
Automated Search for Leaked Private Keys on the Internet:
Has Your Private Key Been Pwned?

Henry Hosseini, Julian Rengstorf and Thomas Hupperich
Department of Information Systems, University of Münster, Germany

Keywords: Public Key Authentication, Leakage Detection, Security Services.

Abstract: Public key authentication is widely used alternatively to password-based credentials, enabling remote login
with a generated key pair consisting of a private key and a public key. Like passwords, private keys are
required to remain confidential to prevent unauthorized access to resources. These secrets might become
subject to theft or publicly exposed unintentionally by the key’s owner. In such cases, the keys are deemed
compromised and need to be revoked and abandoned instantaneously. Unfortunately, it is rarely possible for
users to know whether their secret keys have been publicly exposed.
Closing this gap, we introduce a private key leakage checker titled KeyPwned crawling the Internet for exposed
authentication keys. We present a continuously updated database of leaked keys’ fingerprints discovered on
websites or in source code repositories. For community-driven enhancement, we allow suggestions of URLs to
scan for additional leaked keys, following our standardized process. We furthermore offer users a registration
with their public keys to be notified if we detect leakage of their corresponding private key. KeyPwned is
designed to run as a service following common software design standards, empowering users to verify their
keys’ confidentiality and take action if a private key has been exposed.

1 INTRODUCTION

Authentication methods aside from passwords are
used to increase authentication security and dimin-
ish the risk of data leakage. A prominent example
based on asymmetric cryptography is the SSH pro-
tocol, which facilitates public key authentication as
a replacement for password-based authentication. In
contrast to password-based authentication, public key
authentication relies on a stored private key file on
the local machine (Lonvick and Ylonen, 2006). Al-
though this authentication mechanism is considered
more secure since keys cannot be guessed like pass-
words, private key files might be leaked accidentally
or stolen from a machine. Consequently, for this au-
thentication method to be secure, it is essential to keep
private keys secret and the exposure of private keys is
deemed a threat to the confidentiality of personal data,
one of the most important goals of information secu-
rity (Avizienis et al., 2004). Thus, it is crucial to know
whether an authentication key has been leaked.

For password-based login credentials, there exists
an approach named HaveIBeenPwned (Hunt, 2022),
which recently became fostered by the Federal Bu-
reau of Investigation and open source (Hunt, 2021).
The project’s website allows checking whether given

login credentials appear in known data breaches. With
over 11 billion compromised accounts as of October
2021, this service makes an essential contribution to
security by providing a powerful service that checks
the confidentiality of users’ credentials. However, the
service of HaveIBeenPwned does not take key pair
leakage into account. Our work attempts to close this
gap by providing key authentication users a means
of verifying their private keys’ confidentiality. We
propose an implementation for a private key leakage
checker capable of reporting whether a private SSH
key has been publicly exposed. The software devel-
oped for this purpose is titled KeyP̄wned, in acknowl-
edgment of HaveIBeenPwned.

KeyPwned has been implemented as a public web-
site1 on which users can enter SSH fingerprints to
check if they occur in the database. By storing the
SSH fingerprint of a private key as a public iden-
tifier instead of the key itself, confidentiality is en-
sured. To build up the initial database of KeyPwned,
we searched for leaked authentication keys manually
and derived their fingerprints. The database of leaked
keys is extensible, as presumably more keys will be-
come exposed over time. Therefore, KeyPwned al-

1https://keypwned.uni-muenster.de/

Hosseini, H., Rengstorf, J. and Hupperich, T.
Automated Search for Leaked Private Keys on the Internet: Has Your Private Key Been Pwned?.
DOI: 10.5220/0011308000003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 649-656
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

649

lows users to point URLs out that are searched for
leaked keys. We follow a community-driven, collab-
orative approach to maintain the database as compre-
hensively as possible by letting users point at potential
key leakages. These potential key leakages are ver-
ified along with other precautions so that malicious
users cannot submit arbitrary input, which may cor-
rupt the database. Thus, our approach follows an ad-
vanced, guided search strategy.

