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Abstract: Mobile networks' fault management can take advantage of Machine Learning (ML) algorithms making its 
maintenance more proactive and preventive. Currently, Network Operations Centers (NOCs) still operate in 
reactive mode, where the troubleshoot is only performed after the problem identification. The network 
evolution to a preventive maintenance enables the problem prevention or quick resolution, leading to a greater 
network and services availability, a better operational efficiency and, above all, ensures customer satisfaction. 

 In this paper, different algorithms for Sequential Pattern Mining (SPM) and Association Rule Learning (ARL) 
are explored, to identify alarm patterns in a live Long Term Evolution (LTE) network, using Fault 
Management (FM) data. A comparative performance analysis between all the algorithms was carried out, 
having observed, in the best case scenario, a decrease of 3.31% in the total number of alarms and 70.45% in 
the number of alarms of a certain type. There was also a considerable reduction in the number of alarms per 
network node in a considered area, having identified 39 nodes that no longer had any unresolved alarm. 

 These results demonstrate that the recognition of sequential alarm patterns allows taking the first steps in the 
direction of preventive maintenance in mobile networks. 

1 INTRODUCTION 

Fault Management (FM) optimization in mobile 
networks involves taking advantage of Machine 
Learning (ML) techniques to make its maintenance 
proactive and preventive. 

Mobile network operations still work in reactive 
mode, i.e., the diagnosis and the problem solving 
starts only after a network malfunction occurs, a 
service is impacted, or when a customer complains. 
The engineers have access to a lot of information such 
as alarms, performance measurements and more, but 
they lack an effective way to quickly solve issues. 
Thus, Mean Time To Repair (MTTR) is affected, 
impacting network and service availability, 
operational efficiency, and customer satisfaction. 

Minding a solution for preventive maintenance, 
operators can leverage ML to reduce operational 
costs, improve network and service availability, 
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improve customer satisfaction, and reduce missed 
Service Level Agreements (SLAs). In this context, 
the main goal of this paper is to create a solution for 
preventive maintenance of mobile networks' alarms, 
using real data, that: 

1. Mines alarms clusters and establishes 
relationships between them, forming 
association rules; 

2. Continuously learns from new data, improves 
over time, and builds expertise in the network 
maintenance domain; 

3. Defines antecedent and consequent alarms in 
a sequential pattern, where they are sorted 
chronologically; 

4. Recognizes the most frequent patterns in order 
to find the most concerning faults and identify 
the main advantages that come from their 
prevention. 
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Some recent related work will be presented in the 
following. In (Araújo, 2019), the alarms’ proactive 
management is addressed as a way to take advantage 
of ML algorithms to follow the evolution of mobile 
networks and services operations. In (Mulvey, 2019) 
and (Nouioua, 2021), research is carried out on the 
application of ML techniques and data mining in the 
fault management of telecommunications networks, 
from an operational point of view. The authors 
surveyed several machine learning based techniques 
for fault management, including the ones used in this 
work. 

The paper is organized as follows: Section 2 
briefly presents the study carried out on Association 
Rule Learning (ARL) and Sequential Pattern Mining 
(SPM) algorithms, its methodology and their 
respective evaluation metrics. Section 3 presents the 
experimental results of all the discussed algorithms' 
implementation, with a comparison of their 
efficiencies, and finally Section 4 concludes the 
paper. 

2 METHODOLOGY 

2.1 Fault Management Data 

The used dataset contains several alarm logs from a 
live LTE network. These logs contain the timestamp, 
severity, name, type, technology, detailed 
information, and the network node associated with 
each alarm. 

As described in (Huawei, 2015), the alarms can be 
classified, as to their severity, as follows: 

1. Critical: A critical alarm affects system services. 
As soon as it is triggered, immediate actions must 
be taken, even when the fault occurs outside 
working hours; 

2. Major: A major alarm affects the quality of 
service and requires immediate action, only if 
occurs during working hours; 

3. Minor: A minor alarm usually does not affect the 
quality of service. It should be treated as soon as 
possible or monitored to avoid potential severe 
failures; 

4. Warning: A warning alarm indicates a possible 
error that could affect the quality of service. 
Requires different actions depending on specific 
errors. 

