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Abstract: This paper is concerned with the development and evaluation of a reinforcement learning approach to the 
control of factory based construction operations. The unique challenges associated with controlling 
construction work is first discussed: uneven and uncertain demand, high customization, the need to fabricate 
work to order, and a lack of opportunity to stockpile work. This is followed by a review of computational 
approaches to this problem, specifically those based on heuristics and machine learning. A description is then 
given of a model of a factory for producing precast reinforced concrete components, and a proposed 
reinforcement learning strategy for training a neural network based agent to control this system. The 
performance of this agent is compared to that of rule-of-thumb and random policies for a series of protracted 
simulation production runs.  The reinforcement learning method was found to be promising, outperforming 
the two competing strategies for much of the time. This is significant given that there is high potential for 
improvement of the method. The paper concludes with an indication of areas of proposed future research. 

1 INTRODUCTION 

Achieving operational efficiency in construction is 
challenging, more so than most other manufacturing 
industries.  This results in part because construction 
work does not lend itself to the methods of mass 
production. The arrival of work is random and 
sporadic, the work can be diverse and extensive in 
scope, and the products are rarely reproduced. 
Consequently, work has to be made to order with little 
or no potential for stockpiling, and with large 
fluctuations in resource demand.  

These complexities make it difficult to derive a 
simple policy for controlling construction operations 
that is likely to be near optimal. A potentially 
promising approach to this problem is assisted control 
of operations by artificial intelligence (AI) agents.  
These agents would act like an advisor (in a human-
in-the-loop system) or a controller (in an automated     
environment) offering solutions whenever an 
operational decision is needed. 

The use of AI based decision agents to control 
operations in the field of construction is limited. 
Shitole et al. (2019) developed an agent for 
optimizing a simulated earth-moving operation based 

on artificial neural networks (ANNs) and 
reinforcement learning (RL), and found it worked 
better than previously published hand-designed 
heuristics.  RL is a broad class of learning techniques 
based on discovery and rewards that has 
demonstrated much success in recent years (Sutton 
and Barto, 2018). Their earth-moving system 
comprised two excavators serving a fleet of dump-
trucks.  The function of the agent was to direct the 
trucks to one or other of the excavators at a junction 
in the return road, with the goal of optimizing the 
overall production rate of the system. An issue with 
this approach to control is its lack of extensibility.  
That is, the agent can only be applied to the earth-
moving system considered in the study. Applying the 
agent to a new situation with a different site layout 
and/or equipment combination would require its 
redevelopment. Although this could be achieved prior 
to the start of the new construction operation, it would 
nevertheless be a significant burden on planning. 
Clearly, there is a need for more work in the area of 
ANN extensibility.  

An alternative application area to site-based 
construction, with more immediate application given 
current technology, is factory based manufactured 
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construction.  In this situation, the life-span of an 
agent should be relatively long, lasting at least until 
any reconfiguration of the factory system is required 
or a change occurs in its operating environment. This 
study will be focused on factory based construction 
manufacture, specifically for precast reinforced 
concrete (PRC) component production. 

Optimization of customized PRC component 
production has been considered by several 
researchers (Leu & Hwang, 2001; Chan & Hu, 2002; 
Benjaoran & Dawood, 2005), using genetic 
algorithms (GAs) to improve production 
performance.  Although the approach was shown to 
be successful, heuristic search methods such as GAs 
are computationally expensive.  Therefore, they are 
not well suited to situations where decisions have to 
be made quickly. 

RL solutions based on a learned model, such as 
that developed by Shitole et al. (2019), will generate 
rapid solutions to a decision problem, once trained.  A 
number of authors have applied this method to the 
control of factory operations (Waschneck et al., 2018; 
Zhou et al., 2020; Xia et al., 2021) and found results 
to be promising when compared to more conventional 
approaches such as rules-of-thumb. Unfortunately, 
applications have been outside construction 
manufacturing, and therefore do not address many of 
the challenges of this industry, although Waschneck 
et al. (2018) did address the problem of customization 
within the semiconductor industry. 