To ensure high software quality, we apply a prod-
uct quality model as defined in the ISO/IEC 25010
standard (ISO/IEC, 2011). By developing and evalu-
ating KeyPwned based on this standard, high-quality
software and secure utilization by users is ensured.

Our approach raises the question, when exactly a
key may be deemed leaked. As there is no ultimate
definition, for the scope of our work we consider a
private key as leaked if it has become publicly avail-
able on the Internet without protection, regardless of
the duration it has been available.

In summary, the main contributions of our work are
as follows:

• We built a database of over 240,000 leaked private
key fingerprints.

• We introduce KeyPwned as a checking service for
private key leakage, allowing users to test if their
private keys have been publicly exposed.

• We perform a standardized product quality assess-
ment of our approach based on ISO/IEC 25010.

• We allow a community-driven database extension.
• We offer a public key registration for notifications

if the corresponding private key has been exposed.

The next section of this paper describes the soft-
ware design of KeyPwned and the search for publicly
available keys. The paper will then go on to eval-
uating KeyPwned and describing the collected data.
We discuss our solution in Section 4 and provide an
overview of related work in Section 5. The final sec-
tion summarizes the main findings of this work.

2 SOFTWARE DESIGN

The proposed service software comes in two parts.
The first part, named private key leak checker, pro-
vides the databases and interfaces necessary for users
to check their private keys, suggest websites for au-
tomated crawling, and register for key exposure no-
tifications. The second part addresses the search for
leaked keys, extracting and processing their informa-
tion for our database.

2.1 Private Key Leak Checker

Three user interfaces form the central part of inter-
action with KeyPwned, described in the following.
The request interface allows the submission of one or
more key fingerprints to receive feedback on whether
the private keys were leaked in a data breach incor-
porated in the database or if they are presumably still
safe to use. The request interface is complemented
with a report interface to enter a list of URLs that may
contain private keys. The software retrieves all possi-
ble keys from these URLs automatically and extends
the database. As a third user interface, the notifica-
tion interface provides the users with the possibility
to register their fingerprints with their email addresses
to receive notifications in case of leakage.

To initially populate the database with leaked pri-
vate keys, we collected website URLs by search terms
indicating the presence of private key files. For this
purpose, the Google Hacking Database (GHDB), sev-
eral websites hosting plain text files and source code,
as well as a public GitHub activity dataset are used.
Regular expressions are tailored to extract all private
key data from downloaded web pages, and their SHA-
256 as well as MD5 fingerprints are calculated and
stored. Note that for confidentiality and ethical rea-
sons, the extracted private keys are not stored them-
selves. As to password-protected private keys, the fin-
gerprints cannot be calculated without the password.

To illustrate the interaction and architecture of the
application, we apply the C4 model (Brown, 2021) for
visualizing the software architecture.

2.1.1 Request Interface

The main interaction point is a web interface that con-
tains elements such as a text input area, a submit but-
ton, and a section with FAQs to explain the applica-
tion. Users can interact with the application by gen-
erating the fingerprints of their private keys on their
local machines and copying these fingerprints into the
text input area on the website. A request containing
the inserted fingerprints is sent to the application’s
back-end by clicking the submit button. The finger-
print is looked up in the database to find all possi-
ble matches. A short manual section includes help-
ful notes in the form of FAQs about how the applica-
tion works, how private key fingerprints can be gen-
erated, the format the application expects them, and
what measures should be taken in case of a leak.

2.1.2 Report Interface

As a second part of the application, the report in-
terface allows reporting URLs containing leaked pri-

ICSOFT 2022 - 17th International Conference on Software Technologies

650

vate keys to extract and import these keys into the
database. The interface allows entering multiple
URLs into a text field. A web crawler fetches the web
content of the reported URLs nightly and searches for
private keys that can be converted into fingerprints for
the database. The URLs are automatically checked
with the Google Safe Browsing Lookup API to pre-
vent our tool from visiting unsafe web resources. To
verify the public accessibility of keys, we do not di-
rectly import fingerprints of reported leaked keys by
users into the database. Instead, users may point us
to URLs containing leaked keys. This process en-
sures a unified procedure and that the fingerprints in
the database remain valid.

