received from the Knowledge Source component via
a provided PSecAsyncSenderService port, the
Security Sender Coordinator in the secure AMC
sender connector invokes the Symmetric Encryption
Encryptor component (Figs. 1 and 4) via a required
RSEEncryptor port to encrypt the message. And it
then sends the encrypted message to the AMC Sender
Communication pattern component via a required
RAsyncMCSenderService port. The AMC Sender
communication pattern component sends the
encrypted message via a required RNetwork port to
the AMC Receiver communication pattern
component, which forwards the message to the
Security Receiver Coordinator via a required
RSecurityService. The message is decrypted by the
Symmetric Encryption Decryptor component (Figs. 1
and 4) using a secret key retrieved by the Security
Receiver Coordinator from the Control component
via a required RSecAsyncReceiverService port. The
Authenticator component (Figs. 1 and 4) checks the
decrypted credentials to identify the Knowledge
Source component. The Authorization component
(Figs. 1 and 4) verifies that the Knowledge Source
component has a right to access and operate data in
the blackboard. Fig. 4 depicts the security sender and
receiver coordinators in the secure sender and

receiver connectors for Knowledge Source and
Control components and their interfaces.

Figure 3: Knowledge Source and Control Components
designed with Secure Connectors in the Secure Blackboard
Architecture.

Figure 4: Security Coordinator Components of Secure
Connectors for Knowledge Source and Control components
and Interfaces.

4.2 Secure Publish/Subscribe Software
Architectural Pattern

The secure publish/subscribe software architectural
pattern (Fernandez-Buglioni, 2013) addresses the
security measures for secure subscription and
notification in the pattern. A publisher must check
each subscriber’s identity who joins a group to
prevent imposters from receiving event notification
messages. A subscriber should verify that each
notification is a genuine message received from the
publisher it has registered. An attacker can read
messages transmitted between a publisher and
subscribers; thus, the messages must be sent or
received through a secure channel.

The secure publish/subscribe software
architectural pattern can be designed with secure
connectors that encapsulate security patterns

«security pattern»
:SymmetricEncryption

Encryptor

«security coordinator»
:SecuritySender

Coordinator

«communication pattern»
:AsynchronousMC

Sender

PSecAsync
SenderService

PSEEncryptor

RSEEncryptor

RNetwork
RNetwork

«secure connector»
SecureAMC

SenderConnector

«security pattern»
:SymmetricEncryption

Decryptor

«security coordinator»
:SecurityReceiver

Coordinator

«communication pattern»
:AsynchronousMC

Receiver

PNetwork

PSEDecryptor

RSEDecryptor
RSecAsyncReceiverService

RSecAsyncReceiverService

«secure connector»
SecureAMC

ReceiverConnector

PSecAsync
SenderService

«application
component»
Knowledge

Source
RSecAsync
Sender
Service

«application
component»

Control
PSecAsyncReceiverService

PNetwork

«security pattern»
:Authenticator

«security pattern»
:Authorization

PAuthenticator

RAuthenticator
PAuthorization

PAuthorization

PAsyncMCSenderService

RAsyncMCSenderService

RSecurity
Service

PSecurity
Service

ISEEncryptor

RSEEncryptor

«security coordinator»
SecuritySender

CoordinatorISecAsyncSenderService

PSecAsyncSenderService

a) Security Sender Coordinator and Interface

b) Security Receiver Coordinator and Interface

ISEDecryptor
RSEDecryptor«security coordinator»

SecurityReceiver
Coordinator

RSecAsyncReceiverService

ISecAsyncReceiverService

«interface»
ISecAsyncSenderService

sendSecAsync (in messageName,
in messageContent,
in senderSecurityPatternAttribute)

«interface»
ISecurityService

sendSecAsync (in messageName,
in messageContent)

retrieveSecretKey (out secretKey)