The objective of this paper is to explore the 
potential of RL based modelling as a means of 
controlling factory based construction 
manufacturing, given the unique demands of 
construction projects. 

2 DYNAMIC SYSTEM CONTROL 

2.1 Decision Agents 

The future path of a construction manufacturing 
system is determined by both controllable and 
uncontrollable events. The controllable events 
provide an opportunity to steer this path along a line 
that is favourable to the manufacturer, optimizing 
performance in terms of, say, productivity and/or 
profit.  This is achieved through the selection of an 
appropriate sequence of decisions wherever options 
exist. Examples of such decisions include prioritizing 
jobs in a queue, deciding when to take an item of 
equipment offline for maintenance, and selecting the 
number of machines to allocate to a process. 

These decisions are made by one or more agents, 
as illustrated in Figure 1, which operate dynamically 
throughout the life of the system.  An agent monitors 
relevant variables defining the state of the system and 
its environment (both current and possibly past states, 
and even predictions about future states) then uses 
these insights to decide on appropriate future actions 
to implement.  Typically, these actions will concern 
events in the immediate future (given that the most 
relevant, accurate, and valuable information is 
available at the time of the decision) but can also be 
applied to events later in the future for decisions that 
have a long lead time.   

 
Figure 1: Decision agent control of dynamic system. 

An important dichotomy of decision agents is 
search based versus experience based systems. 
Search based agents, which include blind and 
heuristic methods, use a systematic exploration of the 
solution space looking for the best action attainable. 
They tailor a solution to the specific instance of the 
problem at hand.  As such, they may find better 
optimized solutions than experience based agents, 
although that needs to be tested. Search based agents 
are also highly extensible, meaning they can be easily 
adapted to new versions of the problem. On the 
downside, they can be computationally expensive and 
thus not suited to situations requiring rapid decision 
making. 

In contrast, experience based agents, which 
include rules-of-thumb and artificial neural networks 
(ANNs), make decisions based on exposure to similar 
situations from the past. Once developed, an 
experience based agent can output decisions rapidly. 
However, because the solutions they offer are generic 
rather than tailored to each situation, their decisions 
may not be as well optimized as those of search based 
agents.  Furthermore, experience based agents tend to 
lack extensibility; each new version of the problem 
requires redevelopment of the agent, which in turn 
requires the acquisition and assimilation of large 
volumes of new information on system behaviour. 
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A hybrid of these agent types is also possible. For 
example, an experience based agent can be used to 
make the first attempt at a solution and then a search 
based agent can be used to improve on this result.  
Conversely, a search based agent could be used to 
acquire examples for development of an experience 
based agent. 

A longer term objective for this study is to 
quantify and compare the benefits of search and 
experience based approaches to controlling 
construction production systems. This paper, 
however, focuses on experience based approaches 
applied to construction manufacturing. Two 
experience based methods will be considered, a rule-
of-thumb and a deep artificial neural network 
(DANN), representing two extremes in functional 
complexity. DANNs are variants of ANNs that 
include multiple hidden layers or recursion between 
units. The additional structure offers a corresponding 
increase in functional complexity, although model 
development has additional challenges. Although a 
DANN is an experience based approach, its 
development will involve the use of search techniques 
to gather good training solutions, specifically using 
RL techniques. 

2.2 DANN Agent Development 
Strategies 

For a construction manufacturing environment, 
optimal solutions to decision problems are not easily 
attained a priori or from direct observation of the real 
system. Simulating the manufacturing system has the 
potential to explore a broader range of scenarios than 
direct observation of the real system, but it similarly 
fails to provide good labels (near optimal solutions) 
to problems.  This excludes the direct use of 
supervised training techniques for development of the 
DANN.  There are many ways around this problem, 
including using a strategy of hindsight whereby the 
agent explores alternative decision paths (through 

simulation), then selects those that are most 
successful, effectively learning by trial-and-error. 