2.1.3 Notification Interface

To provide users with the possibility to get notified
in case of key leakage, we designed a third publicly
accessible interface in which users may register their
key fingerprints along with an email address. The
registration process involves the following challenge-
response protocol. First, the user provides their pub-
lic key and email address. Next, the user receives a
generated nonce via the provided email address. The
user needs to sign this nonce digitally using the corre-
sponding private key of the uploaded public key. Fi-
nally, the resulting signed nonce must be entered in
the user interface to confirm that the user owns the
private key and the email address. The uploaded pub-
lic key is automatically discarded after the registration
process, saving only fingerprint and email address.

2.1.4 Software Architecture

From an architectural point of view, a scalable so-
lution is advisable because it is impossible to deter-
mine the future required performance with certainty
as the platform grows. Therefore, the software ar-
chitecture is designed following the service-oriented
architecture (SOA) pattern due to its flexibility and
popularity. In the realization, this means that services
are defined, modeled, and implemented as containers.
The Container diagram of KeyPwned is depicted in
Figure 1 and shows the applied technologies in each
container. Users can interact with the system by find-
ing out about their private keys’ confidentiality status,
by reporting URLs pointing to newly leaked private
keys, or by conducting the registration of their pri-
vate key fingerprint. The software system of KeyP-
wned consists of six separate containers. The three
databases contain a) stored key fingerprints retrieved
from publicly accessible sources, b) reported URLs
pointing to key leaks, and c) registered data of users
wishing to get informed about leakage of their keys.

Details on the database setup are given in subsubsec-
tion 2.1.5. The interfaces are implemented as sepa-
rate containers based on the user interaction possi-
bilities with KeyPwned. The Downloader container
is used for downloading new keys that were reported
through the report interface. The Notifier container is
a service sending email notifications to the owners of
leaked keys that were registered through the notifica-
tion interface. All containers use database connection
clients for interacting with the database container.

KeyPwned
[Software System]

Database
[Container: MongoDB]

Three databases storing
private key fingerprints,

reported URLs,
and email addresses

User
[Person]

Notification Interface
[Container:

TypeScript&Next.js]

Register for notifications

Report Interface
[Container:

TypeScript&Next.js]

Report URLs with leaked keys

inserts email addresses
into

[MongoClient]

inserts URLs into
[MongoClient]

registers
[HTTPS]

reports
[HTTPS]

Request Interface
[Container:

TypeScript&Next.js]

Check key fingerprints

reads fingerprints from
[MongoClient]

Downloader
[Container: Node.js]

Script to download
new leaked private keys

from URLs

reads URLs from
and

inserts fingerprints into
[MongoClient]

reads email addresses
from

[MongoClient]

Notifier
[Container: Node.js]

Sends email notifications

to users if their
private keys get leaked

checks
[HTTPS]

Figure 1: C4 Container diagram showing the software ar-
chitecture of KeyPwned.

The software is deployed using Docker contain-
ers that can be distributed consistently and platform-
independently. The application is developed in Type-
Script, and runs in a Node.js environment. The tech-
nology and language decisions are based on maintain-
ability being a major aspect of software quality.

On the front end, the React-based Next.js frame-
work is used. The Next.js framework adds valueable
features to the React application, allowing the pre-
rendering of pages at build time through static site
generation (SSG) or rendering at request time using
server-side rendering (SSR). An Express web server
is used, for securing traffic using HTTPS, protecting
the page from DoS attacks, as well as defining custom
behavior for API requests.

2.1.5 Database Setup

Three databases store the fingerprints of leaked pri-
vate keys, the reported queued URLs pointing to po-

Automated Search for Leaked Private Keys on the Internet: Has Your Private Key Been Pwned?

651

tential leaks, and the registered key fingerprints for
notification purposes. The fingerprint database is
filled with initial data as described in subsection 2.2.

We selected the document-oriented database soft-
ware MongoDB due to its flexibility and scalability. A
database is created, containing a collection that stores
the fingerprint documents. Similar design concepts
are applied for the databases of reported URLs and
registered fingerprints.