In the sequence, alarms are further categorized by 
their type, depending on their operational area: 

Power; Environment; Signaling; Trunk; Hardware; 
Software; System; Communication; Service quality; 
Unexpected operation; Operations and Maintenance 
Center (OMC); Integrity; Operation; Physical 
resource; Security; Time domain; Running; 
Processing. 

2.2 Association Rule Learning 

Association Rule Learning (ARL) allows extracting 
correlations or strong associations, hidden between 
sets of items present in transactions in a certain 
dataset. The association rules problem defines a 
transaction as a set of items where each item can have 
different attributes. The used dataset contains several 
transactions. An association rule is an implication, 
written as 𝐴 → 𝐶, where A and C are sets of items 
called antecedent and consequent, respectively. 

Generally, there are two metrics for evaluating an 
association rule, support and confidence, presented in 
equations (1) and (2), respectively. As datasets 
usually store large amounts of information but only 
the most frequent transactions are interesting, 
minimum values are defined for these evaluation 
metrics, which help to filter out less frequent rules. 

 Support: Relative frequency or occurrence 
probability of a transaction. It can take values 
between 0 and 1. 

Support(AC) = Occurrences of A⋃C
Total number of transactions

 (1)

 Confidence: Probability of a transaction 
containing the consequent, knowing that it also 
contains the antecedent. Confidence is 
maximum if the consequent and the antecedent 
always occur together. It is not symmetric, i.e., 
the confidence of AC is different from the 
confidence of CA. 

Confidence(AC) = Support(AC)
Support(A)

 (2)

In addition to these two metrics, others can be 
used to better classify the association rules, 
considering other properties that both support and 
confidence cannot quantify. In the scope of this work, 
three more evaluation metrics were used: lift, 
leverage and conviction, and set in equations (3), (4) 
and (5), respectively. These metrics were not used to 
filter rules, but to better evaluate them. 

 Lift: Quantifies how frequent the simultaneous 
occurrence of A and C is compared to what 

A Fault Management Preventive Maintenance Approach in Mobile Networks using Sequential Pattern Mining

77



would be expected if they were statistically 
independent. If A and C are independent, the 
lift will be equal to 1. 

Lift(AC) = Confidence(AC)
Support(C)

 (3)

 Leverage: Difference between the frequency 
of A and C occurring together and the 
frequency that would be expected if A and C 
were independent. A value of 0 indicates 
independence between the two itemsets. 

Leverage(AC) = Support(A 
C) – Support(A) × Support(C) (4)

 Conviction: A high value means that C is 
strongly dependent on A. For example, if the 
confidence is equal to 1, the denominator will 
be 0, so the conviction will be ∞. Like lift, if 
the items are independent, the conviction is 
equal to 1. 

Conviction(AC) = ଵ ି ௌ௨௧()ଵ ି େ୭୬୧ୢୣ୬ୡୣ(େ) (5)

Under this work, three ARL algorithms were 
implemented: Apriori, Equivalence CLAss 
Transformation (ECLAT) and Frequent Pattern 
(FP)Growth, and extracted from (Agrawal, 1994), 
(Zaki, 2000) and (Han, 2004), respectively. 

2.2.1 Apriori 

This algorithm has to access the dataset several times 
to obtain the frequent itemsets. In the first access, the 
support is counted for each item individually (level 1 
itemsets). Then, with a minimum defined support 
value, S, there are excluded rare items, i.e., those 
whose support is lower than S. 

In later accesses, higher-level itemsets containing 
rare items are no longer considered, because if an 
item’s support, Si, is lower than S, then all subsets that 
contain it will have a support equal or lower than Si 
and, thus, lower than S (Apriori property). 

This process is repeated until there are no more 
frequent itemsets to evaluate. The final list of frequent 
items is the junction of all the lists created for each 
level, including the support values calculated for each 
frequent itemset. 

2.2.2 ECLAT 

ECLAT is an improved version of the Apriori 
algorithm. While Apriori uses a horizontal dataset 
representation, ECLAT transforms it into its vertical 

representation where, instead of indicating the 
itemsets that belong to each transaction, it lists the 
transactions in which item occurs. 

Transaction lists for higher level itemsets are 
created recursively, calculating the intersection of the 
transaction lists (from the previous level) of each 
item. If the intersection is null, the itemset is removed 
from the list. This process is over when, for a certain 
level, all intersections are null. 