IAuthenticator

RAuthenticator

IAuthorization

RAuthorization

RAsyncMCSenderService

IAsyncMCSenderService

PSecurityService

ISecurityService

Secure Software Architectural Patterns Designed with Secure Connectors

487

separately from the publisher and subscriber
application components. Fig. 5 depicts the secure
publish/subscribe software architectural pattern
designed with a secure AMC connector through
which a publisher component securely notifies a
subscriber component of event messages. The secure
AMC sender and receiver connectors are designed
with Symmetric Encryption (Fig. 1) and Digital
Signature security patterns. The Symmetric
Encryption security pattern encrypts the event
notification messages sent by the publisher
component to the subscriber component for the
confidentiality of the messages in communication.
The Digital Signature security pattern is utilized for
the subscriber component to verify the publisher
component’s authenticity.

Figure 5: Publisher and Subscriber Components designed
with Secure Connectors in Secure Publish/Subscribe
Architectural Pattern.

Fig. 5 depicts the UML communication diagram
that describes the dynamic behavioral view of event
notification of a publisher component to a subscriber
component. When the publisher component sends a
notification to the subscriber component, the
notification is signed by the Digital Signature Signer
component in the secure AMC sender connector. The
notification and signature are then encrypted by the
Symmetric Encryption Encryptor component (Fig. 1)
in the secure AMC sender connector. The encrypted
notification and signature are sent to the subscriber
component via the secure AMC receiver connector
and then decrypted by the Symmetric Encryption
Decryptor component (Fig. 1) using a secret key
retrieved from the subscriber component. The secure
AMC receiver connector requests the publisher
component’s public key from the Public Key
Repository component, designed for a certificate

authority in the public key infrastructure. The
signature is verified by the Digital Signature Verifier
component in the secure AMC receiver connector
using the publisher’s public key. Fig. 6 depicts the
security sender and receiver coordinator components
and interfaces specification, respectively, in the
secure sender and receiver connectors, designed for
event notification messages between the publisher
and subscriber components. We can specify the
pseudocode for the Security Sender and Receiver
Coordinator components (Shin et al., 2019) in the
secure connector.

Figure 6: Security Coordinator Components of Secure
Connectors for Publisher and Subscriber Components and
Interfaces.

4.3 Secure Broker Software
Architectural Pattern

The secure broker software architectural pattern
requires authentication, access control, and
encryption security (Fernandez-Buglioni, 2013) for
securely brokering the interactions between clients
and servers. To avoid identity spoofing, a secure
broker needs to provide mutual authentication
between clients and servers. A client’s access to a
server should be controlled so that only a client with
a right is allowed to access the server. All messages
communicated among clients, broker, and servers
necessitate cryptographic encryption to prevent
attacks.

The secure broker software architectural pattern
can be designed with secure connectors containing
authentication, authorization, and encryption security
patterns, separately from client, broker, and server
components. The secure (receiver) connector (Fig. 7)
identifies a client’s credentials using the
Authenticator security pattern (Fig. 1), controlling the
client’s access to a server’s service using the

«secure connector»
aSecureAMC

ReceiverConnector

«secure connector»
aSecureAMC

SenderConnector

«application
component»
aPublisher

«application
component»
aSubscriber

«security pattern»
:DigitalSignature

Verifier E16 [Signature valid]: Valid Signature
E16A [Signature invalid]: Invalid Signature

«security pattern»
:Symmetric

Encryption Decryptor

E11: Decrypt Encrypted
Notification & Signature

«security pattern»
:DigitalSignature

Signer

E4: Encrypt Notification &
Signature

«security pattern»
:Symmetric

Encryption Encryptor

«security coordinator»
aSecuritySender

Coordinator

«communication pattern»
anAsynchronousMC

Sender

«communication pattern»
anAsynchronousMC

Receiver

«security coordinator»
aSecurityReceiver

Coordinator

E6: Send Encrypted
Notification & Signature

E8: Encrypted
Notification &
Signature

E17:
Forward Confirm Shipment

E1:
Notification &
Secret Key &
Private Key

E2: Sign Notification

«security pattern»
aPublicKeyRepository

E9: Retrieve Secret Key

E13: Retrieve Public
Key

E3: Signature

E5: Encrypted Notification & Signature

E12: Notification &
Signature

E10: Secret Key

E14: Public
Key

E15: Verify Signature

E7: Send Encrypted
Notification & Signature

ISEEncryptor«security
coordinator»