Newly added private keys are downloaded and
converted to fingerprints. If the fingerprint calcula-
tion fails, the key is considered invalid and therefore
no invalid keys can be added to the database. Storing
fingerprints not only ensures key privacy as it is not
possible to exploit our service for retrieving private
keys, it also empowers the scalability of our approach
as it is more efficient than storing the found keys.

Both SHA-256 and MD5 fingerprint formats are
stored in the database to enable users to request infor-
mation for either format. The source domain, format-
ted including subdomains, and the date of retrieval are
saved as these are displayed to the user who looks up a
particular key. The full URL of the key source is only
saved for documentation purposes and is not shown to
the user to preserve confidentiality.

2.2 Key Retrieval

The workflow to build the initial database of leaked
private keys encompasses three major steps including
the search, extraction, and processing of private keys,
as depicted in Figure 2 and described in the following.

2.2.1 Search

To build our initial database of publicly accessible pri-
vate keys, we used Google Search and Google Big-
Query. The search is assisted by three main types of
sources that are described in the following.

First, we used the Google Hacking Database
(GHDB)2 and found suitable dorks for discovering
publicly available RSA private key files.

Second, in addition to RSA, we extend our search
to the DSA, ECDSA, and Ed25519 algorithms. Using
the search flag site: allows for deeper search on spe-
cific websites. This feature is exploited to find private
keys on three more websites known for sharing plain
text files and source code snippets, namely Pastebin,
GitHub Gist, and Searchcode.

Third, we used Google BigQuery to search for
leaked private keys. One of the publicly available
datasets on this platform includes a complete snapshot

2https://www.exploit-db.com/google-hacking-database

of more than 2.8 million open-source GitHub reposi-
tories that can be filtered using SQL queries with reg-
ular expressions.

2.2.2 Extraction

In the next step, the private keys need to be extracted
and temporarily stored before being converted to fin-
gerprints. As Figure 2 shows, this process varies
depending on the data sources. Regarding the web
pages found via Google Search queries to contain pri-
vate keys, these were extracted from the page con-
tents using regular expressions. These regular expres-
sions are inspired by the ones that Meli et al. used
to find private keys on GitHub (Meli et al., 2019).
URLs reported via the report interface of KeyPwned
are processed in the same way. For the approach us-
ing Google BigQuery, this step can be omitted, as the
private keys are directly extracted using SQL queries.

2.2.3 Processing

Each extracted (not-password-protected) private key
was temporarily saved, converted to fingerprints,
and inserted into the fingerprints collection along
with its originating URL. This processing procedure
slightly differs depending on the source. There-
fore, customized code is developed per data source
to calculate the fingerprints and check whether an ex-
tracted private key is valid. For the calculation of the
SSH fingerprints, the Python library cryptography is
used (Python Cryptographic Authority, 2022). Ad-
ditionally, further processing is performed to acquire
the other required database fields such as source do-
main and timestamp of key retrieval.

3 EVALUATION

We assess the quality of the software created for our
service, and evaluate the data collection process and
the resulting database containing fingerprints of pub-
licly exposed authentication keys.

3.1 Quality Assessment

The design choices of KeyPwned are based on the
requirements of the software product quality model
given in ISO/IEC 25010. Our software quality as-
sessment was guided by examining each of the eight
characteristics of this product quality model.

Evaluating the first characteristic, functional suit-
ability, showed that the software fulfills its function
to provide users with the possibility to check their pri-
vate keys against a database of leaked keys and pro-

ICSOFT 2022 - 17th International Conference on Software Technologies

652

Google Hacking Database

Public GitHub Activity

Text Files and Source Code Saving

URLs
Extracting

Keys

Saving

Pages
Converting Keys

to Fingerprints
</>

Search Extraction Processing

Fingerprints

Figure 2: Workflow for the retrieval of private keys and conversion into SSH fingerprints.

vides the correct results for any input. However, the
database can never guarantee completeness, as leaked
private keys in the wild might not have been discov-
ered and added to the database. In order to extend the
database in the future, a report interface is provided
that allows users to report new leaks for adding new
private keys to the database.