If the minimum support is set to the same value, 
the final list of frequent itemsets will be identical to 
that of the Apriori algorithm. However, ECLAT takes 
up less memory throughout its process, manages to be 
faster by using a vertical approach – in which its 
calculations are done in parallel – and ends up 
performing fewer accesses to the dataset, because it is 
possible to calculate the support values for any level. 

2.2.3 FPGrowth 

The FPGrowth algorithm implementation considers 
the Frequent Pattern (FP)-tree, a tree that contains the 
prefixes of the transactions. Each tree path represents 
a set of transactions that share the same prefix, where 
each node corresponds to a single item. Furthermore, 
all nodes referring to the same item are linked 
together, so that all transactions that contain a certain 
item can be easily found and accounted for when 
traversing this tree. 

The main operation that the FPGrowth algorithm 
has to perform is to build the FP-tree of a projected 
dataset, i.e., a dataset with the transactions that 
contain a certain item, with that item removed. This 
projected dataset is processed recursively, not 
forgetting that the frequent itemsets found share the 
same prefix – the item that was removed. 

After building the FP-trees for all the necessary 
dataset projections, the process of eliminating some 
of the nodes associated with rare items is carried out 
in order to simplify the tree and speed up the process. 

Thanks to an efficient implementation of FP-trees, 
the FPGrowth algorithm largely outperforms the 
previously presented algorithms (Apriori and 
ECLAT), both in terms of execution time and the 
memory required, since the storage of the dataset 
using a tree representation is more compact than the 
full list of transactions. 

2.3 Sequential Pattern Mining 

Sequential Pattern Mining (SPM), unlike ARL, takes 
into consideration the items’ order in each sequence, 
allowing to discover frequent patterns in a dataset, 
which may prove useful or interesting to be explored. 
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The objective of SPM algorithms is to find all 
patterns (sub-sequences) that have a support higher 
than or equal to the minimum support value defined 
by the user. Therefore, the patterns they each find are 
the same for all the algorithms. What differentiates 
them is solely their efficiency in recognizing those 
patterns. 

Three SPM algorithms were also implemented: 
PrefixSpan, Sequential PAttern Discovery using 
Equivalence classes (SPADE) and Sequential 
PAttern Mining (SPAM), and extracted from (Pei, 
2004), (Zaki, 2001) and (Ayres, 2002), respectively. 

2.3.1 PrefixSpan 

PrefixSpan is a pattern-growth algorithm, based on 
FPGrowth. It is the only one of the three studied 
algorithms that does not consider all possible 
combinations for the patterns that can be found. 
Recursively accesses the dataset to concatenate new 
items until the complete pattern is formed, therefore, 
it only considers the patterns that exist in the dataset. 
These successive accesses can, however, be time 
consuming, so the concept of “projected dataset” was 
introduced, to reduce its size, optimizing the access. 
In terms of memory, creating multiple dataset 
projections can take up a lot of data storage space. 

2.3.2 SPADE 

Inspired by ECLAT, this algorithm uses a vertical 
representation of the dataset, created during the first 
access, indicating in which itemsets and in which 
sequence each of the items is found. 

The vertical representation has two interesting 
properties for recognizing sequential patterns. The 
first property is that the list created for any sequence 
allows directly calculating its support. The second 
property is that the list of any sequence can be 
obtained, without directly accessing the original 
dataset, by joining the various lists of the sub-
sequences that compose it. 

By taking advantage of these properties, 
algorithms such as SPADE and even SPAM perform 
their discovery for sequential patterns without 
repeatedly accessing the dataset and, therefore, 
without keeping many patterns in memory. 

2.3.3 SPAM 

Similar to the algorithm presented above, SPAM 
manages to be even more efficient by optimizing the 
structure of the pattern list. This algorithm encodes 
these lists as binary vectors, which cuts the memory 
necessary to store the same information. In addition, 

it speeds up the mathematical operations that need to 
be performed. It can still be improved with the use of 
compression techniques that reduce the number of 
used bits. 

This algorithm has been shown to be faster than 
SPADE and PrefixSpan, especially for relatively 
large datasets. In terms of memory, SPADE still 
manages to be the more efficient of the two. 