SecuritySender
Coordinator

RAsyncMCSenderService

IAsyncMCSenderService

PSecAsyncSenderService

ISecAsyncSenderService

a) Security Sender Coordinator and Interface Specification

RSEEncryptor

IDSSigner
RDSSigner

«interface»
ISecAsyncSenderService

sendSecAsync (in messageName, in
messageContent, in senderSecurityPatternAttribute)

ISEDecryptor

ISecurityService

PSecurityService «security
coordinator»

SecurityReceiver
Coordinator IDSVerifier

RSecAsyncReceiverService

ISecAsyncReceiverService
b) Security Receiver Coordinator and Interface Specification

PSEDecryptor

PDSVerifier

RPKRepository

IPKRepository «interface»
IPKRepository

retrievePublicKey (in senderID, out
senderPublicKey)

«interface»
ISecurityService

sendSecAsync (in messageName, in
messageContent)
retrieveSecretKey (out secretKey)

ICSOFT 2022 - 17th International Conference on Software Technologies

488

Authorization security pattern (Fig. 1). The
Symmetric Encryption security pattern (Fig. 1)
encrypts a client’s service request being sent by a
client component to the broker and a server’s reply
forwarded by the broker to the client component.

Figure 7: Client and Broker Components designed with
Secure Connectors in Secure Broker Architectural Pattern.

Fig. 7 depicts the structural view of secure broker
forwarding in the secure broker architectural pattern,
designed with secure SMCWR sender and receiver
connectors for the client and broker components,
respectively. When the client component sends a
service request to the broker, the service request with
the client’s credentials and role are encrypted by the
Symmetric Encryption Encryptor SPC in the secure
SMCWR sender connector. The encrypted service
request is decrypted by the Symmetric Encryption
Decryptor SPC in the secure SMCWR receiver
connector, and then the credentials are verified by the
Authenticator SPC. The Authorization SPC
determines whether a client component has a right to
access a server. If all security checks are valid, the
service request message is sent to the broker. A reply
received from a server is encrypted by the Symmetric
Encryption Encryptor SPC in the secure SMCWR
receiver connector. The encrypted reply is decrypted
by the Symmetric Encryption Decryptor SPC in the
secure SMCWR sender connector and then sent to the
Client component.

4.4 Secure MVC Software
Architectural Pattern

The secure Model-View-Controller (MVC) software
architectural pattern (Fernandez-Buglioni, 2013) is
required to maintain an acceptable level of security
among its components against threats, so it needs

authentication, encryption, authorization, log records,
and input validation. Authentication is necessary to
verify that the remote users to access the controller
component are authentic. The secure MVC software
architectural pattern needs encryption to protect the
data transit between components against
eavesdropping. The secure MVC software
architectural pattern should allow only authorized
users to change sensitive data in the model. The
model component necessitates recording all accesses
to sensitive information for auditing. The user input
to the controller component is necessary to be
neutralized to clean corrupted input.

Fig. 8 depicts the secure interaction between the
Model and View components designed with a secure
connector in the secure MVC software architectural
pattern. The Model and View components
communicate via the secure MV sender and receiver
connectors that encapsulate the security patterns
separately from the application components. The
Model component has a provided and required
PRSecSenderService port through which it sends a
data change notification message and receives a view
update confirmation message to/from the secure MV
sender connector asynchronously. The connector
communicates those messages with the secure MV
receiver connector via a required RAMCNetwork
port and a provided PACMNetwork port. The secure
MV receiver connector for the View component
retrieves the data changed in the Model component
through a required RSMCNetwork port that connects
to a provided PSMCNetwork port of the secure MV
sender connector. The View component has a
provided and required PRSecReceiverService
through which it communicates the data change
notification, changed data, and view update messages
with the secure MV receiver connector.