For assessing the second characteristic, perfor-
mance efficiency, we performed a comprehensive
study to measure the response times of different input
sizes. The test results show that the average response
times for sampled fingerprints from the database and
the response times for randomly generated finger-
prints do not differ significantly.

As for the third characteristic, compatibility, the
assessment showed that the application could be used
flexibly by other software, ensuring coexistence and
interoperability. Other applications may use the
database and the web application features through
REST API endpoints.

Evaluating the fourth characteristic, usability,
highlighted that the functional appropriateness of the
application could be recognized by keeping the UI
minimalistic. A classless CSS framework was ap-
plied, which provides a simple and accessible inter-
face. The website also provides a simple manual to
improve learnability.

Regarding reliability as the fifth characteristic,
the website instrument modern database and con-
tainer virtualization software and automatic backups
every other week. Furthermore we prevent the ex-
ploitation of our service as DDoS relay by process
design: users may suggest URLs for crawling. These
suggestions are gathered once a day and then scanned
in batch. This way, a user may suggest an URL sev-
eral times but our system does not take action on user
command immediately, which could potentially result
in flooding other websites and servers.

The sixth characteristic, security, is critical to the
application’s success, which deals with confidential
data. The confidentiality of the user’s private keys is
protected by ensuring that only the key fingerprint and
not the plain text private key is transmitted. The report
interface for adding new private keys to the database
is protected by allowing only URLs to be reported.

Private key files without a verifiable source are not
considered for the database. For legally securing the
application, the IP addresses of requests are stored to
hold users accountable for any illegal activity.

Assessing the seventh characteristic, maintain-
ability, highlighted that it is particularly important
for further extensions to the application. Choosing
a modular software design with containers and out-
sourced components ensures reusability. The choice
of TypeScript as a language has a strongly positive
impact on modifiability, as post-modification bugs are
noticed during development.

As the last characteristic, the portability of the
application was assessed. Since the currently used
virtual machine for the proof-of-concept may not be
sufficient in terms of resources in the future, the soft-
ware was designed with the ulterior motive of trans-
fer capability to a more resourceful system without
affecting the functionality. By implementing all ser-
vices as Docker containers, it is ensured that the ap-
plication can easily be adapted to changing hardware
requirements and transfer to a new environment.

In summary, the results of the assessment indicate
that KeyPwned is an application developed with con-
sideration for high software quality standards. It was
designed so that scaling and further enhancements can
be realized without harming the current functionality.

3.2 Data Collection

As a first step, we performed search queries, as de-
scribed in subsection 2.2. Private keys in five different
formats were extracted from these pages. This search
covered public key algorithms, including RSA, DSA,
ECDSA, and Ed25519.

The first three of the source datasets presented in
Table 1 are based on queries from the GHDB. In to-
tal, 618 keys were extracted from the pages that were
found using these queries. Duplicates were removed.
Random inspection of the URLs and contents of these
pages showed that the keys are found on various
domains, such as privately hosted GitLab instances
of universities and organizations or servers exposing
their entire content, including the .ssh folder.

Automated Search for Leaked Private Keys on the Internet: Has Your Private Key Been Pwned?

653

Table 1: Number of keys per source, showing the total num-
ber and unique keys found within the respective dataset.

Source Results Unique Keys

GHDB #6337 52 11
GHDB #3888 321 117
GHDB #4455 245 73

Pastebin 138 85
GitHub Gist 385 226
Searchcode 2,646 880

GitHub 238,162 12,743

Total 241,949 14,135

As opposed to the queries from the GHDB, the
second block of queries is targeted towards specific
domains, namely Pastebin, GitHub Gist and Search-
code. In total, another 3,169 keys were discovered on
these pages and deduplicated accordingly.

The third and by far the largest number of keys
was found in the public GitHub activity dataset on
Google BigQuery. Here, 238,162 keys were extracted
in the process. Although the results contain many du-
plicates and only 12,743 keys are unique, the high
number of repositories containing secrets confirms
the findings of related work, which emphasizes the
prevalence of the issue of secret leakage in public
source code repositories (see section 5).