3 EXPERIMENTAL RESULTS 

In order to discover the association rules and 
sequential patterns within the network, real FM data 
were used to test, analyse, and compare the presented 
algorithms. 

To evaluate every association rule, the minimum 
support value was set to “2 occurrences / Total 
number of transactions”, i.e., it only takes a repetition 
for an itemset to be considered frequent. A minimum 
confidence of 50% was also imposed, which indicates 
that, at least half of the transactions that contain the 
antecedent also contain the consequent (group of 
alarms). 

Before analysing the results and to assess the 
efficiency of each algorithm, the execution times and 
the used memory were quantified. These results were 
obtained from tests performed on a machine with the 
following specifications: Intel® Core™ i5-7300HQ 
CPU @ 2.50GHz (4 CPUs), 8GB RAM, Windows 10 
Education 64bits. 

3.1 Association Rule Learning 

In the implementation of the algorithms Apriori and 
FPGrowth, the MLxtend library (Raschka, 2018) was 
used. For ECLAT, it was used the PyFIM library 
(Borgelt, 2012). The tests were carried out for a time 
window from 1 to 30 minutes, and with one minute 
granularity. Comparative graphs for the different time 
windows are shown in Figure 1 and Figure 2, for the 
execution time and memory usage, respectively. 

 
Figure 1: Execution time of each ARL algorithm, for 
several time windows. 
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As in Figure 1, the execution time of all 
algorithms decreases as the time window increases. 
Although, with this growth, there are transactions 
with more sets of items, the number of transactions 
decreases and, also, there are fewer evaluation 
metrics to calculate, which can justify the time 
reduction. Comparing the executions time of each 
algorithm, it is possible to verify that the fastest is 
FPGrowth, followed by ECLAT and, finally, Apriori. 

 
Figure 2: Memory usage of each ARL algorithm, for several 
time windows. 

Considering Figure 2, despite constant 
fluctuations, it is possible to verify that the used 
memory increases as the time window increases, 
which is justified by the growth of the number of 

items in each transaction. In general, it is possible to 
conclude that the most efficient in terms of memory 
occupation is also FPGrowth. ECLAT manages to be 
very optimized for small transactions, but after a 
certain point, it uses even more memory than Apriori. 

The list of rules, identical to all algorithms, was 
sorted by the Lift metric in descendent order, since 
those with the higher value are the ones with a greater 
dependence between the rule’s antecedent and 
consequent. The top 6 rules are shown in Table 1. The 
confidence and conviction metrics were omitted as 
they were the same for all evaluated relations and 
time windows, having the values 1 and ∞ , 
respectively. 

Despite the support values being low, the 
algorithms demonstrate conviction that these 
associations are quite strong, i.e., when a certain 
antecedent alarm occurs, the consequent alarm will 
occur in the following. 

Note that, for a given time window and network 
node, there is always a pair of symmetric rules, i.e., 
there is always a second rule where the antecedent is 
the consequent, and the consequent is the antecedent 
of the first rule. Therefore, at this stage, it is not 
possible to be sure about the order of occurrence of 
the alarms, and it is necessary to move forward 
resorting to Sequential Pattern Mining (SPM). 

Table 1: The top 6 association rules, and respective evaluation metrics calculated by the three algorithms, with greater Lift. 

Minute(s) Network node Antecedent(s) Consequent(s) Support Lift Leverage 

15 
– 

21 
BX94BL RF Unit ALD 

Current Out of Range 
ALD Maintenance Link 

Failure 

0.00134 
– 

0.00157 

741.5 
– 

634.0 

0.00134 
– 

0.00157 

15 
– 

21 
BX94BL ALD Maintenance 

Link Failure 
RF Unit ALD Current Out of 

Range 

0.00134 
– 

0.00157 

741.5 
– 

634.0 

0.00134 
– 

0.00157 

1 
– 
2 

VA08OL X2 Interface Fault Inter-System Cabinet 
Configuration Conflict 

0.00151 
– 

0.00158 

662.0 
– 

632.0 

0.00150 
– 

0.00157 

1 
– 
2 

VA08OL 
Inter-System Cabinet 

Configuration 
Conflict 

X2 Interface Fault 
0.00151 

– 
0.00158 

662.0 
– 

632.0 

0.00150 
– 

0.00157 

2 BX16QL Certificate Invalid External Clock Reference 
Problem 0.00202 494.0 0.00202 

2 BX16QL External Clock 
Reference Problem Certificate Invalid 0.00202 494.0 0.00202 
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3.2 Sequential Pattern Mining 

In the implementation of the algorithms, the extensive 
framework for data mining SPMF (Fournier-Viger, 
2016) was used. 