Figure 8: Model and View Components designed with
Secure Connectors in Secure MVC Architectural Pattern.

The internal structural view of the secure MV
sender connector (Fig. 8) is modeled in Fig. 9, where
the model component sends messages to and receives
them from the view component to realize the “change
propagation” use case in the secure MVC software
architecture pattern. The secure MV sender connector
(Fig. 9) is designed with three CPCs: an AMC Sender,

«security pattern»
:SymmetricEncryption

Decryptor

«security pattern»
:SymmetricEncryption

Encryptor

«security coordinator»
:SecuritySender

Coordinator

«communication pattern»
:SynchronousMC
WithReplySender

PSecSync
SenderService

PSEEncryptor

RSEEncryptor

RSEDecryptor

PSEDecryptor

PSyncMCWithReply
SenderService

RSyncMCWithReply
SenderService

RNetwork
RNetwork

«secure connector»
SecureSMCWR
SenderConnector

«security pattern»
:SymmetricEncryption

Decryptor
«security pattern»

:SymmetricEncryption
Encryptor

«security coordinator»
:SecurityReceiver

Coordinator

«communication pattern»
:SynchronousMC

WithReplyReceiver

PNetwork

PSEDecryptor
RSEDecryptor

RSEEncryptor
PSEEncryptor

RSecSyncReceiverService

RSecSyncReceiverService

RSecurity
Service

Psecurity
Service

«secure connector»
SecureSMCWR

ReceiverConnector

PSecSync
SenderService

«application
component»

Client

RSecSync
Sender
Service

«application
component»

Broker

PSecSyncReceiverService

PNetwork

«security pattern»
:Authenticator

«security pattern»
:Authorization

PAuthenticator

RAuthenticator
PAuthorization

PAuthorization

«secure connector»
SecureMV

SenderConnector

PRSecSenderService

«component»
Model

Component

RPSecSenderService

«secure connector»
SecureMV

ReceiverConnector
PAMCNetwork

RAMCNetwork

PSMCNetwork

RAMCNetwork

PAMCNetwork

RSMCNetwork

«component»
View

Component

PRSecReceiverService

RPSecReceiverService

Secure Software Architectural Patterns Designed with Secure Connectors

489

an AMC Receiver, and an SMCWR Receiver CPCs;
and three security pattern components (SPCs)
required by the Model component, which are an
Authorization, a Symmetric Encryption Decryptor,
and a Hashing Signer SPCs. The Security Sender
Coordinator component and its interfaces to the
Model component is specified in (Shin et al., 2021).

Figure 9: Secure MV Sender Connector for Model
Component.

5 VALIDATION

To validate this research, we implemented the secure
MVC software architectural pattern designed with
secure connectors (in section 4.4) that consist of one
or more security pattern components and more than
one communication pattern component. The secure
connectors for the secure MVC software architectural
pattern are a reusable form of secure connectors. The
secure connectors for the secure blackboard,
publish/subscribe, and broker software architectural
patterns (in section 4) are designed with only one
communication pattern (i.e., either synchronous or
asynchronous communication pattern). However, the
secure MVC software architectural pattern
necessitates the secure connectors that provide more
than one communication pattern component for
application components

For validation, a distributed baseball game
application (Fernandez-Buglioni, 2013) was
developed using the secure MVC software
architectural pattern, structured into the user
interface, controller, model, and view components. A
scorer entered or updated the game scores through the
Android App-based user interface component, which
ran on smartphones, separated from the remote
controller component that received the scorer input

and delivered it to the model component. The game
scores were stored and maintained in the model
component on a server implemented using the Spring
Boot framework. When the game scores in the model
component were changed, the model component
notified the controller and view components of the
changed game scores. The view component
implemented using Android App running on fans’
smartphones read the game scores from the model
component in the game server and redisplayed them
to fans. The controller component also enabled or
disabled user interface menu functions according to
the changed game scores.