3.3 Leakage Database

By retrieving publicly available private keys, we build
up the initial database of KeyPwned to evaluate the
feasibility of checking private keys for leakage. As
of October 2021, the KeyPwned database contains
14,135 unique fingerprints of leaked private keys, as
presented in Table 1. The study demonstrates that the
static GitHub activity snapshot is a promising source
of secrets, with over 90 % of the final database stem-
ming from GitHub. It implies that that secret leakage
is a widespread problem in public source code repos-

Table 2: Overview of the number of keys per public key
algorithm and key length.

Algorithm and Length Unique Keys

RSA-2048 6,493
RSA-1024 2,774
ECDSA-256 1,383
RSA-512 698
RSA-4096 470
DSA-1024 328
other 1,989

Total 14,135

itories. A variety of public key algorithms and key
lengths were detected in the process. Table 2 provides
an overview of the most frequent types of keys. Inter-
ested users can query the confidentiality status of their
fingerprints on a dedicated publicly available website.

4 DISCUSSION

Real-world Application. The use cases of authen-
tication key pairs, e. g., logging into servers, suggests
their user group belonging to IT professionals, admin-
istrators, and developers. The population of this user
group happens to be smaller than average users, who
would only check their usernames and passwords for
data leaks. Consequently, KeyPwned finds applica-
tions among the tech-savvy users who would check
for the confidentiality of their private keys.
Impact. IT professionals, administrators, and de-
velopers are usually responsible for operating IT re-
sources, including protecting confidential or personal
data. This raises the importance of their authentica-
tion credentials’ security, including their correspond-
ing private keys, since a compromised admin account
would endanger the security of user data. Hence,
KeyPwned indirectly contributes to the security of
users as well. As there have been several studies on
the leakage of private keys, the complementary re-
quirement of a trustworthy database of these leaked
private keys seems to be essential. We believe that
it provides a significant contribution to the security
world and closes an existing gap. Still, a longitudinal
study to acquire the target group’s opinion and feed-
back about our service is to be conducted.
Ethics. Some of the over 240,000 downloaded private
keys may be invalid, unused, or only used for testing
purposes and not necessarily of high-security impor-
tance. However, this could only be tested by perform-
ing brute-force login attempts with discovered keys.
We did not attempt to use any of the exposed pri-
vate keys, e. g.to authenticate at publicly reachable
services. Furthermore, for the final database, only
the fingerprints of private keys are kept to decrease
the risk of a potential data leak at our side and ensure
general anonymity regarding leaked keys.
Disclosure Process. Our approach follows the prin-
ciple of self-check, as users may check the confiden-
tiality of keys themselves. The more informative op-
tion is the registration of key fingerprints and auto-
mated notification in case of leakage. This practice
requires an upfront registration and storage of per-
sonal data, i. e.an email address for each key finger-
print, and, hence, abdicates anonymity.

ICSOFT 2022 - 17th International Conference on Software Technologies

654

Future Improvements. The current work focuses on
SSH keys as the most prevalent type of authentication
keys. However, the implementation allows abstrac-
tion and arbitrary key formats with public informa-
tion in the keys’ headers. Taking more key types into
account is a planned enhancement to achieve a well-
sorted database with a larger coverage.

The extension of the key fingerprints’ database
currently relies on our own automated scans and user-
driven suggestions. In the future, this could be en-
hanced by direct contributions of leaked keys’ finger-
prints to the database. On the one hand, such a man-
ual insertion of leaked keys’ fingerprints as a bulk by
trusted third parties could improve the coverage of our
service as system administrators could directly report
leaked keys, even if the keys are not yet observed on
the Internet. On the other hand, it is important to keep
a unified procedure and verify key leakage to ensure
the database’s validity.

We currently do not consider whether a leaked key
is still in use for authentication, but only register if it
has been exposed publicly. For gaining more insight
on the key leakage threat, a future enhancement could
be an extension for registered users to flag their keys
as abandoned or revoked. This way, it would be ap-
parent if a leaked key is still in use, posing a security
risk, or this risk has been mitigated already.