In the previous section, it was noticed that there 
was no need to test several time windows (1 to 30 
minutes, every minute) in the definition of 
transactions, as the results were similar for all of 
them. Therefore, for these algorithms, transactions 
were defined based on a single dynamic window. 
Additionally, there is a timeout interval in which if no 
alarm happens during that interval, the next alarm that 
occurs will belong to the next transaction. 

The timeout value was defined considering the 
predominant association rules in the previous section, 
namely those that contained alarms associated with 
the Antenna Line Device (ALD). Since the objective 
is to have this pair of alarms always in the same 
transaction, the timeout was fixed at 11 minutes, 
because this is the maximum time interval registered 
between the two alarms. 

The execution times and memory usage of each 
algorithm were measured, for the dynamic window, 
and are presented in Table 2. 

Observing the average value of three tests 
executed in a row, the fastest algorithm is the SPAM, 
followed by PrefixSpan, and finally SPADE. In terms 
of used memory, the order is reversed, with SPADE 
being the most efficient, followed by PrefixSpan and, 
finally, SPAM. 

Table 2: Execution times and memory usages of each 
algorithm, for the dynamic time window. 

Algorithm Execution time 
Maximum 
memory 

usage 
PrefixSpan 14 minutes 43 seconds 179.07 MB 

SPADE 15 minutes 9 seconds 178.06 MB 

SPAM 13 minutes 50 seconds 180.18 MB 

The list of patterns, identical to all algorithms, 
was sorted by the Lift metric in descendent order, as 
those with this highest value are those with a greater 
dependency among all the alarms that make up the 
pattern. The top 5 patterns are shown in Table 3. 

As already noticed, the same alarms that had 
already appeared in the association rules of the 
previous section continue to be present. However, in 
this analysis, there are no longer symmetrical rules, 
only the patterns, which, by themselves, already 
indicate the real order in which the alarms occur. 

All listed patterns have been analysed using the 
alarm’s vendor documentation. Furthermore, 
assuming that when the antecedent is solved, the 
consequent no longer happens, and that the time 
interval between them is sufficient to report and solve 
the failure, the consequent will be removed from the 
original dataset, and the maximum reduction in the 
number of alarms will be calculated. 

The next sections will present some use cases 
considering the patterns found in Table 3. 

Table 3: The top 5 sequential patterns, and respective evaluation metrics calculated for the three algorithms, with greater Lift. 

Network node Pattern Support Confidence Lift Leverage Conviction 

VA08OL 
{Inter-System Cabinet 

Configuration Conflict, X2 
Interface Fault} 

0.00259 1.0 386.5 0.00258 ∞ 

VA83WL 
{RF Unit ALD Current Out of 
Range, ALD Maintenance Link 

Failure} 
0.00274 1.0 364.33 0.00274 ∞ 

BX16QL {Certificate Invalid, External Clock 
Reference Problem} 0.00197 0.66 226.0 0.00196 2.9912 

AB42AL 
{Inter-System Cabinet 

Configuration Conflict, X2 
Interface Fault} 

0.00476 1.0 210.0 0.00474 ∞ 

TX49BL {ALD Maintenance Link Failure, 
External Clock Reference Problem} 0.00477 1.0 209.66 0.00475 ∞ 
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3.2.1 RF Unit ALD Current out of Range  
ALD Maintenance Link Failure 

In the context of preventive maintenance, it is 
necessary to understand the benefits of being able to 
recognize the patterns that happened in the past, in 
order to predict and prevent what will happen in the 
future. In this case, by preventing the antecedent 
alarm, RF Unit ALD Current Out of Range, 715 
“ALD Maintenance Link Failure” alarms are avoided. 
This mainly translates into the reduction of the 
number of alarms as follows: 

 “Communication” type alarms: 1860  1145 
(-38.44%); 

 “VX73KL” node alarms: 40  22 (-45%); 
 “CS12KL” node alarms: 87  51 (-41.38%); 
 “VX37KL” node alarms: 179  107 (-

40.22%); 
 “CR29VL” node alarms: 64  44 (-31.25%). 