For DANNs, there are two broad approaches to 
hindsight model development. The first is to explore 
adjustments to the structure and/or weights of the 
DANN model (such as random perturbations), and to 
select those that result in a better performing decision 
path.  This was the strategy investigated by Flood 
(1989) for selecting sequences for construction jobs 
in an offline optimization problem. The second 
approach is to explore adjustments to the values 
generated at the output from the DANN model, then 
to evaluate their impact on the performance of the 
decision path and to feed this back to the model in a 
supervised manner. A method for implementing this 
is detailed in section 3.3.3 below.  This is in essence 
the RL method. 

3 MODELLING 

A key function of RL is the exploration of alternative 
decision paths and their impact on the performance of 
the system. This experience is used to shape the 
decisions made by the agent, mapping from system 
state to action. This mapping is referred to as the 
decision policy. 

In construction production (including factory-
based construction manufacturing) it is not 
practicable to experiment with alternative decision 
policies using the real system. Construction work is 
rarely reproduced making it almost impossible to 
compare the effectiveness of alternative strategies. 
Artificially reproducing work is also not viable given 
the cost and time required to manufacture a 
construction component. One way around this 
problem is to build a simulation model of the 
construction production system, and then to use this 
to experiment with alternative policies.  This concept 
is illustrated in Figure 2, where the blue line 
represents the historic path taken by the real system, 
and the orange lines represent alternative future paths 

 
Figure 2: Historic path of the real system followed by alternative future paths of a simulated version of the system. 
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explored by different policies in a simulated version 
of the system. The horizontal axis shows the state of 
the system through time. Information about the real 
system and its past behaviour would be used to 
develop and validate the simulation model. The 
information gathered from the simulated system is 
used to develop and validate the policy, as described 
in section 4.1.  For this study, a conceptual design was 
chosen for the simulation model, as specified in 
section 3.1, designed to test the feasibility of the 
approach. 

3.1 Production Simulator  

Figure 3 shows the production model of the system 
considered, representing the manufacture of precast 
reinforced concrete (PRC) components such as walls, 
floors, beams, and column units. The system is 
designed to capture the challenging and somewhat 
unique features of construction manufacturing, 
namely: 

• orders arrive in a sparse random manner, must be 
made to order and cannot be stockpiled; 

• each order consists of a batch of components 
variable in number; 

• many if not all components are unique in design 
both within a batch and between batches, and 
therefore have variable handling times at each 
process; 

• all components have uncertainty in the handling 
times at each process; and 

• all components must be delivered by a given date 
in accordance with a site assembly schedule. 

In addition, the study includes the following 
assumptions about the logic of the PRC 
manufacturing system: 

• the processes are executed sequentially by all 
components, in the order shown in Figure 3; 

• the order in which components are served can 
change between processes; and 

• each process has only sufficient resources to serve 
one component at a time, except the Cure process 
which can handle an unlimited number of 
components. 

The stochastic time related data adopted for this 
study, including their distribution types, are given in 
Table 1. The dynamics of the system are given by the 
relative values of these data (rather than by their 
absolute values) and therefore units not included. The 
triangular distribution was adopted because it is 
computationally inexpensive and yet provides a 
versatile way of approximating a wide range of 
distribution shapes, including those with skew. 

Incoming orders consist of a batch of PRC 
components. The number of components in a batch is 
sampled from a positively skewed triangular 
distribution, rounded to a positive integer.  The arrival 
of orders is considered to be a Poisson process, with 
an arrival rate, λ, selected so that the work demand 
and the productivity of the system would balance over 
time. Each PRC component is considered to have a 
different design and therefore their process durations 
(for Forms, Rebar, Concrete, Strip, and Delivery) are 
sampled separately. Curing time is considered to be 
the same for all PRC components.  

On site delivery of a PRC component is measured 
as a contingency time beyond the sum of the 
component’s process durations, and is also sampled 
from a triangular distribution. 