Ultimately, a key testing API would allow integra-
tion in authentication services. During a key-based
authentication, an automated check of whether the
used key has been publicly exposed would be per-
formed using this API. If so, users and administrators
can be made aware and revoke leaked keys immedi-
ately. This way, our service would contribute to other
services’ security directly.

5 RELATED WORK

Several studies have examined the problem of secret
leakage in public source code repositories. The word
secret is used as a collective term for all kinds of cre-
dentials, including tokens, usernames, passwords, and
private keys, among others. Sinha et al. (Sinha et al.,
2015) focused on the problem of leakage of API to-
kens and suggested methods to prevent and handle
key data leakage. The study by Meli et al. (Meli
et al., 2019) in 2019 characterizes the prevalence and
extent of secret leakage in public GitHub reposito-
ries. Based on a snapshot and six-month recording of
newly committed files, their study showed that over
100,000 repositories were affected by secret leakage,
and thousands of new credentials got leaked daily.
These studies illustrate the still relevant issue of se-

cret leakage in public source code repositories.
GitHub has taken measures by including scan-

ning services to detect secrets in repositories (GitHub,
2021). Currently, this service notifies service
providers, e. g., cloud providers, of leakage of issued
secret authentication tokens. Nonetheless, the GitHub
scanning approach does not automatically scan for all
secrets. The user needs to define custom patterns to
scan for other types of secrets that would include not
only API keys but also SSH private keys, client se-
crets, or generic passwords, as the definition of secret
by Saha et. al. (Saha et al., 2020) suggests.

In addition to the commercial secret scanning so-
lution of GitHub, a variety of open-source tools exist
designed to scan single code repositories for poten-
tial secrets. Three of the most popular ones are truf-
fleHog (Ayrey, 2018), git-secrets (AWS Labs, 2019)
and gitrob (Henriksen, 2018), differing in their search
mechanisms (regular expressions, entropy checks,
and file extensions) and purposes (leak prevention or
detection). In contrast to these tools, shhgit (Price,
2019) is not targeted towards specific repositories but
scans the whole space of GitHub, GitHub Gist, Git-
Lab, and BitBucket repositories in real-time. The tool
was turned into a commercial solution in 2021. An-
other commercial solution for detecting leaked secrets
is GitGuardian which offers free services to small
teams and public repositories listed as GitHub orga-
nizations. While their solution can detect leaked se-
crets instantaneously, it is not open-source and does
not provide the ability to upload fingerprints directly
to check their confidentiality status. It is still feasible
to find secrets in public source code repositories.

To prevent credential stuffing attacks by reducing
the number of active credentials leaked, the current
best-practice approach lets users check if their login
credentials appear in known data breaches. For this
purpose, several services for checking compromised
credentials have been developed (Li et al., 2019). The
service HaveIBeenPwned (Hunt, 2022) was launched
by Troy Hunt in 2013 and includes a large database
of over 10 billion compromised accounts and nearly
500 websites that suffered from a data breach. This
service allows users to check an email address or
password in real-time against the database and ac-
quire information on their exposure in any known
data breach. Moreover, it is possible to sign up for
an email notification service that notifies users when
their credentials are leaked in a data breach. Addi-
tionally, the service of HaveIBeenPwned is provided
as a public API integrated into password managers.
In a similar approach, the German Hasso Plattner In-
stitute (HPI) has developed a credential checking ser-
vice called HPI Identity Leak Checker which in con-

Automated Search for Leaked Private Keys on the Internet: Has Your Private Key Been Pwned?

655

trast to HaveIBeenPwned, does not provide a result
in real-time but notifies the user via email to increase
confidentiality (Hasso Plattner Institute, 2021).

In reaction to data breaches, Google has integrated
Google Password Checkup (Thomas et al., 2019) into
Google Chrome browser’s password manager, and
Apple released a similar feature for its built-in pass-
word manager iCloud Keychain.

Overall, there is a substantial benefit of cre-
dential leak checkers and existing services focus
on password-based authentication. However, as
public-key authentication is a standard authentication
method, there is a need for a similar service dedicated
to private keys.