3.2.2 Inter-System Cabinet Configuration 
Conflict  X2 Interface Fault 

By solving the errors and configuration conflicts in 
the cabinet, 6327 “X2 Interface Fault” alarms can be 
prevented from happening. This means a reduction 
of: 

 Total number of alarms: 191053  184726 (-
3.31%); 

 “Signaling” type alarms: 8981  2654 (-
70.45%); 

 “LO01AL” node alarms: 37  18 (-51.35%); 
 “VX83EL” node alarms: 74  37 (-50%); 
 “VX49KL” node alarms: 53  27 (-49.06%). 

3.2.3 Certificate Invalid  External Clock 
Reference Problem 

By properly validating the certificate, it can prevent a 
lot of “External Clock Reference Problem” alarms 
from happening. As this pattern shares the same 
consequent as the next, the calculation and analysis of 
this impact is made for the next pattern. 

These two patterns are between “Major” alarms, 
while the first two were between a “Minor” 
antecedent and a “Major” consequent. This allows to 
deduce, after analysing the 4 cases, that the sequence 
of alarms always follows an increasing order in terms 
of severity. Of course, there are alarms caused by 
other ones with the same severity, but a less severe 
alarm than the previous one is unlikely to occur (for 
example, Major → Minor). 

3.2.4 ALD Maintenance Link Failure  
External Clock Reference Problem 

This pattern is the second (from the ones presented) 
in which the “External Clock Reference Problem” 
alarm is found as a consequence. This suggests that 
the problems in the external clock reference can be 
indirectly caused by various sources on the network, 
which leads to a bad configuration of the clock or the 
malfunction of some hardware element, essential for 
proper clock synchronization. 

Resuming the correct external reference clock 
synchronization, it prevents the occurrence of 1414 
“External Clock Reference Problem” alarms. This 
mainly translates into the reduction of: 

 “Hardware” type alarms: 7969  6555 (-
17.74%); 

 There are 39 nodes that no longer have any 
unresolved alarm (-100%); 

 “VX30EG” node alarms: 18  1 (-94.44%); 
 “CR06VU” node alarms: 22  4 (-81.82%); 
 “VX88EU” node alarms: 50  12 (-76%). 

Hence, it is concluded that, with sequential 
pattern mining, it is possible to predict which will be 
the most likely alarm to be the consequence of a given 
antecedent alarm. Within the scope of preventive 
maintenance, if the problem resolution is quick and 
effective, it is possible to completely prevent the 
consequent alarm from occurring, resulting in a 
decrease in the number of triggered alarms and 
failures caused by them. 

4 CONCLUSIONS 

This work aimed to develop and test a solution for 
proactive and preventive maintenance in LTE mobile 
networks, by using fault management data. Two types 
of machine learning techniques for handling this data 
were explored: ARL and SPM. 

For the ARL algorithms, FPGrowth presented the 
best performance in terms of execution time and used 
resources. ECLAT was the most efficient for short 
transactions, being surpassed by Apriori for larger 
transactions. In all of them there was a symmetry in 
the association rules, having therefore evolved to the 
SPM algorithms, where the order of alarms’ 
occurrence is strongly important. 

For the SPM algorithms, SPAM was the most 
efficient in terms of execution time, but the worst in 
terms of resource utilization. SPADE was the most 
efficient in terms of resource utilization but the 
slowest of all. On the other hand, PrefixSpan offered 
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a good compromise among all. In all the performed 
tests, it was possible to conclude that the prevention 
of consequent alarms results in a decrease in their 
absolute number in the network’s nodes where they 
occurred. 

In the best case scenario, there was a decrease of 
3.31% in all analysed nodes, and 70.45% in terms of 
alarms of the same type. It was also noticed that 39 
network nodes no longer had any unresolved alarm. 
These results demonstrate that sequential pattern 
mining drives the preventive maintenance of alarms 
in a LTE mobile network, reinforcing the preventive 
maintenance’ importance for Mobile Network 
Operators (MNOs). 
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