Table 1: Modelling the time-related variables. 

SYSTEM 
VARIABLE

FORM OF 
UNCERTAINTY PARAMETERS 

Order arrival time Poisson process Arrival rate (λ) 
1/5,000

Batch size 
Discretized 
triangular 
distribution 

Min Mode  Max 
1      20      100 

Processes 
durations

Triangular 
distribution 

Min  Mode  Max 
50     100    150

Cure duration Fixed ~ 
Contingency time 
relative to site 
assembly time

Triangular 
distribution 

Min  Mode  Max 
   0      100     200 

 

Figure 3: Production model for precast reinforced concrete (PRC) components.
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3.2 Policy Types Considered  

The control of the system is undertaken by a decision 
agent as shown in Figure 3. Whenever a vacancy 
arises at a process, the agent will select a PRC 
component for processing from the corresponding 
queue, using its current policy. Three alternative 
types of policy were considered: 

1. A DANN based policy developed using the RL 
method described in section 4. The selection of a 
PRC component is based on the current state of 
the system and predictions about the handling 
times for all the PRC components at each of the 
processes. 

2. A rule-of-thumb policy in which the PRC 
component with the least remaining contingency 
time in the queue is selected. Note, negative 
contingencies (delays) are possible. This type of 
policy was included as a performance benchmark 
for comparison with the DANN based policy. 

3. A random policy strategy in which the PRC 
component is selected from a queue using a 
uniformly distributed random variate.  Again, 
this was included as a benchmark for comparison 
with the DANN policy. 

3.3 DANN Structure 

The DANN has a layered feedforward structure as 
shown in Figure 4. 

3.3.1 Input Layer 

The input layer receives both temporal and spatial 
information about the state of the system and the work 
to be completed. The input values specify the 
remaining process durations and the remaining 
contingencies for the PRC components currently in 
the system. These data are normalized for each 
process, so that the values range between 0.0 and 1.0 
for each input variable. The location of the values at 

the input indicates the relevant queue, the position in 
the queue, and the relevant process.  

An issue with this approach stems from the fact 
that the structure of the inputs to the DANN is fixed 
(DANNs are structurally rigid) yet the number of 
PRC components in the system that need to be 
evaluated is variable. To get around this, the DANN 
was designed to allow up to a stipulated number (N) 
of PRC components to be evaluated in each queue: if 
the number of PRC components in a queue is less than 
N then the spare input values are set to 0.0; and if the 
number of PRC components in a queue is greater than 
N then only the first N PRC components will be 
evaluated. Furthermore, the N PRC components 
evaluated are those with the least contingency (or 
greatest delay), and in this sense this the DANN is a 
hybrid with the rule-of-thumb policy. For this study, 
N was set to 20 PRC components since the queue 
lengths were rarely found to extend beyond this value 
for the systems considered. Future work will treat this 
as an experimental parameter. 

3.3.2 Hidden Layers 

The number of hidden layers was set to 6 and the 
number of hidden units per layer was set to 64. These 
values were found to have the best performance in the 
DANN training phase (see section 4.2) in a 
preliminary search. A more thorough sensitivity 
analysis ranging these parameters is planned for 
future work. 

All hidden units adopted the ReLU (rectified 
linear unit) activation function due its computational 
efficiency and avoidance of the vanishing gradient 
problem (Glorot et al., 2011). 

3.3.3 Output Layer 

The DANNs output layer is where the PRC 
components are selected from the queues for 
processing.  All output units use a sigmoid activation 
function, thereby limiting their activation to values 
between 0.0 and 1.0. The output units are arranged 
into groups, with each group representing a different 
queue, and with each unit in a group representing a 
position in the queue. The number of units in a group 
is limited to N, the number of PRC components to be 
evaluated in each queue (see section 3.3.1 above). 
The current length of a queue or N, whichever is 
smallest, determines the number of units that are 
active in its group.  The values generated at the active 
output units in a group are normalized to sum to 1.0.   
This allows the output values to be treated as 
probabilities for selecting PRC components from a 
queue.  