6 CONCLUSION

Leaked authentication keys are a threat to security and
should be revoked immediately. To act fast, it is of the
essence to find out if a private key has been publicly
exposed as soon as possible. We have demonstrated
that scanning the Internet for leaked keys is one way
to achieve awareness regarding key leakage. After
building an initial database of publicly available se-
cret keys, we implemented a service for users to check
their keys while also administrators may use this ser-
vice to test their clients’ keys. However, we only store
the fingerprints of discovered keys. The quality of our
implementation was measured to common standards.

We aim to achieve a collaboratively built database
of private authentication keys deemed insecure as
they have been revealed on the Internet with this
work. Therefore, the dataset can be extended by sub-
mitting URLs that we then scan for leaked keys. We
plan to continue this service and make its final im-
plementation available after publishing this work to
allow a community-driven, ongoing extension of the
dataset and to be up-to-date so that users may check
their keys regularly.

REFERENCES

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable
and secure computing. IEEE transactions on depend-
able and secure computing, 1(1):11–33.

AWS Labs (2019). awslabs/git-secrets: Prevents you from
committing secrets and credentials into git reposito-
ries. https://github.com/awslabs/git-secrets. (Ac-
cessed on 27/05/2022).

Ayrey, D. (2018). TruffleHog. https://github.com/dxa4481
/truffleHog. (Accessed on 27/05/2022).

Brown, S. (2021). The C4 model for visualising software
architecture. https://c4model.com/. (Accessed on
27/05/2022).

GitHub (2021). GitHub Docs: About secret scanning. https:
//docs.github.com/en/code-security/secret-security/a
bout-secret-scanning. (Accessed on 27/05/2022).

Hasso Plattner Institute (2021). Identity Leak Checker. ht
tps://sec.hpi.de/ilc/. (Accessed on 27/05/2022).

Henriksen, M. (2018). michenriksen/gitrob: Reconnais-
sance tool for GitHub organizations. https://github.c
om/michenriksen/gitrob. (Accessed on 27/05/2022).

Hunt, T. (2021). Pwned Passwords, Open Source in the
.NET Foundation and Working with the FBI. https://
www.troyhunt.com/pwned-passwords-open-source-i
n-the-dot-net-foundation-and-working-with-the-fbi/.
(Accessed on 27/05/2022).

Hunt, T. (2022). Have I Been Pwned: Check if your email
has been compromised in a data breach. https://have
ibeenpwned.com/. (Accessed on 27/05/2022).

ISO/IEC (2011). ISO/IEC 25010:2011 Systems and soft-
ware engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System
and software quality models.

Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., and Ris-
tenpart, T. (2019). Protocols for Checking Compro-
mised Credentials.

Lonvick, C. M. and Ylonen, T. (2006). The Secure Shell
(SSH) Authentication Protocol. RFC 4252.

Meli, M., McNiece, M. R., and Reaves, B. (2019). How Bad
Can It Git? Characterizing Secret Leakage in Public
GitHub Repositories. In NDSS.

Price, P. (2019). eth0izzle/shhgit: Ah shhgit! Find GitHub
secrets in real time. https://github.com/eth0izzle/shh
git/. (Accessed on 27/05/2022).

Python Cryptographic Authority (2022). Cryptography. ht
tps://cryptography.io/. (Accessed on 27/05/2022).

Saha, A., Denning, T., Srikumar, V., and Kasera, S. K.
(2020). Secrets in Source Code: Reducing False Pos-
itives using Machine Learning. In 2020 International
Conference on COMmunication Systems NETworkS
(COMSNETS), pages 168–175. ISSN: 2155-2509.

Sinha, V. S., Saha, D., Dhoolia, P., Padhye, R., and Mani, S.
(2015). Detecting and Mitigating Secret-Key Leaks
in Source Code Repositories. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repos-
itories, pages 396–400. IEEE.

Thomas, K., Pullman, J., Yeo, K., Raghunathan, A., Kelley,
P., Invernizzi, L., Benko, B., Pietraszek, T., Patel, S.,
Boneh, D., and Bursztein, E. (2019). Protecting ac-
counts from credential stuffing with password breach
alerting. In USENIX Security Symposium. Google
LLC.

ICSOFT 2022 - 17th International Conference on Software Technologies

656