The validation was conducted by designing and
implementing three secure connectors among the
scorer interface component, controller component,
model component, and fan’s view component in the
secure MVC-based baseball game application. For
the secure connector between the model component
and view component (Figs. 8 and 9), We
implemented the secure sender connector with three
communication pattern component (CPC) threads in
Java: AMC sender CPC, AMC receiver CPC, and
SMCWR receiver CPC threads, and the secure
receiver connector with three communication pattern
component (CPC) threads in Java: AMC receiver
CPC, AMC sender CPC, and SMCWR sender CPC
threads. We also implemented the Symmetric
Encryption Encryptor and Decryptor security pattern
components (SPCs) using the Data Encryption
Standard (DES) algorithm and the Hashing Signer
and Hashing Verifier security pattern components
(SPCs) using the Secure Hash Algorithm (SHA).
Authorization SPC was implemented to verify the
validity of the view component’s role ID. The
security sender coordinator and the security receiver
coordinator were implemented using each thread to
integrate the CPC threads and SPCs.

Similarly, we implemented the secure connector
between the controller component and model
component, and the secure connector between the
scorer interface component and controller
component.

6 CONCLUSIONS

This paper has described the secure blackboard,
publish/subscribe, broker, and MVC software
architectural patterns, designed with secure
connectors that encapsulate security components
separately from the application components in order
to reduce the complexity of the architectural patterns.
The secure connectors for the architectural patterns

«secure connector»
SecureMV

SenderConnector

«security
coordinator»

:SecuritySender
Coordinator

«communication
pattern»

:AsynchronousMC
Sender

PRSecSenderService

RAsyncMC
SenderService

PAsyncMC
SenderService RAMCNetwork

«communication
pattern»

:SynchronousMC
WithReplyReceiver

PSyncMCWithReply
ReceiverService

RSyncMCWithReply
ReceiverService

«communication
pattern»

:AsynchronousMC
Receiver

RAsyncMC
ReceiverService PAMCNetwork

PAMCNetwork
PAsyncMC
Receiver
Service

RAMCNetwork

PSMCNetwork

PSMCNetwork

«security pattern»
:Authorization

RAuthorization

PAuthorization

«security pattern»
:SymmetricEncryption

Decryptor

RSEDecryptor
PSEDecryptor

«security pattern»
:Hashing
SignerPHashingSinger

RHashingSigner

PRSecSenderService

«component»
Model

Component

RPSecSenderService

ICSOFT 2022 - 17th International Conference on Software Technologies

490

were designed with zero or more security patterns
required by application components, one or more
communication patterns to realize message
communication between the components, and
security coordinators to integrate security and
communication patterns. The secure software
architectural patterns were designed using a
component-based model depicting the component’s
ports, interfaces, and connectors. Secure connectors
make the secure software architectural patterns more
maintainable and evolvable. We also implemented a
distributed baseball game application using the secure
MVC software architectural pattern designed with
secure connectors to validate our approach.

We envision future work to extend this research.
We can extend our approach to other secure software
architectural patterns. The secure connectors
designed for secure software architectural patterns
could also be further validated using model checkers
to check correctness, deadlock, and security
properties. Our validation would thus become more
concrete with model checking. In addition, we could
investigate the secure connectors adaptable to
changing communication patterns and security
patterns at runtime. Moreover, we could extend this
research to designing secure connectors that recover
the failures to communication or security.

REFERENCES

Al-Azzani, S. and Bahsoon, R., 2012, August. SecArch:
Architecture-level evaluation and testing for security.
In Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012
Joint Working IEEE/IFIP Conference on (pp. 51-60).

Albassam, E., Gomaa, H. and Menascé, D.A., 2016, July.
Model-based Recovery Connectors for Self-adaptation
and Self-healing. In ICSOFT-EA (pp. 79-90).