Figure 4: Policy implemented as a DANN. 
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The DANN based policy has two modes of 
operation: 

• Exploration. This mode is used to steer the 
simulation through alternative partially-random 
paths, to gathering high-reward input-output 
pattern pairs for training the DANN. Monte Carlo 
sampling is used to select PRC components based 
on the values generated at the relevant output 
units. The higher the value generated at an output, 
the more likely the corresponding PRC 
component will be selected. The broader strategy 
adopted for learning is given in section 4 below. 

• Implementation. This mode operates by selecting 
a PRC component from a queue based on the 
output unit that generates the highest value within 
its group.  The operation is entirely deterministic. 
It is used to control the simulated system in non-
training mode, to validate the performance of the 
current policy.  In addition, this is the mode that 
would be adopted when using the policy to control 
the real system. 

4 DANN LEARNING STRATEGY  

DANN development is a deeply nested process, as 
shown in Figure 5. The outer level of this process 
comprises two main phases: the collection of training 

patterns through the exploration of alternative 
decision paths; and the training of the DANN. These 
phases are cycled through a number of times until 
learning converges, each occasion using the most 
recent version of the DANN to control the simulation.  
Each time the system cycles back to Phase I, the 
simulation is reset to the beginning using a new seed 
for the random number generator. These phases are 
described in detail in the following two sections. 

4.1 Collection of Training Patterns 

Collecting training patterns is undertaken in a series 
of stages ‘s’, as illustrated in the upper blue section of 
Figure 5. Each stage experiments with a predefined 
number of trials ‘t’ simulating the fabrication of a set 
of PRC components. The trial with the best 
production performance (see section 4.1.1 below) is 
selected for later training of the DANN, and as the 
lead-in for the next stage in the simulation.  The 
training patterns collected are the mappings from 
input to output for each state transition in the selected 
trial. 

This process continues until a specified number of 
stages have been completed, each time collecting 
training patterns from the best performing trial. For 
future studies, parameters that can be investigated in 
terms of optimizing performance are the number of  

 
Figure 5: DANN Development Cycle. 

Intelligent Control of Construction Manufacturing Processes using Deep Reinforcement Learning

117



trials per stage, the number of PRC components to be 
fabricated per trial (this could be variable between 
stages), and the number of stages in the phase. 

After completion of this phase, the system moves 
to DANN training before returning for another round 
of collecting training patterns. The intent is that by 
cycle between Phases I and II in this manner, the 
policy will move towards a better solution 
incrementally.  

4.1.1 Production Performance 

Production performance is measured in terms of 
delays to the delivery of PRC components. The delays 
are offset relative to a base value in the cost function 
to account for the square component which would 
otherwise treat early and late deliveries the same.  The 
basis of the cost function is the root-mean-square 
(RMS) of these delays: 𝑐𝑜𝑠𝑡 = ට∑ ሺ𝑑௜ − 𝑏ሻଶ௡௜ୀଵ 𝑛ൗ  (1)

where: 
d is the delay for the ith PRC component at its 

completion; 
n is the number of PRC components completed 

at the current trial; 
b is the base value against which the delays are 

offset - this value is the maximum 
contingency time possible for a PRC 
component. 

4.1.2 Rewards 

The learning strategy presented here collects training 
patterns based on their success in improving system 
performance. For this reason, a training pattern’s 
output values are modified from that produced by the 
DANN to increase the probability of making the same 
selection in a similar circumstance. The modification 
(a reward) is to move the selected output value closer 
to 1.0, and to move the other relevant output values 
closer to 0.0, remembering that the output values are 
treated as probabilities of selecting an RC component 
from the queue.  The extent of the modification will 
be treated as an experimental hyper-parameter, 
although for this study the rewards will be set to 0.0 
and 1.0 without any discount. 

4.2 DANN Training 

The training patterns collected in Phase I are used to 
train the DANN, or to further train it in repeat cycles, 
as illustrated in the lower orange section of Figure 5.  

The DANN was implemented in Python (Van 
Rossum, 1995) and PyTorch (Paszke et al., 2019), 
using the optimizer RMSProp (root-mean-square 
propagation) and the loss function MSELoss (mean-
squared-error) with reduction set to ‘mean’. Data 
loading used a mini-batch size of 64 (with a training 
set size typically between 2,000 and 6,000) with 
shuffling switched on. The learning rate was set to 
0.001. 

Training was conducted until the output from the 
loss function had converged, which was typically 
within 1,000 epochs. Validation of the system was 
undertaken after the learning cycle had plateaued. 
This involved running the simulation in 
implementation mode (see section 3.3.3) using a start 
point not used for learning. 

5 RESULTS AND DISCUSSION 

A series of experiments were undertaken to evaluate 
the ability of the DANN to learn, and to compare its 
performance with both the rule-of-thumb and random 
policies outlined in section 3.2. 

The work demand (given by the batch size 
distribution for orders and their arrival rate, λ) and the 
system’s productivity (determined in part by the 
handling times for the processes) were designed to be 
in balance for these experiments. The relevant 
parameters are given in section 3.1.   

5.1 Short Term Reward Approach 

The first experiment was designed to test the 
performance of the DANN using a short term strategy 
for collecting rewards, monitoring delivery delays in 
cycles of 20 PRC components (the mode batch size 
used for one order of PRC components).  

Training data was collected over a 2,000 PRC 
component production run, divided into 100 stages of 
20 components each and with 100 trials per stage (see 
Figure 5 and section 4.1). Learning was undertaken 
for six cycles of Phase I and II, at which point no 
further improvement in performance was found. Each 
cycle generated around 2,000 training patterns.  

After development of the DANN, the simulation 
model was reset and run for a 10,000 PRC component 
production run for validation purposes. The results of 
this experiment are presented in Figure 6, plotting the 
RMS of the shifted delays in the delivery of the PRC 
components (the Phase I objective function, see Eq. 
1) against the component sequence number.  Note, the 
measure of delay is presented as the rolling average 
(the average delay from the first to the nth component) 
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to capture the collective performance over the 
production run.  The initial rise in delay in the graph 
(over approximately the first 700 components) is due 
to start-up conditions in the production system. The 
performance of the rule-of-thumb and random 
policies are also shown in the figure for the same 
production run. 

The DANN demonstrated a slightly better 
performance than the two alternative policies, settling 
at approximately a 5% reduction on this measure of 

delay. Interestingly, the rule-of-thumb and random 
polices had very similar performance histories 
throughout the run. This was found to be generally 
true for all experiments undertaken.     

Figure 7 presents the same results but for delays 
rather than RMS delays.  Noting that delays are 
measured as negative quantities, a similar conclusion 
is found to that drawn from Figure 6, except that the 
rule-of-thumb policy becomes more competitive in 
the latter stages of the experiment. 

 
Figure 6: Validation run for a short term rewards strategy: shifted RMS delay versus PRC components. 

 
Figure 7: Validation run for a short term rewards strategy: delay versus PRC components. 

 

Intelligent Control of Construction Manufacturing Processes using Deep Reinforcement Learning

119



5.2 Mixed Term Reward Approach 

The second experiment was designed to test the 
performance of the DANN using a mixture of short, 
medium, and long term strategies for collecting 
rewards.  In this case, delivery delays were monitored 
in cycles of 20, 40 and 200 PRC components using 
separate production runs which were then aggregated 
into a single training set.  

Training data was collected over three 2,000 PRC 
component production runs, divided into stages as 
follows: 

• 100 stages of 20 components each, with 100 trials 
per stage; 

• 50 stages of 40 components each, with 100 trials 
per stage; and 

• 10 stages of 200 components each, with 100 trials 
per stage. 