Basin, D., Clavel, M. and Egea, M., 2011, June. A decade
of model-driven security. In Proceedings of the 16th
ACM symposium on Access control models and
technologies (pp. 1-10). ACM.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
1996. Pattern Oriented Software Architecture: A
System of Patterns, John Wiley & Sons.

Fernandez-Buglioni, E., 2013. Security patterns in practice:
designing secure architectures using software patterns.
John Wiley & Sons.

Gomaa, H., Menascé, D.A. & Shin, M.E., 2001. Reusable
component interconnection patterns for distributed
software architectures. Proceedings of the 2001
symposium on Software reusability putting software
reuse in context - SSR 01.

Gomaa, H., Hashimoto, K., Kim, M., Malek, S., and
Menascé, D.A., 2010, March. Software adaptation

patterns for service-oriented architectures. In
Proceedings of the 2010 ACM Symposium on Applied
Computing (pp. 462-469). ACM.

Gomaa, H., 2011. Software modeling and design: UML,
use cases, patterns, and software architectures.
Cambridge University Press.

Ren, J., Taylor, R., Dourish, P. and Redmiles, D., 2005,
May. Towards an architectural treatment of software
security: a connector-centric approach. In ACM
SIGSOFT Software Engineering Notes (Vol. 30, No. 4,
pp. 1-7). ACM.

Rumbaugh, J., Booch, G., and Jacobson, I., 2004. The
Unified Modeling Language Reference Manual,
Addison-Wesley.

Schumacher, M., Fernandez, E.B., Hybertson, D.,
Buschmann, F. and Sommerlad, P., 2006. Security
Patterns, Wiley.

Shaw, M., and Garlan, D., 1996. Software Architecture:
Perspectives on an Emerging Discipline, Pearson.

Shin, M.E., Malhotra, B., Gomaa, H. and Kang, T., 2012,
July. Connectors for Secure Software Architectures. In
SEKE (pp. 394-399).

Shin, M.E., Gomaa, H., Pathirage, D., Baker, C. and
Malhotra, B., 2016. Design of Secure Software
Architectures with Secure Connectors. International
Journal of Software Engineering and Knowledge
Engineering, 26(05), pp.769-805.

Shin, M., Gomaa, H. and Pathirage, D., 2016, June.
Reusable Secure Connectors for Secure Software
Architecture. In International Conference on Software
Reuse (pp. 181-196). Springer, Cham.

Shin, M., Gomaa, H. and Pathirage, D., 2017. Model-based
Design of Reusable Secure Connectors. In 4th
International Workshop on Interplay of Model-Driven
and Component-Based Software Engineering
(ModComp) 2017 Workshop Pre-proceedings (p. 6).

Shin, M., H. Gomaa, and D. Pathirage, 2018, July. A
Software Production Line Approach for Feature
Modeling and Design of Secure Connectors. In 14th
International Conference on Software Technologies
(ICSOFT2018), Porto, Portugal (Best paper award).

Shin, E. M., H. Gomaa, D. Pathirage, 2019, August. A
Software Product Line Approach to Design Secure
Connectors in Component-Based Software
Architectures. In Communications in Computer and
Information Science, Springer, Communications in
Computer and Information Science book series (CCIS,
Volume 1077).

Shin, M., Kang, T., and Gomaa, H., 2021. Design of Secure
Connectors for Complex Message Communications in
Software Architecture, 2nd European Symposium on
Software Engineering, Nov. 19-21, Larissa, Greece.

Taylor, R. N., Medvidovic, N., and Dashofy, E., 2010,
Software architecture: foundations, theory, and
practice. Wiley.

Van den Berghe, A., Scandariato, R., Yskout, K. et al.,
2017. Design notations for secure software: a
systematic literature review, Software & Systems
Modeling 16, 809–831.

Secure Software Architectural Patterns Designed with Secure Connectors

491