Learning was undertaken for five cycles of Phase I 
and II, at which point no further improvement in 
performance was found. Each cycle generated around 
6,000 training patterns. 

As in the first experiment, the simulation model 
was reset and run for a 10,000 PRC component 
production run for validation purposes. The results of 
this experiment are presented in Figure 8 for delays. 
The DANN generally outperformed the rule-of-
thumb and random policies, except there was a period 
(starting around 2,700 components) where its 
performance regressed. It is not clear what caused 
this, although the DANN appeared to make gains 
relative to the other policies when the average delays 
were increasing. The DANN does seem to be able to 

learn good solutions, but this success is mixed.  It 
could be addressed by a broader and more 
comprehensive set of training runs. 

There was no obvious difference between the 
learning abilities of the short and mixed term rewards 
strategies. Clearly, a thorough analysis of this idea is 
required for a range in the term lengths of the rewards. 

Figure 9 shows the performance of the DANN at 
each of the five learning cycles in the 10,000 
production run. As expected, the lines higher on the 
graph were produced by the later learning cycles, 
indicating convergence on a solution. An important 
observation from this, however, is that most of the 
learning occurred in the region where the DANN 
outperformed the rule-of-thumb and random policies 
(compare Figures 8 and 9). In other words, the 
DANN’s superior performance over its competitors 
correlates very strongly with its ability to learn. The 
question to be resolved is: what gives rise to the 
differences in learning? For example, there could be 
a lack of training examples similar to the situation 
arising at the reduced performance regions in the 
production run - this could be addressed by expanding 
training. Alternatively, it could be that there are 
situations where improvement in performance is 
unattainable, perhaps because the default solution is 
already optimal or near optimal. Indeed, the DANN 
seemed to learn more when the delays were 
increasing in the production run. 

 
 
 
  

 
Figure 8: Validation run for a mixed term rewards strategy: delay versus PRC components. 
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Figure 9: DANN learning progress over the first five cycles of Phase I and II. 

6 CONCLUSION AND FUTURE 
WORK 

The work presented in this paper was concerned with 
evaluating the potential of RL trained DANNs to 
provide high-performance control of factory based 
construction processes.  The problem is particularly 
challenging given the nature of construction projects: 
uneven and uncertain demand, high customization, 
the need to fabricate work to order, and a lack of 
opportunity to stockpile work.  

A preliminary series of experiments showed the 
approach to be promising.  The DANN outperformed 
both a rule-of-thumb policy and a random policy in 
the control of long production runs.  Although the 
improved performance was not maintained for the 
entire duration of the production runs, there are many 
opportunities for significant further development of 
the technique. This is in contrast to the rule-of-thumb 
and random policies which have no capacity for 
further improvement - they are fixed strategies. 

Future work will be aimed at improving the 
performance of the RL approach, and increasing the 
applicability of the technique to a more diverse range 
of construction manufacturing problems.  

The following work is planned for performance 
improvement of the approach: 

• Increasing the length and diversity of production 
runs used for training, thereby increasing the size 
and scope of the training dataset. 

• Undertaking sensitivity analyses on the RL hyper-
parameters such as the reward term lengths, the 
rewards discount rate, the number of trials per 
stage, and the number of stages in a cycle. 

• Undertaking sensitivity analyses on the structure 
and architecture of the DANN, including the 
number of PRC components to be sampled at the 
input (N), the number of hidden layers, the number 
of hidden units per layer, and the inclusion of an 
ensemble of models. 

• Consideration of the use of alternative RL 
algorithms, and the use of heuristic search 
techniques to solve the same problem. 

The following work is planned to increase the scope 
of application of the approach: 

• Case studies aimed at identifying detailed 
performance data, logistics, and the practical 
issues associated with day-to-day control of 
construction manufacturing systems. 

• Increasing the range of state data used for input 
and the scope of the type of decisions made by the 
decision agent. 
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